
Vol.:(0123456789)1 3

Nuclear Science and Techniques (2023) 34:72 
https://doi.org/10.1007/s41365-023-01222-2

An online fast multi‑track locating algorithm for high‑resolution 
single‑event effect test platform

Yu‑Xiao Hu1,2,3 · Hai‑Bo Yang1,2,3   · Hong‑Lin Zhang1,2,3 · Jian‑Wei Liao1,2,3 · Fa‑Tai Mai1,2,3 · Cheng‑Xin Zhao1,2,3 

Received: 14 December 2022 / Revised: 1 March 2023 / Accepted: 6 March 2023 / Published online: 22 May 2023 
© The Author(s) 2023

Abstract
To improve the efficiency and accuracy of single-event effect (SEE) research at the Heavy Ion Research Facility at Lanzhou, 
Hi’Beam-SEE must precisely localize the position at which each heavy ion hitting the integrated circuit (IC) causes SEE. 
In this study, we propose a fast multi-track location (FML) method based on deep learning to locate the position of each 
particle track with high speed and accuracy. FML can process a vast amount of data supplied by Hi’Beam-SEE online, 
revealing sensitive areas in real time. FML is a slot-based object-centric encoder–decoder structure in which each slot can 
learn the location information of each track in the image. To make the method more accurate for real data, we designed an 
algorithm to generate a simulated dataset with a distribution similar to that of the real data, which was then used to train the 
model. Extensive comparison experiments demonstrated that the FML method, which has the best performance on simulated 
datasets, has high accuracy on real datasets as well. In particular, FML can reach 238 fps and a standard error of 1.6237 μm. 
This study discusses the design and performance of FML.

Keywords  Beam tracks · Multi-track location · Rapid location · High accuracy · Synthetic data · Deep neural network · 
Single-event effects · Silicon pixel sensors · HIRFL

1  Introduction

Various high-energy radiation particles such as protons, 
electrons, alpha particles, and heavy ions exist in the space 
radiation environment [1]. The single-event effect (SEE) is 

a process in which space-energetic charged particles in the 
sensitive region of a device [2] cause a change in the logic 
state of the device, directly leading to device damage or even 
complete failure. SEEs are classified as single-particle flip, 
single-particle lock, single-particle transient, etc., according 
to the phenomenon; SEE is a general term that includes all 
single-event effects. Advanced semiconductor devices and 
large-scale integrated circuits are widely used currently, with 
the development of semiconductor technology. Electronic 
systems in aerospace, aviation, and missile devices must 
consider the hazards of SEEs [3–5].

Ground-based SEE test facilities are common tools for 
evaluating devices’ sensitivity to SEE [6, 7]. This experi-
ment has the advantages of a short cycle time, low cost, and 
greater flexibility than the on-orbit experiment. Heavy ion, 
proton, and neutron beams are commonly used in ground 
radiation test facilities [8]. In ground simulation tests, the 
sensitive regions where single-particle effects occur in the 
devices to be tested must be precisely determined so that 
the radiation-resistant design of integrated circuits can be 
targeted and reinforced.

Beam monitors are primarily divided into two types of 
structures: interceptive [9–11] and non-interceptive [12–14]. 
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Interceptive beam monitors can provide real-time data on the 
beam cross section, flow intensity, and location. For exam-
ple, Faraday cups [9] use a charge collection plate to capture 
the particle beam charge directly; scintillator screens [10] 
are combined with a charge-coupled device (CCD) camera 
for observing the beam spot, which is a very simple and 
reliable monitor of the beam profile; and optical transition 
radiation screens [11] determine the beam profile by detect-
ing electromagnetic radiation from a metal foil. However, 
when in use, they may turn off the beam at the detector and 
dismantle the beam structure, making the beam unavailable 
to the equipment at the back-end of the system, which cannot 
provide an online measurement of the beam profile. Non-
interceptive beam monitors can measure the beam profile, 
center position, and other information without disturbing the 
beam structure. For example, beam transformers [12] use a 
transformer to capture the magnetic field associated with the 
beam and generate the corresponding voltage, whereas resid-
ual gas ionization monitors [13–15] perform almost non-
destructive beam profile measurements by collecting ionized 
particles. Non-interceptive beam monitors not only cause 
minimal structural damage to the beam, but also effectively 
extend the life of the detector and enable online measure-
ments owing to the use of indirect measurement techniques 
because offline analysis needs to store a large amount of data 
[19] and consumes huge storage space, which is unrealistic.

To meet the beam monitoring requirements at the HIRFL 
and HIAF, we propose a series of Hi’Beam detection sys-
tems [16–19], including HiBeam-A [16, 17] for the accelera-
tor, Hi’Beam-T [18] for the physics terminals, and Hi’Beam-
SEE for the SEE terminal at the HIRFL. The Hi’Beam series 
was implemented based on pixel sensors because of their 
high-accuracy position resolution, short response time, and 
fast readout. In this study, we focused on the Hi’Beam-SEE 
system, which is used to locate the region where SEEs of the 
Device Under Test (DUT) occur. The structure of Hi’Beam-
SEE is shown in Fig. 1. The system consists of two pixel 
detector units with the same structure, but independent of 
each other and placed perpendicular to each other. Each 
detector unit contains a cathode plate and a Topmetal-M 
[20, 21] chip that acts as an anode plate. A uniform electric 
field perpendicular to the electrodes is provided between the 
two electrodes in each cell. The DUT was placed on the right 
side of the detector. As heavy ions pass through the detector, 
they collide with the air along their tracks, creating electron-
ion pairs. Driven by an applied electric field, the electrons 
drift toward the anode and are absorbed, and the projection 
of the ion track in two vertical planes is obtained through the 
top metal chip, which is used to reconstruct the spatial posi-
tion of the beam to infer the hit point of the ion at the DUT. 
The Hi’Beam-SEE system is a heavy-ion beam monitoring 
series facing the terminal of a SEE test at HIRFL, which 
needs to have a measurement accuracy of 2–3 μm; therefore, 

we implemented the first version of the Hi’Beam-SEE based 
on the Topmetal-M chip. The Topmetal-M [20, 21] chip was 
the first Monolithic Active Pixel Sensor designed using Chi-
na’s domestic process for heavy ion physics. Subsequently, 
we plan to use our self-developed Nupix-S pixel chip, which 
can achieve an event rate of 10 kHz. In particular, we veri-
fied the track localization of the V0 version based on Top-
metal-M through preliminary tests and achieved an expected 
accuracy of approximately 1.6 μm [21].

However, current track location methods can only record 
each frame of data and then locate the track offline. For the 
final online real-time monitor, the data volume of the cur-
rent methods is very large, and we only need to record the 
key information (slope and intercept) of the track in each 
frame; therefore, an efficient online tracking algorithm is 
required. With an event rate (particle flux) of 10 kHz and 
an SEE probability of approximately 1/50, our algorithm 
must have a processing speed close to 200 fps. In addition, 
another challenge of trial localization is the need to locate 
multiple tracks simultaneously in one frame, which is one 
of the bottlenecks of traditional methods; therefore, we con-
sider neural networks. Highly accurate multi-track location 
is a challenge that must be overcome. Currently, with the 
present time of rapid development of deep neural networks, 
several track location algorithms can be applied to beam 
location tasks. Deep neural networks are not limited by the 
number of objects to be detected and exhibit very high accu-
racy. In addition, well-trained neural networks can provide 
rapid results. Therefore, it is natural to introduce deep neural 
networks. In addition, deep learning requires a relatively 
large amount of data. We propose a method for generating 
simulated beam data that aids in training to obtain a more 
robust neural network model. In our experiments, we show 
that the model developed by training on the simulated data-
set still performs well on a real dataset.

In this study, based on Topmetal-M and Hi’Beam-SEE, 
we designed a method to generate simulated data and pro-
vide a fast multi-track location (FML) method to precisely 

Fig. 1   (Color online) Typology of the Hi’Beam-SEE system



An online fast multi‑track locating algorithm for high‑resolution single‑event effect test…

1 3

Page 3 of 15  72

locate the projected tracks. Specifically, the traditional meth-
ods and related studies are discussed in Sect. 2. In Sect. 3 
we propose a novel multi-online tracking algorithm for the 
Hi’Beam series beam monitor, which includes designing a 
method to simulate the beam data such that the generated 
data have a similar distribution of gray values as the real 
data; additionally, we propose a fast method FML to locate 
one or several ionization tracks by deep learning. Extensive 
comparative experiments are presented in Sect. 4, which 
include the locations of a single track, multiple tracks, 
and real tracks (single real track and multiple real tracks). 
Finally, Sect. 5 summarizes our study. Our main contribu-
tions can be summarized as follows:

•	 We designed a fast method, namely, FML, for detect-
ing ionization tracks by deep learning that is nearly 10 
times faster than traditional algorithms. By applying this 
algorithm, we achieved the fast location of single-particle 
effects in conjunction with hardware systems, thus ena-
bling near real-time location of sensitive areas of single-
particle effects.

•	 Unlike the traditional methods that are effective only for 
a single track, the proposed FML can detect multiple 
tracks with high accuracy. FML is no longer limited by 
the number of tracks and has better application prospects.

•	 We designed a method to generate simulated beam data, 
which is very similar to real data. This simulated dataset 
greatly expands the beam data to provide strong support 
for simulation experiments. We verified experimentally 
that this method, which has good accuracy on simulated 
datasets, has the same accuracy on real datasets.

•	 The proposed FML method greatly improves the accu-
racy of track location compared to other methods not 
only on simulated datasets but also on real datasets.

2 � Related work

2.1 � Track location methodology

2.1.1 � Mass center method

The mass center method [22] is the most common method 
used today. This method takes the mass center of the column 
within the vertical range of the pixel, which is the highest 
gray value in this column, and then uses the mass center of 
each column to fit the final predicted track. This method 
is simple, but has major limitations. First, this method is 
highly sensitive to noise. The determination of the center’s 
position determines the accuracy of the mass center method. 
However, it is difficult to avoid noise when the device is 
functioning, and the intensity of noise always depends on 
the uniformity of the electric field and the type of gas [16, 

17]. The mass center method does not exclude these extrane-
ous noise points when calculating the mass center position; 
therefore, the position is inaccurate. This method becomes 
more unstable and significantly reduces the accuracy of the 
results, particularly when the noise is not evenly distrib-
uted. Second, the mass center method does not work in the 
case of numerous tracks. Two or more tracks are frequently 
observed in the original dataset. Pixels with high gray values 
are dispersed in various regions of the same column when 
the image consists of many tracks. Because the mass center 
method takes only one pixel with the highest gray value in 
each column, the location of the mass center of this col-
umn is determined within a small area perpendicular to that 
pixel. Therefore, in the case of multiple tracks, the center of 
mass is often located on one track with a higher gray value, 
and the other tracks are completely ignored. When the pix-
els with the highest gray values in various columns corre-
spond to various tracks, the issue worsens. At this point, the 
results obtained by the mass center method will be extremely 
confusing. Even if the total number of tracks is known in 
advance, this method cannot accurately determine the mass 
center of each track, which significantly affects the outcome 
of the fitting process. In addition, the mass center method 
is time-consuming and labor-intensive. Because the track 
does not span the entire image, it is not necessary to find 
the center of mass in the column where the track does not 
appear. Therefore, the column where the track occurs must 
be manually located before computing the center of mass, 
which is quite difficult.

2.1.2 � Double edge detection method

The double edge detection method is different from the mass 
center method, which uses the amplitude intensity of the 
track image as the confidence level of whether the pixels 
belong to the track. The double edge detection method uses 
the gradient information of the image to determine whether 
a pixel point belongs to a track. Owing to the diffusion of the 
electron cloud, the tracks form a strip pattern with a certain 
width on the image. Because there is a significant differ-
ence in the gray values between the track and background, 
there is a sudden change in the gray value at the edge of 
the track, and this change is the gradient information of 
the track. Inspired by the gradient information of the track, 
this method does not directly localize the tracks, but first 
finds the edges of the tracks based on the apparent gradient 
information. Then, this method determines the number of 
traces using the Hough transform and uses an edge detec-
tion algorithm, such as the Canny edge detection method 
[23] to obtain the features of the boundaries on both sides 
of the tracks. The centerline between the two boundaries is 
the track projection predicted using the double edge detec-
tion method. Compared with the mass center method, this 
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method can better handle multi-track situations and provides 
the information of each track separately. Additionally, this 
method is not easily affected by distant noise.

However, when using this method, it is difficult to deter-
mine the parameters of the algorithm, particularly the seg-
mentation step size of the distance and angle in the Hough 
transform [24]. A very large segmentation step size will 
lead to insufficient precision. If the segmentation step size 
is very small, the accumulated energy values of each lattice 
point in the Hough space will be relatively close, which will 
cause difficulties in the subsequent non-maximum suppres-
sion algorithm. This is unreasonable because the quality of 
the prediction results is highly dependent on the choice of 
parameters. Additionally, parameter selection in the non-
maximum suppression algorithm is extremely important. If 
it is not properly selected, some edges will either be missed 
or false edges will appear. In addition, the double-edge 
detection method does not improve the calculation speed 
compared to the mass center method.

2.2 � Deep neural network

Since Alex Krizhevsky proposed AlexNet [25] in 2012, 
GPU-based convolutional neural network (CNN) models 
have achieved great success and led to the rapid proliferation 
of deep learning. With the rapid development of comput-
ers, deep learning [26] has been widely used in many fields 
including physics, chemistry, life science, and medicine 
[27–30]. Deep neural networks (DNNs) constitute the basic 
framework of deep learning and require networks contain-
ing multiple hidden layers [31]. Thus, DNNs can discover 
the distributed feature representations of data by combining 
low-level features to form more abstract and higher-level 
representations of attribute classes or features. The core of 
DNNs is to learn more useful features by building machine 
learning models with many hidden layers and large amounts 
of training data to improve the accuracy of classification 
or prediction. Specifically, DNNs learn a deep nonlinear 
network structure using a backward gradient propagation 
algorithm and numerous parameters to approximate com-
plex nonlinear functions, allowing them to interpret data 
similar to the human brain. DNNs simplify classification or 
prediction tasks by transforming the feature representation 
of samples in the original space into a new feature space 
through layer-by-layer transformation [32]. Compared to the 
manual rule-based method of constructing features, using 
a large amount of data to learn features is more capable of 
portraying the rich intrinsic information of the data. DNNs 
have also been widely used in the field of imaging, where 
they have demonstrated remarkable capabilities in classifica-
tion, detection, segmentation, image generation, and other 
tasks [33–36].

A deep learning-based beam location method was pro-
posed by [24] which uses Garfield [37] and ROOT [38] to 
generate data. Compared with traditional methods, Ref. [24] 
provided higher accuracy and better multi-trace location 
results than conventional algorithms. However, Garfield and 
ROOT were used to simulate the process of beam injection 
into the electron collector without requiring the generated 
images to mimic detailed features, such as the noise distribu-
tion and shape of the tracks in the real image. Because the 
results of neural networks are highly dependent on the qual-
ity of the datasets and are sensitive to the detailed features 
of the data, it is unreasonable to train the networks directly 
using the data generated by Garfield and ROOT directly. 
In addition, Ref. [24] does not consider the effects of noise 
on the final results. In particular, irrelevant noise can eas-
ily mislead the judgment of a neural network because of 
its sensitivity to details. The encoder–decoder structure of 
the neural network that [24] uses is based on U-Net [39], 
which is one of the recognized successful methods for 
image segmentation among the deep learning methods. The 
encoder–decoder structure and the jump–join approach used 
in this method can provide surprising segmentation results. 
In this study, U-Net was used as the comparison method.

3 � Methodology

In this section, we provide a specific methodology for gen-
erating synthetic data and the FML.

3.1 � Noise reduction

We found that the real beam track image contains a large 
amount of noise. A large amount of noise affects the model’s 
judgment of real tracks; therefore, we need to preprocess 
the data for noise reduction. During noise reduction, it is 
important to maintain the track characteristics. There are 
many image denoising methods, such as NL-means [40] and 
DnCNN [41]. However, they tend to produce better denois-
ing results by changing the original pixel values. We found 
that the neural network has a good discrimination ability 
for a small amount of noise and obvious traces; therefore, it 
is not necessary to remove the noise completely because it 
will not improve the accuracy significantly but may destroy 
the important characteristics of the tracks. By observing 
real beam traces, we found that a large number of noise 
points had grayscale values that were much smaller than 
the grayscale values of the traces. Therefore, we consider 
noise screening of all pixel points before the track location 
works by setting a threshold value for grayscale values. By 
comparing several noise reduction results, we found that the 
grayscale values of most noise were contained in the latter 
99% of the grayscale distribution. Therefore, we sorted the 
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grayscale values of the image pixels, fixed the pixels that 
are in the top 1% of the grayscale distribution, and set the 
remaining 99% of the pixel grayscale values to 0. Using 
this method, we can remove a large amount of noise while 
maintaining the track characteristics.

3.2 � Generation of synthetic data

Training a neural network that works well requires a large 
amount of data. Thus, it is crucial to generate data that are 
similar to real data. Based on the characteristics of beam 
projection data, we designed a method that can generate 
large quantities of simulation data. For convenience in sub-
sequent experiments, we only describe in detail the method 
for generating a beam image after noise reduction. The 
method of generating a beam image before noise reduction 
is similar and only a few parameters need to be changed.

By observing a real beam image after noise reduction, we 
found that it had the following distinct features: 

(1)	 A small amount of noise is scattered throughout the 
image. Most of the noise has small grayscale values, 
and a small amount of noise has slightly large grayscale 
values.

(2)	 The heads and tails of the track are often densely 
packed with high grayscale points tightly attached to 
the straight line where the track is located.

(3)	 The middle part of the track was always composed of 
loose points with low gray values. The paths consisting 
of these points were intermittent.

(4)	 The shapes of the paths were not the same; some were 
very thin, while others were slightly thicker. In addi-
tion, one path was always thick at both ends and thin in 
the middle.

According to the characteristics of the real track image after 
denoising, we generated a simulated image according to the 
following steps. Step 1 To achieve the effect of a small amount 
of random noise with inconsistent gray values on the image, 
we assigned a value a to each pixel, which was taken from 
a uniform distribution between 0 and 1. When a > 0.98 , the 
pixel was marked as a noise point. For these noise points, we 
assigned each of them the value b, which was obtained from 
a uniform distribution between 0 and 1. We set five levels of 
grayscale values for noise. When b < 0.3 , we set the mini-
mum grayscale value of level 1; when 0.3 ≤ b < 0.6 , we set 
the grayscale value of level 2; and when 0.6 ≤ b < 0.9 , we set 
the grayscale value of level 3. When 0.9 ≤ b < 0.95 , we set 
the gray value of level 4, and when b ≥ 0.95 , we set the gray 
value of level 5. In particular, the highest grayscale value of 
the noise point was smaller than the average grayscale value 
of the track area.

Step 2 We specified a random integer within 5 for the 
image, indicating the number of tracks that the image con-
tains. The corresponding number of points in the image was 
randomly selected as the starting point of the tracks. Because 
tracks on the same image usually have the same slope, we took 
a random number from 0.2 to 0.6 as the slope of the tracks of 
this image. To increase the randomness, we added a ±0.001 
deviation to the slope of each track with a 10% probability. We 
can then obtain the track labels for the simulated data.

Step 3 We set three levels for track width thresholds. 
There is a 45% probability that the tracks will have a fine 
shape at Level 1; 35% and 20% correspond to Levels 2 and 
3, respectively.

Step 4 We set three levels for the average grayscale of 
tracks. For one track, at the head of the track, the average 
grayscale value was high, whereas in the middle of the track, 
the average grayscale value was low. At the tail of the track, 
the average grayscale value oscillated randomly between the 
two.

Step 5 The track had a certain width and was not com-
pletely continuous. Therefore, we set the parameter c for the 
pixels on the track label, which means that this pixel has a 
probability c of not showing the track, indicating that the 
track is broken here. Clearly, at the head of the track, c = 0 , 
and in the middle of the track, c = 50.

Step 6 Depending on whether the pixel shows a track or 
not and the width threshold of the tracks, we took dense 
points around the track and chose the number of points ran-
domly within the threshold.

Step 7 In accordance with the quality of the real datasets, 
we added a Gaussian blur effect to the images.

To evaluate the similarity of the synthetic data to the real 
image, we considered the difference in the gray value dis-
tribution and cumulative distribution function of the gray 
values. If the gray value distribution and the gray value 
cumulative distribution function of the synthetic and real 
images are both similar between the synthetic data and the 
real image, it is reasonable to believe that the algorithm 
can provide synthetic images that are similar to real track 
images. Additionally, to avoid chance, we often calculated 
the average distribution of grayscale for a set of images. In 
Subsection 4.1, we verify that the synthetic data obtained 
using the above algorithm are similar to the real data.

3.3 � Fast multi‑track location method (FML method)

To conveniently provide the specifics of the FML, Table 1 
describes the important symbols. The architecture of the 
FML method is illustrated in Fig. 2.
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3.3.1 � Data gridding

Because beam tracks are generally straight lines, there is 
no need to make segmented binary predictions for all pixel 
points of the entire image, i.e., the location of all pixel points 
covered by the trace is given in full. In the ideal case of com-
plete accuracy, only two pixel points belonging to the track 
are required to obtain an accurate location. Considering the 
length of the effective traces, this study takes eight equal 
parts in the height direction of the image, i.e., h = 8 , and 
Row_list where each equal part is located is selected. The 
real column coordinates of each trace in the corresponding 
row are further obtained using the segmentation label M. 
At this time, the column coordinates must be gridded, i.e., 
the original width of the image W is gridded to w, and the 
column coordinates must be scaled to the original value of 
w/W accordingly, and finally, the single-track training label 
l ∈ ℝ

h×(w+1) . By reducing the size of the neural network 
output shape, the size of the learnable parameters can be 
effectively reduced.

3.3.2 � Predicted points of tracks

We used neural networks to achieve point prediction for the 
tracks.

First, we obtain the global features of data through the 
encoder layers. In particular, the encoder layers are a back-
bone network consisting of multiple two-dimensional convo-
lutional layers with a residual join. The output of the encoder 
layers is spliced using position encoding to generate the final 
features. This process can be formalized as follows.

where the features denoted as FE , HE , and WE are the dimen-
sions of the feature map after the encoder layers, and D is 
the depth of the output channel.

FE = Encoder(S) ∈ ℝ
D×HE×WE ,

Second, to locate multiple tracks, we introduce a Slot 
Attention module with reference to [42] to learn the fea-
tures of each track independently. Specifically, given an 
upper limit for the number of tracks to be located, a corre-
sponding number of learnable slots were constructed. Slots 
correspond to tracks individually and redundant slots do not 
work. Therefore, each Slot gradually learns the information 
corresponding to a certain track in the representation inputs. 
The pseudocode of the slot attention algorithm module is 
given in Table 2.

Third, after the slot attention module, we obtain the final 
location results, i.e., the output of the network. Because the 
slots have learned the features of the corresponding traces, 
we can generate the final predictions Prob ∈ ℝ

NQ×h×(w+1) 
using the decoder layers and the Softmax function. The 
decoder process can be formalized as:

P = Decoder(slots) ∈ ℝ
NQ×h×(w+1),

Probi,j,∶ = Softmax(Pi,j,∶).

Fig. 2   (Color online) Architecture of the FML method

Table 1   Description of symbols

Variable Type Definition

S Tensor Original image
M Tensor Segmentation of original image
P Tensor Output of f
L Tensor Target locations in grid image
Prob Tensor Probability from prediction
H Scalar Height of original image
W Scalar Width of original image
h Scalar Number of selected rows
w Scalar Width of narrow image
Ntrack Scalar Number of tracks
f Function Track location neural network
Row_list List List of selected rows
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Because the training label is L�

∈ ℝ
Ntrack×h and Ntrack ≤ NQ , 

it must be filled with NQ . The missing part is filled with 
w + 1 to indicate the absence of a trace, thus forming the 
final label L ∈ ℝ

NQ×h×(w+1) . Similarly, the dimension w + 1 
in Prob is due to the possible absence of tracks at this posi-
tion. In the training phase, the classification Loss is calcu-
lated between Prob and L. Because the pixels belonging to 
the tracks are only a small part of the entire image, there is 
a significant imbalance between the positive and negative 
samples. Therefore, we use Focal Loss (FL) to replace the 
commonly used cross-entropy loss.

Additionally, because the traces were straight lines, a 
Straight Loss was constructed for each trace prediction to 
restrict its performance to straight lines. We calculated the 
difference between adjacent rows of Prob and found the sec-
ond parameter as the loss function.

During the testing phase, the weighted sum of Prob and 
column coordinate values was used as the final predicted 
position.

3.3.3 � Tracks fitting

After obtaining the predicted points for each track, we can fit 
the final predicted tracks by the coordinates of the predicted 

Lcls =

NQ∑

i=1

h∑

j=1

LFL(Probi,j,∶, Li,j),

LFL(prob, label) = −�lable
(
1 − problabel

)�
log

(
problabel

)
.

Lstra =

NQ�

i=1

h−1�

j=1

‖Probi,j+1,∶ − Probi,j,∶‖2.

points corresponding to each track. Because we want the 
final fitted tracks to be as close as possible to our predicted 
points (xpred, ypred) , we use the least-squares method to obtain 
the final location results y∗ = kx + b.

4 � Experiments and results

In this section, we present the results of preprocessing 
for noise reduction, a visual and distribution comparison 
between synthetic and real images, and the comparison 
results for single-track locations, multiple-track locations, 
and real track locations. We chose the mass center method, 
double edge detection method, and U-Net method as the 
comparison methods for single-track locations, and the dou-
ble edge detection method as the comparison method for 
multiple-track locations.

4.1 � Denoising and synthesis of data

4.1.1 � Data denoising

To improve the accuracy of beam location, we first preproc-
essed the original data by noise reduction. The original data 
are presented in Fig. 3a, c. It is evident that the original 
image contains a large amount of conspicuous noise. This 
noise can affect the model’s judgment of the beam tracks, 
particularly the method based on the mass center method. 
Figure 3b, d shows the results of our processing of the orig-
inal data. A large amount of noise was removed and the 
tracks remained clear and distinct. It is worth noting that the 
noise-reduced image retains important features of the track, 
such as the width and grayscale.

Table 2   Pseudocode of the Slot 
Attention algorithm module

Slot Attention module: The inputs are NE vectors of length D. NQ vectors of length D are constructed as 
slots. The correlations between slots and inputs are used as weights, and the slot values are weighted and 
updated. In this study, we ran 3 iterations of slot attention, i.e., T = 3.

1: Input: input∈ ℝ
D×NE , slots∈ ℝ

D×NQ

2: Learnable parameters: fully connected layer q, k, v; GRU; MLP; LayerNorm (×3)
3:    inputs=LayerNorm(inputs)
4:    for t = 0...T

5:       slotsprev=slots
6:       slots=LayerNorm(slots)

7:       attn=
Softmax

�
1√
D
k(inputs) ⋅ q(slots)T , axis =� slots�

�

8:       updates=WeightedSum(weights=attn, values=v(inputs))
9:       slots=GRU(hidden state=slotsprev , inputs=updates)
10:       slots + = MLP(LayerNorm(slots))
11:    return slots
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4.1.2 � Data synthesis

By carefully observing the characteristics of the real beam 
tracks, we generated a large amount of synthetic data. Fig-
ure 4 shows our generated synthetic data. Comparing Fig. 4 
with the real data shown in Fig. 3a, c, it is clear that both 
of them have similar characteristics; for example, the front 
part of the track has a higher gray value, the middle part 
of the tracks is intermittent, the front part of the track is 
thicker than the back end, and so on. Although it appears 
that the features of the synthetic image are similar to those of 
the real image, we would like to provide stronger evidence. 
Because our device is still in the development phase and is 
limited by the beam time, we selected 337 real images from 
the beam and calculated the average frequency of each gray 
value appearing in one real image, as shown by the red his-
togram in Fig. 5a. The red histogram in Fig. 5b shows the 
grayscale’s average distribution of 10000 synthetic images. 

The blue curve in Fig. 5a, b is the cumulative distribution 
function of the gray values. It is clear that the distribution 
of the synthetic data is similar to that of the real data, which 
provides a strong evidence that the accuracy of neural net-
works trained with synthetic datasets can be migrated to 
real datasets.

4.2 � Location of single track

In this subsection, we choose the mass center method, dou-
ble edge detection method, and U-Net method as the com-
parison methods for the FML method, whereas for the mass 
center method, we first locate the start and end points of 
the track by manual marking. Figure 6b–e shows the local 
visualization results of the mass center method, double edge 
detection method, U-Net method, and FML method, respec-
tively. Figure 6f shows the output of the FML model. The 
results of the quantitative comparison of the four methods 

Fig. 3   Comparison of data before and after noise reduction. a Original image 1; b image 1 after noise reduction; c original image 2; d image 2 
after noise reduction

Fig. 4   Synthetic data. a synthetic data 1; b synthetic data 2; c synthetic data 3; d synthetic data 4
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are listed in Table 3, where four aspects (intercept residu-
als, slope residuals, standard error (SE) [19], and speed) 
were used to evaluate the performance of the four models. 
In particular, the speed indicator of the mass center method 
in Table 3 does not include the manually marked time. To 
eliminate contingencies, the values in Table 3 were obtained 
by calculating the average of 2000 results. A comparison 
of the results is shown in Fig. 6, and Table 3 shows that 
the accuracy of the mass center method is affected by the 
random noise due to the uneven distribution of the synthetic 
data. The results of the double edge detection and U-Net 
methods were susceptible to the inhomogeneity of the track. 
Our method (FML) exhibits the best performance among all 
four methods, especially in terms of algorithm speed, which 
is almost 10 times faster than the traditional methods (five 
times faster than the deep learning-based method U-Net) and 
is certainly a great advantage.

4.3 � Location of multiple tracks

Because the mass center method and U-Net method fail for 
the multi-track location task, in this subsection, we choose 
the double-edge detection method as the comparison model 
for the FML method. Figure 7a–c shows the synthetic image 
of multiple tracks and the track location results of the two 
methods. The neural network output obtained using the FML 
method is shown in Fig. 7d. Similar to the results presented 
in Table 3, we present the quantitative comparison results 

of the two methods in Table 4, which are calculated using 
the average of 2000 results. The visualization results and 
the comparison of index values show that FML has higher 
accuracy and higher computation speed than the double edge 
detection method.

4.4 � Location of real tracks

Therefore, it is necessary to verify the validity of the model 
using real data. Because our neural network was trained on 
synthetic data, it is also a test of the generated synthetic 
data. In this subsection, for the location of a real single track, 
we choose the mass center method, double edge detection 
method, and U-Net method as the comparison models for the 
FML method; for the location of multiple tracks, we choose 
the double edge detection method as the comparison model. 
Figure 8 shows the single track location results of the four 
methods on real data from beam, and Fig. 9 shows the mul-
tiple tracks location results of the two methods on real data 
from beam. Because there were no ground-truth labels, we 
could not provide quantitative comparisons of the intercept 
and slope residuals. The SE results are listed in Table 5 to 
show the comparison of accuracy, which is the accuracy 
comparison method in practical application [19]. A compari-
son of the results presented in Fig. 9 and Table 5 assertively 
shows that the FML method can locate multiple tracks well. 
In particular, we compare the algorithm speeds in Table 5, 
which is one of the main concerns in this experiment, and 

Fig. 5   Comparison of the distributions of real data and synthetic data. a Grayscale distribution of real data; b grayscale distribution of synthetic 
data. (Color figure online)
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Fig. 6   Location of single track. a original image; b mass center method; c double edge detection method; d U-Net method; e FML method; f 
output of the neural network of the FML method

Table 3   Quantitative comparison of single-track location

Method Intercept residuals Slope residuals Speed (ms)  SE (μm)

Mean Standard deviation Mean Standard deviation

Mass center method [22] 0.00932 0.30238 0.00055 0.00332 52.382 49.823
Double edge detection method [23] −0.02992 0.92368 0.00033 0.00392 66.448 17.383
U-Net method [39] 0.02812 0.84383 0.00043 0.00328 23.328 27.382
FML 0.00023 0.28399 0.00001 0.00013 4.3823 1.5239
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Fig. 7   Location of multiple tracks. a Original image; b double edge detection method; c FML method; d output of the neural network of the 
FML method

Table 4   Quantitative 
comparison of multi-track 
location

Bold is to indicate that this method is the best effect

Method  Intercept residuals Slope residuals Speed (ms) SE (μm)

Mean Standard deviation Mean Standard deviation

Double edge 
detection 
method [23]

0.23792 0.44283 0.00066 0.021888 75.329 12.379

FML 0.00203 0.23823 0.00002 0.00042 4.5239 1.9383
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we can easily find that the FML method is far superior in 
speed, which indicates that FML is an efficient online track-
ing algorithm.

5 � Conclusion

A non-intercepting and high-resolution beam position 
monitoring device, called Hi’Beam-SEE, is being designed 
for HIRFL. The Hi’Beam-SEE consists of a detector sys-
tem and a readout system. The novel Topmetal-M silicon 
pixel chip in the detector system directly collects negative 
ions generated by heavy-ion-ionized air under an electric 
field, thus producing tracked images. Because of the need 
to match an event rate (particle flux) of 10 kHz, the system 
generates a large amount of data that must be processed 
online. In addition, the projected tracks of the beam are not 
clear because diffusion occurs during charge drift. There-
fore, it is necessary to design an algorithm that simulta-
neously improves the accuracy and processing speed of 
positioning on the beam tracks. In this study, we proposed 
a method called FML based on drifting pixel sensors for 

fast multi-track locations. To address the limitations of 
traditional methods, we extracted the global features of the 
data through the encoder part of neural networks, learned 
the features of each track independently using the Slot 
Attention module, and outputted the final location results 
using a decoder to achieve fast and accurate location of 
multiple tracks. To make the neural network more accurate 
and robust on real data, we designed a method to gener-
ate synthetic data based on the important features of real 
data. After verification, the synthetic data had a gray value 
distribution similar to that of the real data, and the neural 
network trained by the synthetic data could also provide 
a highly accurate location for the real data. Comparative 
experiments demonstrated that the FML method has the 
lowest bias and fastest speed on a single synthetic track 
location and multiple synthetic track locations. On real 
data from the beam, the FML method is valid for multiple 
tracks and is an efficient online locating algorithm. FML 
improves the performance by more than five times over the 
suboptimal algorithm in terms of both processing speed 
and standard error. In particular, the FML algorithm can 
operate at a speed of 238 fps.

Fig. 8   Location of real single track. a Original image; b mass center method; c double edge detection method; d U-Net method; e FML method
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Fig. 9   Location of real multiple tracks. a Original image; b double edge detection method; c FML method; d output of the neural network of the 
FML method
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