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Abstract The tensor parts of Skyrme interactions are

constrained from the collective charge-exchange spin–

dipole and Gamow–Teller excitation energies in 90Zr and
208Pb, together with the isotopic dependence of energy

splitting between proton h11=2 and g7=2 single-particle

orbits along the Z ¼ 50 isotopes. With the optimized tensor

interactions, the binding energies of spherical or weakly

deformed nuclei with A ¼ 54�228 are studied systemati-

cally. The present results show that the global effect of

tensor interaction is attractive and systematically increases

the binding energies of all these nuclei and makes the

nuclei more bound. The root mean squared deviation of the

calculated binding energies from the experimental values is

significantly improved by the optimized tensor interactions,

and the contribution of the tensor interaction to the binding

energy is estimated.

Keywords Tensor force � Binding energy � Gamow–Teller

transition � Spin–dipole transition � Single-particle energy

differences

1 Introduction

Nuclear energy density functionals (EDFs) such as

Skyrme, Gogny, and relativistic mean field models (RMF,

RHF) have achieved great success for describing the

properties of nuclear ground states as well as excited states

in the last few decades [1–4]. By fitting to a set of exper-

imental data, primarily saturation properties of nuclear

matter, binding energies, and charge radii of some closed

shell nuclei, EDFs can predict the properties of ground

states and excited state, i.e., excitation energies and tran-

sition strengths of both low-lying collective states and giant

resonances along the wide region of nuclear chart.

Tensor force is an important component of the bare

nucleon–nucleon interaction [5]; specifically, it was rec-

ognized historically as an essential constituent to make the

deuteron bound [6]. However, its relevance for EDF has

been discarded for a long time after the early achievement

of Skyrme interactions in the 1970s. This implies that in

earlier implementations of density functional theory (DFT),

based on effective interactions such as Skyrme’s, the tensor

force was either considered of trivial importance or ignored

for the purpose of simplicity. Diversely, the Skyrme EDFs

show explicit contributions of tensor interactions. The

contributions are demonstrated in the spin–orbit potential

as the spin–current density with those from the momentum-

dependent terms of the central force. As these terms vanish

in spin–orbit saturated nuclei, and many nuclei used in the

fits belong to these nuclei, most of the early Skyrme

parametrizations ignored not only the tensor terms but also

the spin–current terms [7].

The revival of tensor terms occurred in the beginning of

the twenty-first century with the development of new

radioactive ion beam facilities, by which more neutron-rich
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nuclei have been studied and new phenomena have been

observed with respect to the evolution of the spin–orbit

splitting with neutron excess [8]. Afterward, the impor-

tance of an effective neutron–proton tensor force was

suggested to explain this evolution [9]. Inclusion of tensor

terms could produce more qualitatively experimental data

within the Gogny [10], Skyrme [7, 11–15], and relativistic

frameworks [16–19] (see also a review article Ref. [20]).

But until recently, the strength of the tensor force is not

well determined and the global effect of the tensor inter-

action for the nuclei is obscure.

There are two ways to determine the tensor terms in

Skyrme EDF. First is to add the tensor terms on top of

existing parameter sets and study experimental data of

spin–orbit splitting and giant resonances [13–15, 21–24].

The second way is to optimize the central part of Skyrme

EDF for a given set of tensor terms. In the optimized

process, the parameters of central part of EDF are fitted for

a protocol of simultaneous reproduction of nuclear bulk

properties such as binding energies and radii of finite nuclei

and the empirical characteristics of infinite nuclear matter.

For example, Tij EDFs belong to this category [7, 11, 25].

We refer to the first and the second categories as ‘‘adiabatic

EDF with tensor terms’’ and ‘‘variational EDF with tensor

terms,’’ respectively.

By employing empirical excitation energies of Gamow–

Teller (GT) and charge-exchange spin–dipole (SD) states

in 90Zr and 208Pb and the evolution of energy splitting

between proton h11=2 and g7=2 single-particle orbits along

the Z ¼ 50 isotopes, our strategy starts firstly from some

existing parameter sets and optimizes the tensor terms.

Here, we propose optimized tensor interactions for the

adiabatic EDFs. We then apply these EDF?optimized

tensor terms for the calculations of binding energies of 22

isotopic chains from Ca to Ra to study the contribution of

the tensor interactions to the binding energies. Further, we

choose a few variational EDFs that have similar tensor

terms to the optimized tensor terms of adiabatic EDFs and

calculate the evolution of energy splitting between proton

h11=2 and g7=2 states and the binding energies of the 22

isotopic chains. In comparison with the adiabatic EDF and

the variational EDF, we explore not only the role of opti-

mized tensor terms for nuclear structure calculations but

also the difference between the two approaches.

This paper is organized as follows. In Sect. 2, we briefly

describe the formulas of Skyrme EDF that will be used in

the calculations. In Sect. 3, the strengths of the tensor terms

are optimized by empirical main peak energies of GT and

SD transitions in 90Zr and 208Pb and the evolution of

energy splitting between proton h11=2 and g7=2 single-par-

ticle orbits along the Z ¼ 50 isotopes is examined. Fur-

thermore, the optimized adiabatic and variational EDFs are

applied to study the binding energies of 22 isotopic chains

by using Hartree–Fock (HF) and Hartree–Fock–Bo-

golyubov (HFB) models in Sect. 4. The summary is stated

in Sect. 5.

2 Formulism

The zero-range two-body tensor force was originally

proposed by Skyrme [26, 27]:

VT ¼ T

2
f½ðr1 � k0Þðr2 � k0Þ �

1

3
r1 � r2ð Þk02�dðrÞ

þ dðrÞ½ðr1 � kÞðr2 � kÞ �
1

3
r1 � r2ð Þk2�g

þ U

2
f r1 � k0ð ÞdðrÞðr2 � kÞ þ r2 � k0ð ÞdðrÞðr1 � kÞ

� 2

3
ðr1 � r2Þk0 � dðrÞk½ �g;

ð1Þ

where the operator k ¼ r1 �r2ð Þ=2i acts on the right and

k0 ¼ � r0
1 �r0

2

� �
=2i acts on the left. The parameters

T and U denote the strengths of time-even (TE) and time-

odd (TO) tensor terms, respectively.

For spherical symmetry, the tensor contributions to the

Skyrme EDF are associated with the spin–orbit density Jq :

Jq ¼
1

4pr3

X

i2q
ð2ji þ 1Þv2

i

� jiðji þ 1Þ � liðli þ 1Þ � 3=4½ �R2
i ðrÞ;

ð2Þ

where q ¼ 0ð1Þ denotes neutrons (protons), and v2
i is the

occupation probability of state i, which takes value 1 or 0

for occupied or unoccupied states, respectively, in the

closed shell nuclei. The spin–orbit density part of the EDF

is given by [7, 28]:

DH ¼
X

t¼0;1

1

2
CJ
t J

2
t ; ð3Þ

where the isoscalar and isovector spin–orbit densities are

defined by Jt¼0 ¼ Jn þ Jp and Jt¼1 ¼ Jn � Jp. The coeffi-

cients CJ
t receive contributions from both the nonlocal

central terms and the tensor terms, namely

CJ
t ¼ AJ

t þ BJ
t ; ð4Þ

with

AJ
0 ¼ 1

8
t1

1

2
� x1

� �
� 1

8
t2

1

2
þ x2

� �
; ð5Þ

AJ
1 ¼ 1

16
ðt1 � t2Þ; ð6Þ
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BJ
0 ¼ 5

48
ðT þ 3UÞ; ð7Þ

BJ
1 ¼ 5

48
ðU � TÞ: ð8Þ

Equation (3) can be represented in the notation used in

Ref. [29] as:

DH ¼ 1

2
a J2

n þ J2
p

� �
þ bJnJp ð9Þ

with

a ¼ CJ
0 þ CJ

1 ; ð10Þ

b ¼ CJ
0 � CJ

1: ð11Þ

Jq is almost negligible in the spin–orbit saturated nuclei,

i.e., in the nuclei with both spin–orbit partners filled.

The contributions of the J2 tensor terms to the HF spin–

orbit potential turn out to be

DUðqÞ
SO ¼ a

Jq

r
þ b

Jq0

r
; ð12Þ

where q0 ¼ 1 � q. The contributions of tensor forces to

Eq. (12) are

aT ¼ 5

12
U; ð13Þ

bT ¼ 5

24
ðT þ UÞ: ð14Þ

Employing the Skyrme EDF, the self-consistent charge-

exchange proton–neutron random phase approximation

(pnRPA) model is quite an effective method for studying

the charge-exchange excitations, such as the GT and

charge-exchange SD states. The operators for GT transi-

tions are defined as

ÔGT� ¼
X

im

ti�r
i
m; ð15Þ

and the spin-dependent charge-exchange SD operators are

given by

ÔJ
SD� ¼

X

iM

ti�riðYi
l¼1ðr̂Þ � riÞJM ;

with Jp ¼ 0�; 1�; 2�
ð16Þ

in terms of the standard isospin operators, t� ¼ ðtx�ityÞ.
In the EDF?pnRPA calculations, the HF equation is

solved first in coordinate space with a large reference

radius extending up to 20 fm with a mesh step of 0.1 fm. In

HF calculations, the single-particle wave functions of the

occupied and unoccupied states are obtained by using a

harmonic oscillator basis in which the maximum major

quantum number Nmax ¼ 10; 12 for 90Zr and 208Pb,

respectively. In the charge-exchange pnRPA calculations,

all the residual interactions including the central, tensor,

and two-body spin–orbit interaction are included to make

the calculation fully self-consistent.

3 Constraint for the tensor force

Here, we try to optimize the tensor interaction or choose

the existing parameter sets fitted with tensor interaction by

using several empirical results. We choose the empirical

results from both the shell structure and collective transi-

tion of nuclei. For the ground states, we adopt the data of

the evolution of energy splitting between 1h11=2 and 1g7=2

proton single-particle states along Z ¼ 50 isotopes, [8]

which is widely used to constrain the tensor interaction

[13, 14]. From the collective excitations, it was reported

that the GT and SD transitions can also provide a strong

constraint for the tensor interaction [21–24].

3.1 Constraint for the tensor force by the adiabatic

approach

In this study, we added the tensor forces to the existing

Skyrme interactions, SGII and SkO0, which give a better

description of the charge-exchange transitions of nuclei.

The density functional SGII presented in Ref. [30] was

adjusted to provide a reasonable value for the spin–isospin

channel of Landau–Migdal parameter g00 ¼ 0:503 with the

effective mass 0.79. Bender et al. [31, 32] examined sev-

eral Skyrme parameter sets and found that the SkO0 is quite

promising for studying the GT resonance and b-decay half-

lives. The SkO0 interaction gives the Landau–Migdal

parameter g00 ¼ 0:79 and the effective mass 0.896.

We calculate the GT and charge-exchange SD excita-

tions in 90Zr and 208Pb by employing SkO0 interaction plus

tensor forces in Eq. (1). In the optimizing process, we

calculate the centroid energy, which is defined as the ratio

between energy-weighted sum rule strength m(1) and non-

energy-weighted sum rule strength m(0), i.e., m(1)/m(0)

[24]. These centroid energies labeled as Eth are then

compared with the experimental result Eexp. In this study,

the excitation energies are calculated with respect to the

ground states of the mother nuclei. The difference

DE ¼ jEth � Eexpj ð17Þ

is treated as a criterion applied to optimize the tensor

parameter sets.

As shown in Fig. 1, the GT and SD transitions are cal-

culated by adopting tensor terms with a sufficiently wide

range; T ¼ ð�400 ! 800Þ MeVfm5 and U ¼ ð�800 !
250Þ MeVfm5. Within this range, the tensor parameters T

and U are constrained by requiring DE� 2:0 MeV. The

allowed range of T varies from approximately 200–700
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MeVfm5, which is mainly constrained by the SD 1� cen-

troid energy in 208Pb. Furthermore, the allowed range of

the time-odd tensor strength U is negative varying from

approximately � 20 to � 800 MeVfm5. The value

� 800 MeVfm5 is observed because the RPA equation

collapses with U value beyond this border. As the tensor

force shifts the GT main peak downward, the line with red

squares labeled by ‘‘GT Pb higher’’ implies that when the

strengths T and U go beyond this line, the GT main peak

energy in 208Pb becomes lower than the Eexp � 2:0 ¼ 17:2

MeV. Alternately, the line with black triangle labeled by

‘‘GT Zr lower’’ indicates that the strengths of T and U are

sufficiently strong to shift the GT main peak energy

upward to Eexp þ 2:0 ¼ 17:6 MeV at this border and will

exceed the criterion when T and U go beyond this line. The

wide allowed range of (T, U) is because the adopted

interaction SkO0 has a properly large g00 value, which

makes reproducing the main peak energies of GT and SD

more efficient. The optimal values of tensor terms on top of

SGII were studied in Ref. [24] in terms of GT and SD

excitation energies and are referred to henceforth.

In addition to the main peak energies of GT and SD

states, we also study the evolution of spin–orbit splitting of

Z ¼ 50 isotopes, which is highlighted in the certain tensor

force studies [9, 13, 14]. In addition to the central and two-

body spin–orbit terms of Skyrme interaction, the tensor

terms contribute to the spin–orbit splitting which modifies

the SPE remarkably [29]. Thus, the energy splitting along

an isotopic or isotonic chain may produce strong constraint

for the strengths of tensor terms. Hence, the proton SPE

splitting between 1h11=2 and 1g7=2 of Sn isotopes with

N varying from 56–82 has been calculated to further con-

strain the strength of tensor terms.

In our calculation, the Hartree–Fock–Bogolyubov

(HFB) model described in Ref. [33, 34] was applied,

solving the Skyrme HFB equations in coordinate space

under the spherical symmetry. The zero-range surface

pairing interaction is used:

V ¼ V0 1 �
q r1þr2

2

� �

q0

� �
dðr1 � r2Þ; ð18Þ

where the density parameter q0 is set to be 0.16 fm�3 and

the strength parameter V0 is determined to reproduce the

empirical value of neutron pairing gap calculated by the

three-point index Dð3Þ ¼ ðBðN; ZÞ � 2BðN þ 1; ZÞþ
BðN þ 2; ZÞÞ=2.

The evolution of proton SPE splitting between 1h11=2

and 1g7=2 states is calculated in HFB model adopting the

Skyrme EDFs with and without tensor interactions and

shown in Fig. 2. In the calculations, SGII and SkO0 are

adopted. The strengths of tensor interactions are set to be

(T, U) = (500, � 320) and (500, � 480), respectively, for

SkO0 and SGII. It is observed that the presently optimized

density functionals with tensor terms SkO0?(500, � 320)

and SGII? (500, � 480) reproduce the empirical data.

For a quantitative study of optimizations of tensor

interactions, we examine the following criterion for the

energy difference d ¼ e1h11=2 � e1g7=2, i.e., the root mean

squared deviation (RMSD) between calculated and

empirical energy differences:

RMSDðjdth � dexpjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ND

X

N

jdthðNÞ � dexpðNÞj2
s

ð19Þ

Fig. 1 (Color online) The region of T and U values constrained by the

criterion DE ¼ jEth � Eexpj � 2:0 MeV for the GT centroid energies

in 90Zr and 208Pb and for the SD 1� centroid energy in 208Pb

Fig. 2 (Color online) The energy differences between 1h11=2 and

1g7=2 proton single-particle states along Sn isotopes with N ¼ 56�82.

The calculations are performed by implying SkO0 without (labeled by

SkO0) and with (labeled by SkO0?(T, U)) tensor force, and SGII

without and with tensor terms. The experimental data are taken from

Ref. [8]
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where ND is the number of data points. For the calculated

results in Fig. 2, RMSD values are 1.67, 0.65, 3.24, and

0.47 for SkO0, SkO0?tensor, SGII, and SGII?tensor,

respectively. To constrain T and U values, we set RMSD to

be less than 1 MeV. The optimized parameter region for T

and U is shown in Fig. 3 for SkO0 and Fig. 4 for SGII,

respectively. As observed in the figures, the isotope

dependence of SPE splittings provides a strict constraint

for the strength of time-odd tensor term U. The range of U

is further constrained to be from � 150 to � 450 MeVfm5

and from � 350 to � 550 MeVfm5 for SkO0 and SGII,

respectively. The tensor interactions within this range

produce attractive effects on the binding energy of ground

state, which can be qualitatively understood from Eqs. (9),

(13), and (14).

3.2 The variational EDFs with the tensor terms

It was reported in Ref. [24] that some variational EDFs

T21, T32, T43, and T54 in Tij family can well reproduce

the GT and SD empirical data in 90Zr and 208Pb. The

evolution of proton SPE splitting between 1h11=2 and 1g7=2

states is also calculated in HFB model adopting the four

parameter sets from Tij family and is shown in Fig. 5. For

the calculated results in Fig. 5, RMSD values for T21 are

1.08 MeV, while they are 1.52, 1.81, and 2.17 MeV for

T32, T43, and T54, respectively. While the agreement of

Tij family is not as efficient as those of the adiabatic EDFs,

SkO0?tensor, and SGII?tensor, it should be noticed that

the best T21 among Tij family has similar tensor terms as

the two adiabatic EDFs as listed in Table 1. According to

Eq. (3), the three sets of EDFs with tensor parameters,

SkO0?, SGII?, and T21 will produce an attractive effect

for the binding energy as the aT values are negative and

larger than the corresponding positive bT values.

4 The optimized tensor terms on the binding
energies

Nuclear binding energy, i.e., the nuclear mass, is

important for the study of nuclear reactions such as the r-

process synthesis of nuclei [35] as well as the b-delayed

multi-nucleon emission. Furthermore, it is of great impor-

tance for the studies of the superheavy nuclei and the drip-

line nuclei [36, 37]. In recent years, many efforts have been

devoted to accurately measuring the nuclear mass of

unstable nuclei [38–42]. Theoretically, there are some

Fig. 3 (Color online) The region of T and U values optimized by the

1h11=2 and 1g7=2 proton single-particle energy differences along Sn

isotopes with N from 56–82. The area constrained by GT and SD

states shown in Fig. 1 is further optimized to be the meshed region,

indicated by the optimized area. The criterion for the constrain is set

to be the RMSD value in Eq. (19) to be smaller than 1 MeV

Fig. 4 (Color online) The same as Fig. 3, but for SGII. See the text

for more details

Fig. 5 (Color online) Same as in Fig. 2, but calculated with T21,

T32, T43, and T54 parameter sets
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successful macroscopic and microscopic models of nuclear

mass [43–53], which can provide accurate mass tables, but

the tensor interaction was not included in these models. A

Skyrme EDF UNEDF2 [54], which includes the tensor

terms and optimizes both the ground state properties and

shell structure, provides reasonable binding energies of

heavy nuclei, in which the tensor interaction also produces

an attractive effect. In this section, we apply the optimized

Skyrme EDFs SKO0 and T21 without and with tensor terms

for the binding energies of 22 isotopic chains from Ca to

Ra. Although some nuclei in the study might be deformed,

we adopt the HFB model with spherical symmetry. Thus,

the nuclei studied are selected to be spherical or at most

weakly deformed with the deformation parameter b2\0:3.

The binding energies of the Sn isotopes are calculated

with SkO0, SGII, and T21 with and without tensor terms

listed in Table 1. The differences of the binding energies

between the theoretical and experimental values are illus-

trated in Fig. 6. As shown in Fig. 6, both the SkO0 and T21

without tensor terms give less bound of the order of

approximately 5–10 MeV than the experimental data. SGII

gives the overbindings for all Sn isotopes, and SGII?(500,

-480) does not contribute to this feature of binding ener-

gies. With the tensor interaction included in the

calculations, both SkO0?tensor and T21 can reproduce the

experimental data within a few MeV difference for all the

Sn isotopes.

We apply further SkO0 and T21 with and without tensor

interaction for the binding energies of 22 isotopic chains of

spherical and weakly deformed medium-heavy and heavy

nuclei. The difference between the calculated binding

energies and the corresponding experimental values [55] is

shown in Figs. 7 and 8 for SKO0 and T21, respectively.

Inclusion of the tensor interaction in both SKO0 and T21

Table 1 Time-even and time-

odd tensor parameters T and

U in Eq. (1)

SkO0? SGII? T21 T32 T43 T54

T (MeVfm5) 500.00 500.00 476.95 613.06 590.60 727.35

U (MeVfm5) - 320.00 - 480.00 - 369.36 - 231.53 - 147.48 - 8.36

aT (MeVfm5) - 133.33 - 162.5 - 153.90 - 96.47 - 61.45 - 3.48

bT (MeVfm5) 37.5 4.17 22.42 79.48 93.32 147.79

The tensor contributions aT and bT (MeVfm5) to the spin–orbit potential (12) are given by Eqs. (13) and

(14)

Fig. 6 (Color online) Difference of binding energies between

theoretical and experimental values for Sn isotopes. The HFB

calculations are performed by using the EDFs SkO0, SGII, and T21

with and without tensor terms. See text for more details

Fig. 7 (Color online) Difference of binding energies between

theoretical and experimental values for various isotopes. Calculated

results are obtained by using SkO0 without (green squares) and with

tensor force (red triangles). The adopted tensor parameters (T, U) are

(500, � 320). The experimental values are taken from Ref. [55]. Each

line expresses one isotopic chain
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increases the total binding energies systematically and

improves the results.

The RMSD for the calculated binding energies with

respect to the experimental values is calculated as follows:

RMSDðBÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ntot

XNtot

i¼1

ðBðNi; ZiÞth: � BðNi; ZiÞexp:Þ
2

vuut ;

ð20Þ

where Ntot is the number of nuclei. For SKO0, the

RMSD(B) for all of the calculated nuclei shown in Fig. 7 is

8.97 MeV and 3.99 MeV for SkO0 without and with tensor

terms, respectively. For T21, as shown in Fig. 8, the

RMSD(B) is approximately 13 MeV and 6.2 MeV without

and with tensor interaction. The two EDFs with tensor

terms give good global agreements of the binding energies,

and although the two EDFs are optimized by different

strategic approaches, the tensor contributions to the binding

energies are quite similar, i.e., approximately 5 MeV for

SKO0?tensor and 6.8 MeV for T21 .

5 Summary

We adopted the GT and charge-exchange SD centroid

energies and the evolution of proton SPE difference

between 1h11=2 and 1g7=2 orbits of Sn isotopes as the

constraints to choose appropriate parameter sets of tensor

terms. We first implemented the adiabatic approach and

optimized the tensor terms T and U on top of existing

parameter sets SkO0 and SGII. The time-even tensor

parameter T is well controlled by the energies of GT and

SD giant resonances. Further, a strong constraint on the

time-odd tensor term U comes mainly from the SPE

splitting between proton h11=2 and g7=2 orbits along the

Z=50 isotopes. For the adiabatic EDFs, the constraints

provide a small region of the (T, U) parameters both for

SGII and SkO0; T ¼ ð400�600ÞMeVfm5 and

U ¼ ð�350 to � 550ÞMeVfm5 for SGII and T ¼(250 to

600)MeVfm5 and U ¼ ð�150 to � 450ÞMeVfm5 for SkO0.
The optimized adiabatic parameter sets suggest T21 EDF

as the best candidate for nuclear structure calculations

among Tij family, as T21 has very similar tensor terms to

the adiabatic EDFs, SkO0?tensor, and SGII?tensor.

Because of these constraints, the tensor interaction pro-

vides an attractive effect for the binding energies of nuclei,

which is consistent with the primary purpose of introducing

tensor interaction to make deuteron and light nuclei bound

[56, 57].

Qualitatively, the Skyrme interaction with tensor terms,

aT\0 and bT [ 0, acts similar to the realistic interactions

in the proton–neutron channel and the isospin dependence

of spin–orbit coupling [12, 20, 58]. The EDFs SkO0 and

T21 with and without the tensor terms are further applied

for the study of binding energies of 22 isotopic chains from

Ca to Ra. Though the SkO0?tensor and T21 EDFs are

obtained in different methodologies, i.e., the central terms

are optimized without and with tensor terms, the RMSD

deviation of binding energies is approximately 3.99 MeV

and 6.2 MeV, respectively. Furthermore, the similar aver-

age contributions of the tensor terms are evaluated for the

binding energies to be approximately 5 and 6.8 MeV for

SKO0 and T21, respectively, which originated from a

negative strength of time-odd tensor term U. Further, we

will develop a systematic study of optimized variational

EDFs based on the tensor terms obtained by the present

adiabatic study of EDF?tensor terms. This study will

provide more reliable estimates of b-decay half-lives and

neutron capture rates of r-process nucleosynthesis.

Fig. 8 (Color online) Same as Fig. 7, but calculated with T21 with

and without the tensor interaction
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