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Abstract The global nuclear mass based on the macro-

scopic–microscopic model was studied by applying a

newly designed multi-task learning artificial neural net-

work (MTL-ANN). First, the reported nuclear binding

energies of 2095 nuclei ðZ� 8;N� 8Þ released in the latest

Atomic Mass Evaluation AME2020 and the deviations

between the fitting result of the liquid drop model (LDM)

and data from AME2020 for each nucleus were obtained.

To compensate for the deviations and investigate the pos-

sible ignored physics in the LDM, the MTL-ANN method

was introduced in the model. Compared to the single-task

learning (STL) method, this new network has a powerful

ability to simultaneously learn multi-nuclear properties,

such as the binding energies and single neutron and proton

separation energies. Moreover, it is highly effective in

reducing the risk of overfitting and achieving better pre-

dictions. Consequently, good predictions can be obtained

using this nuclear mass model for both the training and

validation datasets and for the testing dataset. In detail, the

global root mean square (RMS) of the binding energy is

effectively reduced from approximately 2.4 MeV of LDM

to the current 0.2 MeV, and the RMS of Sn, Sp can also

reach approximately 0.2 MeV. Moreover, compared to

STL, for the training and validation sets, 3–9% improve-

ment can be achieved with the binding energy, and

20–30% improvement for Sn, Sp; for the testing sets, the

reduction in deviations can even reach 30–40%, which

significantly illustrates the advantage of the current MTL.

Keywords Macroscopic–microscopic model � Binding

energy � Neural network � Multi-task learning

1 Introduction

Nuclear mass is a fundamental quantity widely involved

in various domain studies in nuclear science and engi-

neering. Accurate masses are crucial not only to derive

highly concerning nuclear shell information, but also to

quantify the procedure of nuclear reactions [1–4]. Thus,

much interest has been drawn in the past several decades to

obtain and improve nuclear mass values to meet the

requirements of contemporary nuclear studies.

Nuclear researchers have been involved in this field,

especially since the 1950s, and international cooperation

has been established to create the well-known atomic mass

evaluation (AME) motivated to provide a reliable database

to the public, where the data are based on pure measure-

ments and empirical extrapolation [5–7]. Significant suc-

cess has been achieved with AME, and over 3500 nuclei

have been evaluated, whereas there is a gap between the

number of evaluated nuclei and the real requirements from

high-fidelity simulation calculations regarding complex

nuclear physics environments. Moreover, the uncertainties
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of AME are still worth concentrating on, for further

improvements.

Therefore, many theoretical calculations based on

microscopic mean-field models [8–11] and macroscopic–

microscopic models [12–21] have been developed to obtain

the global nuclear mass.The macroscopic–microscopic

models start from the liquid drop model (LDM) and the

correction energy terms, based on a special single-particle

potential, which makes the calculation relatively simple

compared with microscopic mean-field models. Mean-

while, the macroscopic–microscopic models show better

performance than the global nuclear mass [5, 22]; there-

fore, they are normally considered more applicable in real

evaluations.

In the scheme of macroscopic–microscopic models, the

theoretical determination of the shell correction energy of

the single-particle potential is complicated [23]. Normally,

in real calculations, smoothing methods are necessary to

deal with the single-particle potential, which influences the

final results [22, 24]. To simplify this problem, a so-called

‘‘simple nuclear mass formula form’’ is proposed in [25],

the linear polynomial functions are applied to replace the

residual correction energy and the global root-mean-square

(RMS) successfully reaches 0.266 MeV compared to the

original LDM of 2.456 MeV. Artificial neural networks

(ANNs) have been proven to be excellent methods in many

research regions [24]. It seems to be a better choice here

than simple mathematical functions because of its powerful

capability in dealing with complex problems.

The application of neural networks to predict nuclear

masses can be traced back to the 1990s [5, 26]. The input

layer of the neural networks is designed according to basic

nuclear properties such as the proton, neutron number Z, N

of target nuclei, and the relevant Z0, N0 of the nearest

magic number, and the application of ANN in mass model

calculations has been validated by many perfect outputs.

Most previous studies on the ANN nuclear mass were

constructed using the single-task learning (STL) technique

at the output layer, where the fluctuation of nuclear binding

energy ðdLDMÞ was taken as the only task guiding the entire

training and testing procedures. Consequently, a better

global RMS is obtained via STL; for example, the RMS

can be reduced to 0.235 MeV in Ref. [24]. Other nuclear

properties such as the single proton separation energy ðSpÞ,
single neutron separation energy ðSnÞ, nuclear charge radii,

and b-decay half-lives have also been studied using various

artificial intelligence (AItools [27–31]). In most of the

above-mentioned studies, AI methods are trained to learn

one of the nuclear properties. The aforementioned prop-

erties are naturally correlated; therefore, novel AI methods

that can study more than one property simultaneously

should be developed. Accordingly, we attempted to involve

more tasks in the ANN to study the neural network using

deep learning and further reduce the global RMS.

In this study, an improved multi-task learning (MTL)

technique was created to integrate more crucial knowledge

from nuclear physics into the neural network. A total of

2095 nuclei with fully evaluated nuclear properties in the

AME were adopted in this new MTL-ANN. To include

more tasks, Sn and Sp are included to provide information

on the nuclear shell. In the input layer, we adopt the neu-

rons with proton number, mass number, and the number of

residual particles or holes relative to the closet magic shell

for protons, and that for neutrons, which were applied in

our previous study [24]. Moreover, we expand the current

input layer by adding pairing terms with the expression in

Ref. [18].

The remainder of this paper is organized as follows. In

Sect. 2, first, a general LDM formula is used, and the

general formalism and structure of the present applied

neural network with the MTL technique, called MTL-

ANN, are introduced, and a new mass method incorpo-

rating MTL-ANN is proposed. The results of the global

analysis of 2095 nuclear binding energy with the novel

MTL-ANN are presented in Sect. 3, and discussions on

MTL-ANN parameters and optimizing procedures are

illuminated in detail simultaneously. Finally, the summary

of this study is provided in Sect. 4.

2 Macroscopic–microscopic model with multi-task
learning technique

In the macroscopic–microscopic model scheme, the

binding energy of a given nucleus with A mass and Z

protons E(Z, A) can be assumed as the macroscopic bind-

ing energy with LDM ELDMðZ;AÞ and the fluctuating part

dLDMðZ;AÞ [32],

EðZ;AÞ ¼ ELDMðZ;AÞ þ dLDMðZ;AÞ; ð1Þ

the general form of ELDMðZ;AÞ can be written as

ELDMðZ;AÞ ¼ aVAþ aSA
2=3 þ VC þ asymI

2Aþ apairA
�1=3dnp;

ð2Þ

where the coefficients of volume energy aV, surface energy

aS, and pairing energy apair can be adjusted to determine

ELDMðZ;AÞ; VC is the Coulomb energy expressed as VC ¼
ðaCðZðZ � 1ÞÞÞ=ðA1=3ð1 � Z�2=3ÞÞ [13], where aC is the

adjustable parameter; and asym is the coefficient for the

symmetry energy parameter, which is taken as
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asym ¼ csymð1 � j=A1=3 þ ð2 � jIjÞ=ð2 þ jIjAÞÞ; ð3Þ

and csym and j are free; dnp is formed by I ¼ N�Z
A with

relations [18]

dnp ¼

2 � jIj; Z even; N even

jIj; Z odd; N odd

1 � jIj; Z even; N odd; N\Z

1 � jIj; Z odd; N even; N[ Z

1; Z even; N odd; N[ Z

1; Z odd; N even; N\Z

8
>>>>>>>><

>>>>>>>>:

ð4Þ

In this study, to determine the macroscopic–microscopic

ELDMðZ;AÞ, the nuclear properties binding energy (EAME),

Sn, and Sp of 2095 nuclei ðZ� 8;N � 8Þ within AME2020

were adopted to restrict the free parameters. The optimized

coefficients were obtained as aV ¼ 15:6829 MeV,

aS ¼ �18:5264 MeV, apair ¼ 6:5149 MeV,

aC ¼ �0:7170 MeV, csym ¼ 46:4121 MeV, and

j ¼ �0:6460, and the current LDM RMS deviation was

2.4027 MeV.

Conversely, the fluctuating part of the binding energy

ðdLDMÞ is a necessary compensation in the macroscopic–

microscopic model. Multi-task learning has a strong ability

to improve generalization using the domain information

contained in the data, and the learned knowledge for one

task can assist other tasks to be learned better [33].

Therefore, a novel MTL artificial neural network (MTL-

ANN) was designed in this study to mimic dLDM more

accurately using more related nuclear properties.

The MTL-ANN is a feedforward neural network. The

structure of the MTL-ANN used in this study is shown in

Fig. 1; the architecture consists of three layers: input,

hidden, and output.

Five features ðZ;A; jZ � Z0j; jN � N0j; dnpÞ are taken as

the inputs, where Z, N, and A are the proton number,

neutron number, and mass number of a given nucleus,

respectively; Z0 and N0 are suitable magic numbers,

assumed as 8, 20, 50, 82, and 126 for protons, and 8, 20,

50, 82, 126, and 184 for neutrons, and dnp is the value in

Eq. (4) used to describe nuclear pairing and shell effects.

As shown in Fig. 1, two hidden layers were defined to

adequately share information, and 20 neurons were set in

each hidden layer. The multi-task outputs are obtained

through training iterations between the hidden and output

layers back and forth. Generally, it is assumed that the

input vector is x ¼ ðx1; x2; . . .; xnÞ, the obtained output

vector is y ¼ ðy1; y2; . . .; ymÞ, and n, m denotes the total

number of inputs and tasks. The lth task yl can be written as

yl ¼ al þ
XH2

k¼1

blk tanh ck þ
XH1

j¼1

dkj tanh ej þ
Xn

i¼1

gjixi

 ! !

;

ð5Þ

where ðal; ck; ejÞ, and ðblk; dkj; gjiÞ denote the optimized

bias and weight parameters for neurons between different

layers; H1 and H2 are the number of neurons in each hidden

layer. The optimized parameters are obtained through

iterations for net training to obtain the minimized value of

a defined loss function L in each iteration. For the ith

iteration, Li can be expressed as

Li ¼
Xm

l¼1

wliDli; ð6Þ

Dli ¼
PNðfli � tlÞ2

N
; ð7Þ

where N is the number of training data points, fli corre-

sponds to the ANN output for the lth task in the ith itera-

tion, and Dli is the related average deviation between fli and

its target value tl. Further, Li is built by summing all the

deviations Dli for all m tasks with the backpropagation

factor wli,

wl ¼
Dli=Dðl;i�1Þ

Pm
l ðDli=Dðl;i�1ÞÞ

: ð8Þ

In this study, three types of task were adopted to train the

network. First, according to the experimental values from

AME2020 [6, 7] and the theoretical results from LDM, TB

can be obtained as:

TB ¼ EAME � ELDM; ð9Þ

and TB is considered as a task for learning in Eq. (5) in the

output layer. Consequently, when the minimized loss value

is obtained, it is believed that yB ¼ TB � dLDM and the

revised binding energy EMTL for a nucleus is obtained as

EMTL ¼ ELDM þ yB: ð10Þ

Fig. 1 (Color online) Structure of the present MTL-ANN
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In addition to TB, two other properties related to nuclear

mass, neutron, and proton separation energies Sn and Sp in

AME2020 are adopted as two choices for the current

multiple tasks. Similar to Eq. (9), their target values can be

obtained as Tsn and Tsp. Consequently, in the real network

training process, four task groups: 1)TB, 2)TB and Tsn, 3)TB

and Tsp, and 4) TB, Tsn and Tsp are classified to compare the

effects of different types of data in AME2020.

In addition, it should be noted that a hard-sharing

approach is employed in all the network neurons to build

the full connections between the input, hidden, and output

layers, which is believed to contain more nuclear mass

physics in the training process and efficiently avoid over-

fitting [34]. Moreover, the limited-BFGS, an updated

quasi-Newton method that can deal with large-number-

parameter training [35], is used in backpropagation learn-

ing procedures to efficiently obtain the minimum loss

value.

3 Result and discussion

The newly designed MTL-ANN for the nuclear mass

was used to analyze 2095 nuclei ðZ� 8;N � 8Þ from the

AME2020 database. In our calculation, 2095 nuclei were

divided into three datasets for training, validation, and

testing. All the data were sampled with a uniform distri-

bution. In practice, 95 nuclei were first sampled from the

data pool, which did not participate in neural network

training. Subsequently, 1400 nuclei of training data were

constructed by sampling stochastically from the remaining

2000 nuclei, and the remaining 600 nuclei were used for

validation.

In our training process, the loss value can normally

reach stable values after several hundred iterations. The

convergence for data training is shown in Fig. 2. The loss

for training reached a minimum after 200 iterations, and

the corresponding validation value maintained a speed

similar to that of the training. The stability of the two main

procedures guarantees the correctness of the network.

To examine the validity of the proposed model, four

types of network were designed according to the tasks in

the output layer. The RMS values of the binding energies

ðEMTLÞ, neutron separation energy ðSnÞ, and proton sepa-

ration energy ðSpÞ in the training, validation, and testing

processes are listed in Table 1. The RMS is calculated as

v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN Eexp � Ecalc

� �2

N

s

; ð11Þ

where Eexp and Ecalc indicate the experimental data and

calculated results, respectively, and N is the total number of

points of concern.

Compared to the simple LDM model, the RMS of the

binding energy between the calculation and experimental

data can be reduced sharply from 2.4027 MeV to the cur-

rent of 0.2–0.24 MeV. Moreover, the multi-task networks

with TYPE 2: TB and TSn, TYPE 3: TB and TSp, TYPE 4:

TB,TSn, and TSp all show better performance compared to

network TYPE 1: with only a single task TB, which

demonstrates that the MTL approach has a more powerful

capability to improve the mass model, and TYPE 3 can

obtain the best RMS for the binding energy EMTL not only

in training and validation but also in the testing process.

However, it can also be observed that when more tasks are

added, the learning performance of the network may

worsen. In TYPE 4, the RMS of the network with more

tasks TB,TSn, and TSp are even larger than the RMS in

TYPE 2 and TYPE 3. This is called ‘‘negative transfer’’ in

neural network training, which may be caused by the inner

contradiction of experimental information from TSn, TSp,

and TB in the task inputs.

The prediction power of the MTL model is also verified

in the testing part in Table 1. For the randomly selected 95

nuclei, the results predicted by the current multi-task net-

work performed similarly to the training and validation.

Moreover, when we repeated the experiment by changing

the 95 test sets, the change in Table 1 could be ignored

because of its small percentage. In conclusion, TPYE 3 can

suitably improve the current mass model more than other

models.

To investigate further, we compare Sn and Sp with the

related experimental data in Figs. 3, 4, 5, 6, 7, 8, 9, 10 for

the selected nuclear chains Z ¼ 8; 22; 61; 84 and

N ¼ 8; 22; 61; 84, and the absolute deviations between the

calculations and experimental data for dSn and dSp are

plotted for each concerned nucleus. From these figures for

each nucleus, the model description of Sn and Sp can be

observed are satisfying, and it can also be confirmed that

Fig. 2 Variation of loss values with the iterations in training and

validation. The solid line indicates the loss in training for the multi-

tasks (TB TSn and TSp) of 1400 nuclei; the dashed line is the derived

loss of 600 nuclei in validation using the trained network
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all current MTL networks can better describe the nuclear

mass compared to STL. The four types of MTLs almost fit

the experimental data analogously, although the global

RMS of EMTL, Sn, and Sp testing shows that the TPYE 3

task group (TB and Sp) are the best choices.

For different nuclear mass regions, it can observe that

the prediction ability for the corresponding nuclei is sig-

nificantly improved with increasing Z and N. The absolute

values of dSn and dSp are varied from approximately 1.0

MeV for the very light nuclei (Z ¼ 8;N ¼ 8) to approxi-

mately 0.2 MeV for the heavy nuclei, which illustrates the

obvious better fittings for the heavier mass region.

In addition, the current predictions of the network are

significantly influenced by the status of the reported data in

AME2020. For example, in the case of Z ¼ 61, some large

vibrations occur abnormally within the N ¼ 90–93 scope

Table 1 RMS of experimental

data and MTL method results
Task group Training and validation

RMS of EMTL (MeV) RMS of Sn (MeV) RMS of Sp (MeV)

TYPE 1 TB 0.23 0.28* 0.32*

TYPE 2 TB and TSn 0.21 0.21 0.24*

TYPE 3 TB and TSp 0.21 0.23* 0.23

TYPE 4 TB, TSn and TSp 0.22 0.22 0.24

Task group Testing

RMS of EMTL (MeV) RMS of Sn (MeV) RMS of Sp (MeV)

TYPE 1 TB 0.31 0.34* 0.33*

TYPE 2 TB and TSn 0.23 0.20 0.24*

TYPE 3 TB and TSp 0.21 0.22* 0.23

TYPE 4 TB, TSn and TSp 0.25 0.23 0.23

The data marked by * are the deduced values from the predicted binding energies

Fig. 3 (Color online) Left panel: the single neutron separation energy from the results of different networks and experimental value for Z ¼ 8.

Right panel: Sn error values for the corresponding nuclei on the right

Fig. 4 (Color) Same as Fig. 3 but for Z ¼ 22

123

Nuclear mass based on the multi-task learning neural network method Page 5 of 8 48



because the regulated patterns of the experimental data of

N ¼ 90–93 visibly deviate from those of other neighbor

nuclei. We also investigated the reported errors in this mass

region. As observed, the current predictions from MTL are

populated beyond the experimental error band, that is, the

data for Z ¼ 61 and N ¼ 90–93 are recommended in

AME2020 as 5:604 � 0:02 MeV, 7:860 � 0:02 MeV,

5:939 � 0:03 MeV, and 7:465 � 0:03 MeV; however, the

Fig. 5 (Color) Same as Fig. 3 but for Z ¼ 61

Fig. 6 (Color) Same as Fig. 3 but for Z ¼ 84

Fig. 7 (Color) Left panel: the single proton separation energy from the results of different networks and experimental value for N ¼ 8. Right

panel: Sp error values for the corresponding nuclei on the right

Fig. 8 (Color) Same as Fig. 7 but for N ¼ 22
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deviations of our MTL-related predictions all reach

approximately 0.4 MeV as shown in Fig. 5. These large

inconsistencies between the experimental data and model

predictions require more attention to investigate the cor-

rectness of the measured points and our models in the

future.

4 Conclusion

In summary, a newly designed MTL-ANN method was

introduced to the global macroscopic–microscopic mass

model. This method has been proven to increase the

accuracy of mass models and effectively reduce the risk of

network overfitting.

Five essential nuclear properties related to the neutron

number, mass number, near magic number, and pair-

ingðZ;A; jZ � Z0j; jN � N0j; dnpÞ were adopted as inputs to

involve the nuclear shell and odd-even information in the

present model. Three types of multi-task networks related

to the nuclear binding energy, Sn and Sp, are systematically

investigated, and 2095 nuclei in AME2020 with the full

nuclear properties above are selected in the network. All

three designed multi-task networks can describe the

experimental data of the nuclear binding energy, Sn and Sp

analogously from the light to the heavier nuclei. The global

RMS deviations of the binding energy of the LDM can be

significantly reduced by MTL-ANN, and MTL-ANN under

the ðTB; TSpÞ task appears to be a better choice for the

others. Moreover, compared to the STL method, significant

improvements can be observed in the training and valida-

tion processes, even in the testing process, where the

reduction in deviations can reach 30–40%.

All of these excellent results verify the impressive pre-

diction capability of the MTL-ANN mass model, which

implies good predictive performance in the known nuclear

region. Moreover, it can provide important hints to exam-

ine the correctness of the experimental data available in the

future.
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