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Abstract The output-signal models and impulse response

shaping (IRS) functions of semiconductor detectors are

important for establishing high-precision measurement

systems. In this paper, an output-signal model for semi-

conductor detector systems is proposed. According to the

proposed model, a multistage cascade deconvolution IRS

algorithm was developed using the C-R inverse system,

R-C inverse system, and differentiator system. The silicon

drift detector signals acquired from the analog-to-digital

converter were tested. The experimental results indicated

that the shaped pulses obtained using the proposed model

had no undershoot, and the average peak base width of the

output shaped pulses was reduced by 36% compared with

that for a simple model proposed in a previous work [1].

Offline processing results indicated that compared with the

traditional IRS algorithm, the average peak base width of

the output shaped pulses obtained using the proposed

algorithm was reduced by 11%, and the total elapsed time

required for pulse shaping was reduced by 26%. The

proposed algorithm avoids recursive calculation. If the

sampling frequency of the digital system reaches

100 MHz, the proposed algorithm can be simplified to

integer arithmetic. The proposed IRS algorithm can be

applied to high-resolution energy spectrum analysis, high-

counting rate energy spectrum correction, and coincidence

and anti-coincidence measurements.

Keywords Output-signal model � Impulse response

shaping � C-R inverse system � R-C inverse system � Integer
arithmetic

1 Introduction

Semiconductor detectors are widely used for radiation

measurements and nuclear analysis because of their high

signal-to-noise ratios (SNRs) and high energy resolutions

for rays and particles. Semiconductor detectors typically

adopt reset-type charge-sensitive preamplifiers or R-C-type

charge-sensitive preamplifiers. The semiconductor detector

output is typically wide. In high-counting rate environ-

ments, the signals of semiconductor detectors accumulate

significantly, resulting in counting loss and a low energy

resolution. For coincidence measurements, it is necessary

to obtain accurate time information of the signals. How-

ever, in high-counting rate environments, accurate time

information of output signals is difficult to obtain, owing to

large widths of the signals. For semiconductor detector

systems, a high resolution and high counting rate are

necessary for high-precision measurements. Digital pulse

processing (DPP) systems are often adopted in semicon-

ductor detector systems for signal processing and analysis

[2]. Extensive research has been performed on digital
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systems for increasing the system resolution and counting

rate. In research on digital systems, studies focusing on the

output-signal model and the pulse-shaping algorithm have

yielded interesting findings.

Output-signal models have been proposed for describing

the pulse shape. They play an important role in pulse

shaping. Nakhostin et al. described the peak value of the

output voltage pulse as an exponentially growing signal

with a single decay time constant [3]. Mohammadian-

Behbahani et al. proposed a two-component biexponential

model for characterizing the preamplifier output pulses

generated by an NaI (Tl) detector [4]. Födisch et al.

developed a dual-exponential output-signal model with a

single decay time constant for rectangular shaping [5].

Bogova et al. described the input signal in the digital

domain as the product of a single exponential function and

a Heaviside step function [6]. Kantor et al. proposed a

simple model with three time constants to describe the

pulse shapes generated by radiation detectors [1]. Khilke-

vitch et al. presented an analytical formula with three time

constants to describe the pulse shape caused by a gamma

quantum in a scintillation detector [7]. However, these

output-signal models were presented without detailed

explanations and have not been extensively studied.

The impulse response shaping (IRS) algorithm is

important for the development of high-precision measure-

ment systems. Hong et al. proposed a unit IRS algorithm

for counting-loss corrections in x-ray spectroscopy [8]. Liu

et al. presented a dual-exponential IRS algorithm for

counting-loss correction in x-ray spectroscopy [9]. Jor-

danov et al. developed efficient recursive algorithms that

allow real-time pulse-shaping [10]. Imperiale et al. dis-

cussed pulse-shaping algorithms for high-energy semi-

conductor gamma-ray spectrometry [11]. Zhao et al.

designed a novel digital filter based on a sinusoidal func-

tion [12]. Abbene et al. applied the classical single-delay

line-shaping technique to dead-time corrections [13]. These

algorithms are based on output-signal models with only

one or two decay-time constants. The influence of output-

signal models with more time constants on these IRS

algorithms has not been discussed. Thuraka et al. realized a

recursive algorithm in a field-programmable gate array

(FPGA) with minimum resources to synthesize a trape-

zoidal output pulse from a step-input pulse [14]. Wen et al.

proved that a pulse pile-up recovery algorithm based on

template matching is effective for high-throughput gamma-

ray spectroscopy [15]. Fernandes et al. developed a real-

time algorithm for digitizer module FPGAs to calculate the

amplitude of Gaussian-shaped pulses [16]. These digital

solutions attempt to increase the resolutions and counting

rates of semiconductor detector systems. However, they are

based on complex mathematical operations and do not

focus on the high-speed and parallel processing of real-

time signals.

In this study, the signal characteristics of semiconductor

detectors were analyzed, taking silicon drift detectors

(SDDs) as an example, and a new output-signal model of

the semiconductor detector system was established. The

new output-signal model and the simple model proposed in

[1] were tested with acquired signals of the SDDs. The

results indicated that the new model more accurately

reflected the output signals of the semiconductor detector

system than the simple model. Traditional IRS algorithms

based on Z-transforms are both complex and recursive.

Recursion increases the complexity of DPP systems and

imposes restrictions on the speed of pulse shaping. A non-

recursive multistage cascade deconvolution IRS (MCD-

IRS) algorithm based on the new model is proposed in this

paper. The proposed algorithm avoids recursive calcula-

tion. The pipeline schemes of the direct-form finite impulse

response (FIR) filter can be implemented using this algo-

rithm. As the sampling frequency of the digital system

reaches 100 MHz, the algorithm can be simplified to

integer arithmetic, which is suitable for implementation

using FPGAs. The proposed algorithm was tested and

analyzed offline with the acquired SDD signals. The results

indicated that the average peak base width of the output

shaped pulses obtained using this algorithm and the total

elapsed time required for pulse shaping were significantly

reduced compared with those for the traditional algorithm.

The proposed output-signal model and IRS algorithm

are important for the development of high-resolution

energy spectrum measurement systems, coincidence mea-

surement systems, anti-coincidence measurement systems,

and high-counting rate correction systems.

2 Semiconductor detection system for nuclear
radiation

A digital detection system usually includes a semicon-

ductor detector, a preamplifier, a front-end circuit, an

analog-to-digital converter (ADC), a digital-to-analog

converter (DAC), a digital pulse processor, and computer

software, as shown in Fig. 1.

SDDs, which were proposed in 1984 by Gatti and

Rehak, are high-resolution position-sensitive detectors for

fast-ionizing particles and x-rays. The function of SDDs is

similar to that of Si-PIN photodetectors. However, the

electrode structure of SDDs differs from that of Si-PIN

photodetectors [17]. SDDs have excellent properties, such

as a high sensitivity, a high energy resolution, a high count

rate, low electronic noise, a low leakage current, a high

quantum efficiency, and a low capacitance [18]. The

capacitance of the output electrode of the SDD is\ 0.1 pF
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and is independent of the detector area. SDDs, which can

be operated at room temperature without liquid nitrogen,

are often used in x-ray analytical techniques, such as pro-

ton-induced x-ray emission, energy-dispersive x-ray spec-

troscopy, and x-ray fluorescence spectroscopy. They are

the most commonly used detectors for x-ray spectroscopy.

The front-end circuit is usually composed of a C-R

circuit, a linear amplifier, and an offset adjustor. The C-R

circuit shapes the output signal of the detector to an

exponentially decaying pulse. The linear amplifier changes

the amplitude of the exponentially decaying pulse [8]. The

high-pass linear amplifier hardly changes the shape of the

exponentially decaying pulse. The front-end circuit, which

adopts high-pass linear amplifiers, can be simplified to a

C-R circuit, which is referred to as the C-R system here-

inafter. The amplified pulse is then sampled and quantized

by the ADC, which follows the front-end circuit [19]. In

most cases, the sampling frequency and quantization

granularity significantly affect DPP. A digital pulse pro-

cessor is generally composed of an FPGA and a micro-

controller unit (MCU). The sampled pulse is processed in

the FPGA and sent to the computer by the MCU.

3 Methods

3.1 Output-signal model for semiconductor detector

systems

An output-signal model for semiconductor detector

systems was developed by analyzing the output signals of

the SDDs, preamplifiers, and C-R differential circuits.

3.1.1 Output signals of SDDs

In previous studies, the output signal of the charge-

sensitive preamplifier was generally approximated as a step

signal or an exponentially growing signal with a single

time constant, and the signal output by the SDD was

approximated as an impulse signal or an exponentially

decaying signal with a single time constant [19]. With the

development of digital systems, the sampling rate has been

increased by high-speed ADCs, the amount of noise in

semiconductor detector systems has been reduced, and the

precision of the sampling has been improved. The rise

time of a nuclear pulse can be accurately detected and

described. Our experimental results indicated that the

output signals of the SDDs should be approximated as

dual-exponential signals, as shown in Fig. 2a.

The dual-exponential signal is defined as follows:

y1 tð Þ ¼ 0

A � e�t=s2 � e�t=s3
� �

�
t\0

t� 0
; ð1Þ

where A represents the pulse amplitude, and s2 and s3
represent the falling and rising parts of the pulse,

respectively.

3.1.2 Output signals of integral-reset-type charge-

sensitive preamplifier

Charge-sensitive preamplifiers have low electronic

noise, and the amplitudes of their output signals are hardly

affected by parameters such as the interelectrode capaci-

tance, open-loop input capacitance, and voltage gain. The

preamplifiers adopted in high-resolution energy spectrum

measurement systems are almost always charge-sensitive.

Charge-sensitive preamplifiers include the resistance-

feedback, direct-current (DC) optical-feedback, pulse

optical-feedback, and integral-reset types. The circuit of

the integral-reset-type charge-sensitive preamplifier used in

digital systems is shown in Fig. 1.

The transformation of an input signal into an output

signal by an integral-reset-type charge-sensitive preampli-

fier is mathematically described as a convolution of the

input signal y1 tð Þ and the unit step function eðtÞ. The

convolution is expressed as

y2 tð Þ ¼ y1 tð Þ � e tð Þ: ð2Þ

Equation (2) can be rewritten as follows:

Fig. 1 Typical block diagram of a digital detection system
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y2 tð Þ ¼ 0

A � s3 � e�t=s3 � 1
� �

þ s2 � 1� e�t=s2
� �� �

�
t\0

t� 0
:

ð3Þ

The output signal of the integral-reset-type charge-sen-

sitive preamplifier is shown in Fig. 2b.

3.1.3 C-R convolution transform of signals

The charge collected by the integral-reset-type charge-

sensitive preamplifier increases with the accumulation of

the detector output and DC bias, and it is not cleared until

reset. The C-R differential circuit, as shown in Fig. 1, was

adopted to process the output signal of the preamplifier. DC

components were eliminated, and independent signals were

obtained after the output signal was processed by the C-R

differential circuit. The transfer function of the C-R dif-

ferential circuit was obtained via analysis, where R and C

are the resistance and capacitance values of RC circuit,

respectively:

H sð Þ ¼ Vo sð Þ
Vi sð Þ ¼ R � C � s

1þ R � C � s ; ð4Þ

H sð Þ ¼ 1� 1

R � C � sþ 1
: ð5Þ

In the time domain, the impulse response function of the

C-R differential circuit is expressed as

H tð Þ ¼ d tð Þ � a � e�at � e tð Þ; ð6Þ

where d(t) is the unit impulse function and a ¼ 1
R�C :

Equation (6) is obtained by applying the inverse Laplace

transform to Eq. (5). As indicated by Eq. (6), the impulse

response function of the circuit is a linear combination of

an exponentially decaying signal and unit impulse signal.

The output signals of the integral-reset-type charge-

sensitive preamplifier are processed by the C-R differential

circuit, and the results are given by Eq. (7), where s1 = RC.

F tð Þ ¼ A � s2 � s3 � s2 � e�t=s2 þ s3 � e�t=s3
� �

� e tð Þ

� d tð Þ � 1

s1
� e�t=s1 � e tð Þ

� �
ð7Þ

Equation (7) can be simplified to Eq. (8). The output

signal of the C-R differential circuit is shown in Fig. 2c.

F tð Þ ¼ A � s2 � s3 �
s2 � s2
s2 � s1

þ s3 � s3
s3 � s1

� �
� e�t=s1 þ A

� s1 � s2
s2 � s1

� e�t=s2 � A � s1 � s3
s3 � s1

� e�t=s3

ð8Þ

In the frequency domain, the output signals of the C-R

differential circuit can be expressed by Eq. (9) using the

Laplace transform.

F sð Þ ¼ s2 � s3
s

� s2 � s2
s2sþ 1

þ s3 � s3
s3sþ 1

� �
� 1� 1

s1sþ 1

� �

ð9Þ

Equation (9) can be rewritten as follows:

F sð Þ ¼ s2 � s3 �
s2 � s2
s2 � s1

þ s3 � s3
s3 � s1

� �
� s1
s1sþ 1

þ s1 � s2
s2 � s1

� s2
s2sþ 1

� s1 � s3
s3 � s1

� s3
s3sþ 1

ð10Þ

Equations (8) and (10) are equivalent and express the

output signals of the C-R differential circuit in the time and

frequency domains, respectively.

3.2 MCD-IRS algorithm

On the basis of the proposed output-signal model, an

MCD-IRS algorithm is developed that comprises C-R

inverse (INV_CR), R-C inverse (INV_RC), and

Fig. 2 (Color online) Simulations of signals output by the detector, preamplifier, and C-R system. a Simulation of the dual-exponential signal

output by the SDD. b Simulation of the integral signal output by the preamplifier. c Simulation of the signal output by the C-R system
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differentiator (DIF) systems. The INV_CR system provides

a digital realization method for inverse C-R differential

circuit systems. The INV_RC system provides a digital

realization method for inverse R-C integral circuit systems.

3.2.1 Cascade IRS algorithm for the ideal dual-

exponential pulse

Unit IRS methods for ideal dual-exponential pulses have

been studied in attempts to find a digital solution to

semiconductor detector systems. A three-stage cascade IRS

(TCI) system, which is composed of INV_RC, INV_CR,

and DIF systems, is designed to process the ideal dual-

exponential pulse, as shown in Fig. 3.

In Fig. 3, let the input signal of the INV_RC system be

z[n], the output of the INV_RC system be y[n], the output

of the INV_CR system be x[n], and the output of the DIF

system be p[n]. Then, the following equations are obtained:

y n½ � ¼ INV RC z½n�;mð Þ ð11Þ
x n½ � ¼ INV CR y½n�;Mð Þ ð12Þ
p n½ � ¼ DIF x½n�ð Þ: ð13Þ

The three-stage cascade IRS algorithm is derived via the

following steps. The following equation is derived from the

digital solution of the INV_RC system [20]:

y n½ � ¼ z½n� þ m � z½n� � z½n� 1�ð Þ;m ¼ R � C
Dt

: ð14Þ

The following equation is derived from the digital

solution of the INV_CR system [21]:

x n½ � ¼ 1

M

� �X
y n½ � þ y n½ �;M ¼ R � C

Dt
: ð15Þ

The following equation is obtained from Eqs. (14) and

(15):

x n½ � ¼
P

z n½ � þ m � z n½ �
M

þ z n½ � þ m � z n½ � � z n� 1½ �ð Þ:

ð16Þ

Equation (17) can be obtained by integrating both sides

of Eq. (16). Equation (17) describes the digital signal

transformation of a dual-exponential signal into a step

signal in the form of digital integration.

X
x n½ � ¼ 1

M

� �
�

XX
z n½ � þ M þ mð Þ �

X
z n½ � þM � m � z n½ �

� �

ð17Þ

The impulse signal is the first derivative of the step

signal, that is, p(n) = x(n0); thus, Eq. (18) is obtained,

which describes a three-stage cascade deconvolution IRS

algorithm for an ideal dual-exponential pulse.

When the sampling rate of the digital system is suffi-

ciently high, m and M in Eq. (18) can be approximated as

integers.

3.2.2 MCD-IRS algorithm for signals of semiconductor

detector

The signals of the semiconductor detector, which are

expressed by Eq. (8), can be deconvoluted into unit

impulses step-by-step, as shown in Fig. 4.

In Fig. 4, let the input signal of the INV_CR system be

Y[n], the output of the INV_CR system be X[n], the output

of the DIF system be Z[n], and the output of the TCI

system be P[n]. The MCD-IRS algorithm for the output

signals of the semiconductor detector system can be

derived as follows.

In the first stage, the output signals pass through the

INV_CR system to generate signals, as described by

Fig. 3 Processing flow of the

ideal dual-exponential pulse

p n½ � ¼ 1þ mþM þ m �Mð Þ � z n½ � � mþM þ 2 �M � mð Þ � z n� 1½ � þM � m � z n� 2½ �
M

ð18Þ
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Eq. (3). The digital convolution of the INV_CR system is

given as

X n½ � ¼ k �
X

Y n½ � þ Y n½ �; k ¼ Dt
R � C: ð19Þ

In the second stage, the signals generated in the first

stage are passed through the digital DIF system to generate

the output signals expressed by Eq. (1). The digital solu-

tion for the DIF system is given by Eq. (20).

Z n½ � ¼ X n½ � � X n� 1½ � ð20Þ

In the third stage, the output signals of the DIF system

are processed using the TCI system described by Eq. (18),

and impulse signals are generated. The digital solution for

the TCI system is given by Eq. (21).

The digital solution expressed by Eq. (21) can be sim-

plified to Eq. (22). Additionally, Eq. (22) can be simplified

to Eq. (23), by setting K = 1/k. Equations (22) and (23)

express the digital solutions for semiconductor detector

systems.

In Eqs. (22) and (23), the result P[n] is only related to

the input signal Y[n] and is unrelated to the intermediate

calculation result. For designing a real-time signal-pro-

cessing system using Eq. (22) or (23), high-speed pipeline

schemes for parallel processing can be adopted.

4 Experimental results and analysis

4.1 Experimental conditions

A FAST-SDD detector (XR-100SDD) [22] manufac-

tured by Amptek was used in the experiments. XR-100 is a

thermoelectrically cooled solid-state detector and a

preamplifier. The detector was equipped with a reset-type

preamplifier. The energy resolution of the detector was set

as 125 eV. An x-ray tube with a Ag target was used to

irradiate a Mn sample. The current of the x-ray tube was set

as 8 lA, while the voltage was maintained at 35 kV. A

vacuum pump was used for evacuation. The pressure was

approximately 0.09 MPa. The ADC adopted in the digital

system was operated at 20 Msps with a 12-bit resolution

(AD9235).

The acquired SDD signals, which were used for mod-

eling and IRS in the experiments, were the original pulse

data acquired from the ADC by sampling the amplified

pulse of the linear amplifier. According to the following

procedures, the acquired SDD signals were processed and

shaped offline in the experiments.

(1) Original pulse-data acquisition.

(2) The time constants (s1, s2, and s3) for the output-

signal model were obtained. According to the curve-

Fig. 4 MCD-IRS

P n½ � ¼ 1þ mþM þ m �Mð Þ � Z n½ � � mþM þ 2 �M � mð Þ � Z n� 1½ � þM � m � Z n� 2½ �
M

ð21Þ

P n½ � ¼ 1þ mþM þ m �Mð Þ � 1þ kð Þ � Y n½ � � Y n� 1½ �ð Þ � mþM þ 2 �M � mð Þ � 1þ kð Þ � Y n� 1½ � � Y n� 2½ �ð Þ þM � m � 1þ kð Þ � Y n� 2½ � � Y n� 3½ �ð Þ
M

ð22Þ

P n½ � ¼ 1þ mþM þ mMð Þ 1þ Kð ÞY n½ � � 1þ 2mþ 2M þ 3mMð ÞK þ mþM þ 2mMð ÞY n� 1½ � þ mþM þ 3mMð ÞK þ mMð ÞY n� 2½ � � mMK � Y n� 3½ �
M � K

ð23Þ
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fitting method, the time constants were obtained

using the proposed output-signal model and the

acquired SDD signals.

(3) The constants (m, M, k, and K) for the proposed IRS

algorithm were obtained. These constants were

derived from the time constants of the output-signal

model.

(4) Impulse-response shaping. The acquired SDD sig-

nals were shaped into impulses using the MCD-IRS

algorithm described by Eqs. (22) and (23).

4.2 Comparison and analysis of output-signal

models

4.2.1 Signal simulation and comparison

Equation (24), which was proposed in [1], describes the

output signals of the semiconductor detector system in the

time domain.

F1 tð Þ ¼ B � e�t=s1 � 1� s2
s2 � s3

� e�t=s2 þ s3
s2 � s3

� e�t=s3

� �

ð24Þ

As indicated by Eq. (24), where B is a constant, the

pulses have an exponentially decaying tail with a decay

time of s1. The decay time is determined by the electronic

circuits of the preamplifier [1]. The leading-edge time s2 in
Eq. (24) is determined by the integration time of the RC-

CR filter of the preamplifier in the semiconductor detector

system [1]. In Eq. (24), s3 represents the buildup time of

the response pulse, which is consistent with the charge-

collection time [1].

Equation (24) also indicates that the output signal of the

system can be obtained by multiplying the exponentially

decaying signal by the output signal of the detector. In

Eq. (24), e�t=s1 can be generated by the convolution

transform of the C-R differential circuit, and the other

terms on the right-hand side of the equation are similar to

the expressions in Eq. (3). Equation (24) expresses a sim-

ple output-signal model for semiconductor detector

systems.

In the time domain, the signals given by Eqs. (8) and

(24) almost coincided with the adjustment of s2 and s3
while s1 remained the same, as shown in Fig. 5a. Addi-

tionally, in the frequency domain, the signals of the pro-

posed and simple models coincided with the adjustment of

s2 and s3 while s1 remained the same, as shown in Fig. 5b.

As shown in Fig. 5, the new model of the semiconductor

detector system was similar to the output-signal model

proposed in [1] in the time and frequency domains. The

two models can both be used to simulate SDD signals for

time–frequency analysis and have no significant differ-

ences. However, the experimental results indicated that

there were differences between the models with regard to

the unit IRS for SDD signals.

4.2.2 Attempt on unit IRS

To test the output-signal model, a traditional unit IRS

method was used. The traditional method is based on the Z-

transform, which is described by Eq. (25). Here, Vo(z) and

Vi(z) represent the Z-transforms of Vo(t) and Vi(t), which

are the output and input signals of the semiconductor

detector system, respectively.

H zð Þ ¼ Vo zð Þ
Vi zð Þ ¼ 1

Vi zð Þ ð25Þ

If Vi(t) is defined by Eq. (24), Eq. (25) can be rewritten

as follows:

Fig. 5 (Color online) Signals simulated using the proposed model (s1 = 200 ns, s2 = 50 ns, s3 = 10 ns) and the

simple model (s1 = 200 ns, s2 = 50 ns, s3 = 19 ns). a Time domain. b Frequency domain
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H zð Þ ¼ 1� d1 1þ d2 þ d3ð Þz�1 þ d21 d2 þ d2d3 þ d3ð Þz�2 � d31d2d3z
�3

d1 s2 1� d2ð Þ þ s3 d3 � 1ð Þð Þz�1 þ d21 s2 � s3ð Þd2d3 � s2d3 þ s3d2ð Þz�2
;

ð26Þ

where d1 ¼ e�T s=s1 ,d2 ¼ e�T s=s2 , and d3 ¼ e�T s=s3 , with Ts
being the sampling period.

A digital solution for the signals of the semiconductor

detector system in the time domain is given by Eq. (27),

which is obtained from Eq. (26) using the inverse Z-

transform.

If Vi(t) is defined by Eq. (8), the following digital

solution can be obtained:

where

d1 ¼ e�T s=s1 ,d2 ¼ e�T s=s2 ,d3 ¼ e�T s=s3 ,-

,c2 ¼ s1�s2
s2�s1

, and c3 ¼ s1�s3
s3�s1

, with Ts being the sampling

period.

The SDD signals obtained from the ADC were tested via

Eqs. (27) and (28), that is, using the simple and new

models, respectively, and the results are shown in Fig. 6.

As shown in Fig. 6a, the unit impulses of the SDD

signals obtained using the simple model oscillated.

Figure 6a also indicates that the undershoots of the pulses

were large. Longer tails appeared after the pulse under-

shoots were eliminated by adjusting s1, s2, and s3, as shown
in Fig. 6c. The tailing phenomenon is attributed to the fact

that the output-signal model described by Eq. (24) lacks

the support of a physical model. The output signal

expressed by Eq. (24) is the product of two signals with

clear physical meaning. In a linear system, one signal

cannot be directly multiplied by another signal.

As shown in Fig. 6b, the shaped pulses obtained using

the new model had no undershoot. Figure 6c presents the

results for the two shaping methods. The unit impulse

obtained using the new model was narrower than that

obtained using the simple model. Additionally, the unit

impulse obtained using the new model had a shorter tail,

while the noise remained at the same level. It can be

concluded that the new model outperformed the simple

model for processing overlapping signals.

Fig. 6 (Color online) Unit IRS of acquired SDD signals. a Unit IRS of acquired SDD signals using the simple model. b Unit IRS of acquired

SDD signals using the new model. c Unit IRS using the simple and new models

Y n� 1½ � ¼ X n½ � � d1 1þ d2 þ d3ð ÞX n� 1½ � þ d21 d2 þ d3 þ d2d3ð ÞX n� 2½ � � d31d2d3X n� 3½ � � d21 s3d2 � s2d3 þ s2 � s3ð Þd2d3ð ÞY n� 2½ �
d1 s2 1� d2ð Þ þ s3 d3 � 1ð Þð Þ ð27Þ

Y n� 1½ � ¼ X n½ � � d1 þ d2 þ d3ð ÞX n� 1½ � þ d1d2 þ d1d3 þ d2d3ð ÞX n� 2½ � � d1d2d3X n� 3½ � � c1d2d3 þ c2d1d3 � c3d1d2ð ÞY n� 2½ �
d1c3 þ d2c3 � d1c2 � d2c1 � d3c1 � d3c2

;

ð28Þ
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4.2.3 Quantitative comparison of output-signal models

Typically, the total full width at half maximum

(FWHM) of the peaks is used to evaluate digital pulse

shapers [23, 24]. However, there are several other methods

for comparing unit IRS algorithms. In this study, two

methods were employed: comparing the average peak base

widths of the impulses and comparing the total areas of the

impulses (a smaller total area corresponds to better unit

IRS).

The SDD signals were tested using the two output-signal

models. After adjustment of s1, s2, and s3, the average

amplitudes of the impulses obtained using the two models

were essentially identical. The experimental results indi-

cated that the total FWHMs and SNRs obtained using the

two models had no significant differences.

However, the average peak base widths of the output

shaped pulses obtained using the simple and new models

were 6.017 9 50 ns and 3.793 9 50 ns, respectively; that

is, the average peak base width was 36% smaller for the

proposed model. Let the area of the impulse obtained using

the new model be An and the area of the impulse obtained

using the simple model be As. Then,
P

An and
P

As rep-

resent the total areas of the impulses obtained using the two

models. SDD signals with a length of 1000 were tested.

The value of
P

An was 1.459 9 105, the value of
P

As was

1.727 9 105, and the value of
P

An=
P

As was 84%.

Additionally, for the simple model, small pseudo-peaks

appeared on tails when the SDD signals overlapped sig-

nificantly. Pseudo-peaks result can in pulse-counting rate

errors. The results indicated that the new output-signal

model described by Eq. (8) agreed better with the output

SDD signals than the simple model proposed in [1].

4.3 Test and analysis of MCD-IRS algorithm

The acquired SDD signals were tested using the MCD-

IRS algorithm, and the results are shown in Fig. 7.

As shown in Fig. 7a, the width of the TCI output

impulse was between 1 and 4 sampling points, the under-

shoots of the pulses were eliminated, and the shaped pulses

had almost no tails. As indicated by Fig. 7b, the MCD-IRS

algorithm stably processed SDD signals at high counting

rates. In the experiments, 2 MB of acquired SDD signals

were processed and shaped offline. The personal computer

used in the experiments was equipped with an Intel CPU

(i5-6200U) with 16 GB of random-access memory. The

experimental results indicated that the average peak base

widths of the output shaped pulses obtained using the tra-

ditional and new IRS algorithms were 3.793 9 50 and

3.363 9 50 ns, respectively; i.e., the average peak base

width was 11% smaller for the proposed algorithm. The

numbers of impulses obtained using the traditional and new

algorithms were 29,970 and 30,004, respectively. The total

elapsed time required for pulse shaping was 0.23 and 0.17 s

for the traditional and new algorithms, respectively; i.e.,

the total elapsed time required for pulse shaping was 26%

shorter for the proposed algorithm. Offline processing

results for the acquired SDD signals indicated that the

digital solution described by Eq. (22) or (23) is consistent

with the solution described by Eq. (28).

Equation (28), which was obtained using the Z-trans-

form and inverse Z-transform, contains the recursive term

Y[n - 2] on the right-hand side. This term indicates that the

result of each calculation depends on the previous calcu-

lation result. Owing to the noise and background in mea-

sured signals, there are errors in the calculations. These

errors may accumulate and be transferred in calculation

Fig. 7 (Color online) Test results for the MCD-IRS algorithm. a Test results for SDD signals. b Test results for SDD signals in high-counting

rate environments
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processes, affecting the output signals of the semiconductor

detector system. Recursion increases the complexity of

DPP systems. In DPP systems, a feedback network should

be included owing to the recursive term. The feedback

network affects DPP in high-speed and real-time systems.

In the DPP system based on Eq. (28), signals can only be

processed serially. The filter implemented using Eq. (28) is

an infinite impulse response filter, which has parasitic

oscillation in some cases.

In the implementation of the MCD-IRS algorithm,

attention should be paid to multiple solutions to inverse

systems. Multiple solutions may result in instability of the

inverse system. For example, the MCD-IRS algorithm was

unstable in the INV_CR system when processing signals

whose baseline was not zero. However, when there was a

direct series connection between the INV_CR and DIF

systems, the MCD-IRS algorithm was stable. Figures 3 and

4 show a scheme for developing a stable algorithm based

on the direct series connection between the INV_CR and

DIF systems.

In tasks that use short word-length integers or fixed-

point data, FPGAs exhibit a high degree of parallelism.

However, FPGAs cannot achieve the optimum perfor-

mance in high-precision floating-point arithmetic opera-

tions [25, 26]. If the sampling rate of the digital system is

sufficiently high, the sampling frequency can reach

100 MHz. In Eqs. (18) and (23), m, M, and K can be

approximated as integers. Because the native data from the

ADCs are integers, the algorithm can be simplified to

integer arithmetic, which is suitable for implementation

with FPGAs.

Pipelining is widely used in DPP systems to accelerate

digital signal processing [27]. The main problem with

conventional pipelining is that it is based on the propaga-

tion delay information [27]. The MCD-IRS algorithm is

non-recursive; therefore, a pipeline scheme of the direct-

form FIR filter can be implemented.

5 Conclusion

An output-signal model and a non-recursive IRS algo-

rithm for the signals of semiconductor detector systems

were proposed. The output-signal model was developed

according to an analysis of the detector output signal-pro-

cessing flow. It was tested and analyzed using the acquired

SDD signals. The experimental results indicated that the

average peak base width of the output shaped pulses

obtained using the new model was reduced by 36% com-

pared with that for the simple model proposed in [1]. The

undershoots of the shaped pulses were eliminated, and the

shaped pulses had almost no tails. Compared with the

simple model, the new output-signal model agreed better

with the output SDD signals and was more stable when

shaping the SDD signals into unit impulses.

On the basis of the new model, an MCD-IRS algorithm

is proposed. The new IRS algorithm was implemented

using INV_RC, INV_CR, and DIF systems. Offline pro-

cessing results for acquired SDD signals indicated that

compared with the traditional IRS algorithm based on the

Z-transform, the average peak base width of the output

shaped pulses obtained using the new algorithm was

reduced by 11%, and the total elapsed time required for

pulse shaping was reduced by 26%. The proposed algo-

rithm avoids recursive calculation. Pipeline schemes can be

used to implement new algorithms. When the sampling rate

of the digital system is sufficiently high, the algorithm can

be simplified to integer arithmetic, which is suitable for

implementation with FPGAs. The new non-recursive IRS

algorithm is more suitable than the traditional algorithm for

high-speed parallel processing of the acquired SDD sig-

nals. In high-counting rate environments, pulses overlap

significantly, e.g., in the case of real-time online detection

of industrial material compositions or rapid analysis of

alloys. The MCD-IRS algorithm can be applied in these

cases.

In the detection system for nuclear radiation, the

amplifiers and the ADC affect the rising edge of the pulse.

A cascade RC can be added to the proposed system to

modify the rising edge of the semiconductor detector pulse.
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