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Abstract A detailed investigation of different decay
modes, namely alpha decay, beta decay, cluster decay,
including heavy particle emission (Z. > 28), and sponta-
neous fission, was carried out, leading to the identification
of new cluster and beta-plus emitters in superheavy nuclei
with 104 < Z < 126. For the first time, we identified around
20 beta-plus emitters in superheavy nuclei. Heavy-particle
radioactivity was observed in superheavy elements of
atomic number in the range 116 < Z < 126. 272°0g were
identified as %°Kr emitters, and 2°6122 and 3%°122 were
identified as °*Zr emitters, heavy-particle
radioactivity from °'Y was also observed in 2°°123. Fur-
thermore, the nuclei %124 and 3%126 exhibit “°Mo
radioactivity. The reported regions of beta-plus and heavy-
particle radioactivity for superheavy nuclei are stronger
than those for alpha decay. The identified decay modes for
superheavy nuclei are presented in a chart. This study is
intended to serve as a reference for identifying possible
decay modes in the superheavy region.
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1 Introduction

The most important unanswered questions in Nuclear
Physics are to determine the heaviest superheavy nuclei
that can exist, and to investigate whether very-long-lived
superheavy nuclei exist in nature. The past ten years have
been marked by remarkable progress in the science of
superheavy elements and nuclei. The existence of super-
heavy nuclei above Z = 103 can be studied in terms of
whether they can occur naturally or can be synthesized in
the laboratory. There are no definitive conclusions
regarding the existence of superheavy nuclei in nature. In
contrast, such superheavy nuclei, with half-lives ranging
between days to us, can be synthesized using cold and hot
fusion reactions. Cold fusion reactions involve either lead
or bismuth as targets [1], whereas hot fusion reactions
include **Ca beams on various actinide targets [2, 3]. Many
theoretical predictions, such as microscopic—macroscopic
[4] (single-particle potential) and self-consistent approa-
ches, including nucleus—nucleus potential [5, 6], relativistic
field models [7, 8], and multinucleon transfer reactions [9],
provide information regarding the nucleus structure, shell
closure location, and decay modes in heavy and superheavy
nuclei.

The discovery of superheavy elements [10, 11] points to
the island of stability. Boilley et al. [12] predicted the
evaporation residue cross sections in superheavy elements
and the influence of shell effects [13]. The entrance
channel dynamics were studied using “*Ca as a projectile
and 2%8Pb as target [14]. In 1966, two groups of research-
ers, namely Mayers and Swiatecki, and Viola and Seaborg
[15], separately predicted the presence of heavy nuclei near
the island of stability. Later, Sobiczewski et al. [16] pre-
dicted that the nucleus Z = 114 will be the center of the
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island of stability, with neutron number N = 184. In 1955,
Nilsson [17] proposed a shell model which includes
deformation property of the nuclei. Bender et al. [18] used
a Skyrme energy density functional model and studied the
deformation properties of closed proton and neutron shells.
The nuclear mass, radius, and spectroscopy far away from
the valley of stability were experimentally analyzed earlier
[19]. The investigation of isomers of the superheavy
nucleus >*No is a stepping stone toward the island of
stability [20]. Previous researchers [21] analyzed the
nuclear shell structure and discovered additional stability
near magic nuclei. The present scenario is almost near the
center of the presumed island of stability, but the final
landing is yet to be completed, and the intriguing question
is how these superheavy nuclei are still accessible.

The identification of superheavy nuclei is based on
observations of decay chains. Superheavy element region
114 <Z <118 were observed owing to their consistent
decay chains, which end in the isotopes of rutherfordium
(Rf) and dubnium (Db). Spontaneous fission and «-decay
are the dominant decay modes in superheavy nuclei and
limit their stability. Furthermore, newly synthesized
superheavy elements are primarily identified by their decay
chains from unknown nuclei to known daughter nuclei by
using the parent-and-daughter correlation.

The competition between different decay modes, such as
ternary fission, spontaneous fission, cluster decay, proton
decay, f-decay, and a-decay, in the heavy and superheavy
region, has been extensively studied using various theo-
retical models, such as Coulomb and proximity potential
models, modified generalized liquid drop models, effective
liquid drop models, and temperature-dependent proximity
potential models [22-33]. The possible decay modes in the
superheavy nuclei Z = 119 and 120 are predicted in Ref.
[34]. From Ref. [35], it is clearly observed that the isotopes
of the superheavy nuclei Z = 104-112 have a—decay and
spontaneous fission as dominant decay modes. However,
only o-decay is dominant in the isotopes of superheavy
nuclei Z = 113, 115-118. The isotopes of the superheavy
nucleus Z = 114 have spontaneous fission as the dominant
decay mode in the nucleus *%4Fl, a-decay is dominant in the
nuclei 226-289F] and /3+ is dominant in the nucleus 2°°Fl.
Furthermore, the concept of heavy-particle radioactivity
[36] in the superheavy region has important applications in
the synthesis of superheavy nuclei. Despite the significant
experimental and theoretical progress, there are many
unanswered questions related to the decay modes of
superheavy nuclei. Until now, only o-decay and sponta-
neous fission have been successfully observed in
experiments.

Experimental results suggest a considerable increase in
the lifetime of nuclei as they approach closed proton and
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neutron shells [37]. The lifetimes of most known super-
heavy nuclei are governed by the competition between o-
decay and spontaneous fission. The existence of the island
of stability has been confirmed experimentally in the pre-
vious decade [38]. Some theoretical studies reveal that
superheavy elements with 114 and 164 protons are
stable against fission as well as alpha and beta decay [39].
Various phenomenological and microscopic models, such
as the fission model [40], the cluster model [41], general-
ized liquid drop model [42], and the unified model for
alpha decay and alpha capture [43], are available to study
the different decay modes of superheavy nuclei. In addi-
tion, many studies have been concerned with the alpha
decay and spontaneous fission of superheavy nuclei
[44—46]. Simple empirical formulas are also available for
determining the decay half-lives [47]. The possible iso-
topes of new superheavy elements are identified by
studying the competition between different probable decay
modes, such as o-decay, f-decay, cluster decay, and
spontaneous fission. This study focuses on the different
decay modes of superheavy nuclei in the atomic number
range 104 <Z < 126. After a detailed investigation of the
competition between different decay modes, the possible
isotopes and their decay modes with branching ratios are
identified in the superheavy nuclei region. Hence, the
contribution of this study is in the prediction of the most
possible decay mode in superheavy nuclei, and in the
identification of possible emitters in this superheavy
region. The formalism is explained in Sect. 2. The analysis
of different decay modes and possible emitters in the
superheavy region is explained in Sect. 2.4. The paper is
concluded in Sect. 3.

2 Theory

2.1 Alpha decay and cluster decay

In the effective liquid-drop model (ELDM), the a-decay
half-life is computed using the relation

In2
T, . 1
1/2(5) VoPP“’ ( )
where vy is the assault frequency on the barrier, and vy =
1.8 x 10%2s~! [48]. P, is the preformation factor, which is
closely related to the shell structure [49]. The empirical
formula for P, is expressed as

logPy =p1+p2(Z2—-21)(Z, - Z)

+p3(N = N1 ) (N> — N) + psA, (2)

where N, Z, and A are the neutron, charge, and mass
number of the parent nucleus, respectively, Z; and Z, are
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the proton magic numbers around Z (Z; <Z < Z,), and N,
and N, are the neutron magic numbers around N
(N1 <N <MN,). p1, p2, and ps3 correspond to parameters in
the region even(Z)-even(N), even(Z)-odd(N), odd(Z)-
even(N), and odd(Z)-odd(N). They are presented in Table I
of Ref. [50]. P is the Gamow penetrability factor, given by
the expression

(e
P = exp {—%/ 2u[V(0) — QldZ|, 3)

where p is the inertial coefficient resulting from the Wer-
ner—Wheeler approximation [51]. The limits of integration
{y and . are the inner and outer turning points, expressed

as {p = RP-R] and {, = %ﬁe? Rp is the radius of the parent
nucleus, and R; is the final radius of the emitted cluster. In
the ELDM, the total potential has been demonstrated to be
the sum of Coulomb, proximity, and centrifugal potential
[52, 53]. Hence, we can use the effective one-dimensional

total potential energy as follows:
V=Ve+Vs+ V. (4)

To evaluate the Coulomb contribution in terms of the
deformation parameter, we used V¢ as defined in Ref. [54]:

7,7
Ve(R) = R] 2 + 32,26 Z
2,i=1,2 )
R (o, T 4
<o 00 350 0
with

where f 5, is the deformation parameter, Y;A’o) are the

spherical harmonics, and
Ry = 12841 —0.76 + 0.84; . The effective surface
potential can be calculated by

Vs = O’eff(Sl + Sz), (7)

where S| and S, are the surface areas of the spherical
fragments. Ooff is the effective surface tension, which is
defined as

1 3 VAR AR/
Ooff = Q-5 |~ b2
S 4(R?—R}-R)) 20mey |R R Ra)’

where R, is the final radius of the daughter fragment. The
centrifugal potential energy is determined by

0+ 1
2ug

where ¢ is the angular momentum of the emitted
alpha/cluster and is calculated using the selection rules. In
the case of alpha/cluster decay [55, 56], the selection rules
follow the condition

) (9)

TT
Up —Jg| <€, <|Jp +J4 and %z(—mfu, (10)

where Jp,mp and Jq, 7y are the spin and parity of the

parent and daughter nuclei, respectively. ,u:%%z is the
reduced mass of the fragments, where M; and M, denote
their atomic masses.

In ELDM, a system with two intersecting spherical
nuclei with different radii is considered [52]. A schematic
diagram for the representation of four independent coor-
dinates, namely R;, R;, {, and &, is shown in Fig. 1. Three
constraints are used to reduce the four-dimensional spher-
ical problem to an equivalent one-dimensional problem.
The geometric constraint given below is introduced so that
the spherical segments remain in contact:

R2-((-¢&*=R-& (11)

The variables { and ¢ represent the distance between the
geometrical centers and the distance between the center of
the heavier fragment and the circular sharp neck of the
radius, respectively [53, 57]. Assuming that nuclear matter
is incompressible, the constraint for the conservation of the
total volume of the system is

2R+ R2*) + 3[R — &) + R — [(( = &) + &)
= 4R,

(12)
where R = ryA'/3 is the radius of the parent nucleus ( ry =
1.34 fm is an adjustable parameter), with A being the mass
number of the parent.

The radius of the o particle, R, is assumed to be con-
stant in the varying mass asymmetry shape description:

R —R, =0, (13)

where R, = (%)1/3& i = 1,2; R, provides the final radius
of the o particle. Here, Z;, Z,, and Z are the atomic num-
bers of the o particle, daughter nucleus, and parent nucleus,
respectively.

2.2 Beta decay

For all types of f§ processes, the expression for the half-
life Ty is given by [58]
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Fig. 1 Schematic presentation
of molecular phase of the di-
nuclear system (the daughter
nucleus and the emitted
(smaller) fragments). The
distance between their
geometrical centers and the
distance between the center of
the heavier fragment and the
circular sharp neck of radius a
are denoted by ({ and ¢,
respectively

L,y 14
Ty Ty Ty  EC (14)

Here, EC is the electron capture. For a particular type of f-
decay, the half-life is expressed as follows:

2.5 4 -1
gmec 2

Here, fé’ is the Fermi function, b = ﬁi or EC, me is the
mass of the electron, and My is the transition matrix ele-
ment between the initial and final states. The right-hand
side of the above may be approximated by a constant for
each type of f-decay [59]. This constant is different for
allowed and forbidden cases of beta decay. For allowed f-
decay, this constant has been determined as 5.7 £ 1.1 [60].
Equation (15) is reduced to

logo[feTy(sec)] = 5.7 + 1.1, (16)

log o[y Ty = 4.7. (17)
2.2.1 B* decay

The Fermi function for f-decay is expressed as
Ey
e /1 F(E,Z)P(E)(Ey — E)*dE. (18)

Here, P(E) is the momentum of the particle, and F(E, Z)
can be computed at the nuclear surface using the magnitude
of the radial electron/positron wave function. The first
approximation of F(E, Z) is

20+ 1)@pR)*" ™ exp[ ] IT( + 12)

Fo(£,2) = 22y + 1)

(19)
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Here, y = V1 — 0272, £ = + oZE (+ for f~ decay and —
for ﬁ+ decay), « = 1/137 is the fine structure constant, R is
the radius of the nucleus, and I is the gamma function.
At the surface of the nucleus (for /3+ decay), the orbital
electron screening effect has a significant impact on the 8
electron/positron wave function. Thus, F(E, Z) becomes

(EF Vo)(E F Vo)
pP(E)E
(20)

F(E,Z) = Fo(EF Vo, 2) 7 (E F Vo, Z)”

Here, Vy = 1.8102Z*/3, is the finite wavelength of the f
particle, p(E) = VE? — 1 is the momentum of the f par-
ticle, Ey = 1 4 Q= /mec? is the total limit energy of the f8
decay, E = 1 + ¢/mec?, and ¢ is the kinetic energy of the f8
particle

The expression for the energy released in 1 decay is

Qp =M(A,Z) — M(A,Z — 1) — 2mec”. (21)
Similarly, for f~ decay,
O =M(A,Z) —M(A,Z—1). (22)

2.2.2 Electron capture

The value of Q for electron capture is given by
Opc =M(A,Z) —M(A,Z — 1) — Be

23
= Qﬂ+ + 21’)136‘2 — Be. ( )

Here, Be is the electron binding energy. Hence, even for
the forbidden ' decay, electron capture is allowed. The
capture of electrons of the K-shell for lower Z, and of the L-
shell for higher Z is the major contributor to electron
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capture. The contributions of the electrons of higher shells
are negligible. Thus, the Fermi function becomes

FC g g g (24
In general, for any shell,

1 =5 IEQgC) + Exle(Z0) + (2]

(25)
X =K,L1, Ly
Here, Ey is the total energy of the electron:
1\ 2
Be=rei=(57) (26)

where Zx is the effective charge, which considers the
screening of the Coulomb field of the nucleus by other
electrons [61]:

Zx =Z—035 and Z, =Z—4.15. (27)

The nonzero components of the radial parts (gx&/fy) of the
wave function of the relativistic electron of orbit X are

Table 1 Cluster-decay half-lives obtained from present study (PS)
and available experiments (exp)

Decay OpxpMeV)  1ogT P (711 logTT3
2ipe_, 4CH207T] 31.317 14.51 14.91
2IRa—4C+27Pb 32.396 13.37 13.56
22Ra—4C+2%Ph 33.05 11.05 12.70
23Ra— 4C+29Pb 31.829 15.05 13.94
24Ra—14C+21Ph 30.54 159 15.52
226Ra—14C+212Pp 28.2 21.29 22.74
25 c—1C4+21Bi 30.477 17.16 17.06
28Th—2004-208pp 44.72 20.73 22.04
20U —2Ne+2%Pb 61.4 19.56 20.21
B0Th—2Ne+2%Hg  57.571 24.61 25.07
B1pa 2 Ne+207T] 60.417 22.89 23.07
22U —2Ne+2%8Pb 62.31 20.39 22.25
BIU—2Ne+PPb 60.486 24.84 25.05
BHU2Ne+2%Ph 59.466 25.93 25.62
BAU-BMg+2%Hg 7411 25.74 26.04
236py—28Mg+2%Pb 79.67 21.65 22.07
38py . BMg+21Pb  75.912 25.66 25.98
28py—30Mg+2%pp 77 25.66 26.25
238py 32814 20Hg 91.19 25.3 26.05
M2Cm—MSi+28ph  96.509 23.11 24.24

Table 2 Comparison of logarithm half-lives (years) of spontaneous
fission in the superheavy region 104 <Z <114 from present study
with those from available experiments

Parent nuclei lo glgl)éptyr (72] log”gg yr
24RS —12.1 — 1091
256Rf —9.71 — 8.48
8Rf —9.35 — 7.06
260Rf —92 — 6.35
202Rf —17.18 — 6.36
25859 - 10 — 1133
26059 —9.65 —10.17
26259 —932 - 8722
26450 — 893 — 7.98
266Sg —7.86 —17.96
264Hg —10.2 — 11.02
210Ds — 8.6 — 9.46
282Cn — 10.6 —9.39
284Cn — 85 —7.98
286R] — 8.08 — 758
log T,
" 2
322 4
1
308 | -0
; 2
294
3
o
< 4
280 )
5
266 -6
8
252
9
-10

Fig. 2 (Color online) Map of nuclei reflecting the logarithmic o-
decay half-lives for the isotopes of elements from Z = 104 to 126.
The Q-values were estimated using AME16 and FRDM95. The
vertical line on the right side of the figure shows an increase in the
log T/, values from the navy-blue region to the brown region

4(1 + ) (20ZR)*" Y (az)?
r2y+1) ’

gx(2) = (28)

@ Springer



130 Page 6 of 17 H. C. Manjunatha et al.

Table 3 Comparison of alpha-decay half-lives from the present study (PS) and those from available experimental (Exp) values

Parent nuclei 0, (MeV) log T' /> (Exp) log Ty, (PS)
261Bh 8.649 1515 1.86
260pb 9.379 - 0.295 0.11
293¢ 8.8 227 2.12
2655g 9.078 0.869 1.15
2035g 9.391 —-0.932 0.12
2%15g 9.803 — 1.469 —1.21
272Bh 9.3 1.025 0.78
271Bh 9.5 0.176 0.18
270Bh 9.3 1.785 1.02
27THs 8.4 —2.523 - 1.02
23Hs 9.9 - 0.119 - 0.32
20945 9.629 0.851 0.65
274Hs 9.5 0.079 0.21
28Mt 9.1 0.653 1.65
276Mt 9.8 —0.284 0.05
274Mt 10.5 - 0357 - 0.98
B1Ds 8.958 1.104 1.45
B2Rg 9.38 2 1.85
280Rg 9.98 0.623 0.55
2Rg 10.45 — 1.046 — 1.04
285Cn 8.793 1.447 2.85
283Cn 9.62 0.623 0.89
281Cn 10.28 — 0.886 - 0.68
284Cn 9.301 1.013 1.78
7Cn 11.622 — 2551 — 2.65
286Nh 9.68 0.978 1.22
285Nh 10.02 0.623 0.76
284Nh 10.25 - 0.013 0.08
283Nh 10.6 — 1.125 —0.98
289R] 9.847 0.279 0.96
28R 9.969 - 0.18 - 0.16
7R 10.436 - 0319 —0.28
286R] 10.7 - 0.921 - 0.87
285F] 11 - 0.824 —1.89
20Mec 10.3 —0.187 0.18
289Mc 10.6 — 0481 - 0.35
Py 8.886 — 1.244 0.12
P2y 10.707 — 1.886 - 0.96
PlLy 11 - 1.721 — 145
WLy 11.7 — 2.848 —2.97
2475 8.963 - 1.292 0.06
240g 8.47 - 3.161 — 245
250g 9.056 — 1.745 0.58
28120 13.355 — 3.051 — 4.68
29120 13.105 —3.15 —1.58
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Fig. 3 (Color online) Predicted 40

cluster-decay logarithmic half-
lives in the atomic number
range Z = 104-126 using
AME16 and FRDM95 mass 304
excess values. The hallow bin
with different color in each
panel shows the cluster
emission corresponding to

.. . 20
minimum half-lives
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12(8)

logT

20

10

200

| BESEESE —
180 -ES== =-ES ===
170 - sS=E======
o = SEse===—=
z === SEE=====c=
R
=
140 _E_ ————F+—+ -EE= =§§§=
130 E=Es==—==
T T T T T T T T I-____
O N S © 0 O N < © 00 O N  © ©
M MO O O O F F F F ° 0 O O v W

Z
(9]

Fig. 4 (Color online) Map of nuclei reflecting the logarithmic cluster-
decay half-lives for neutron number of parent and cluster isotopes of

elements with Z = 104-126
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Fig. 5 (Color online) Heat map showing the variations of lowest
logarithmic half lives of clusters with 104 <Z <126
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Fig. 6 (Color online) Heat map of the variations of logarithmic half-
lives for spontaneous fission for 104 <Z <126

[(2y +2)2 +2)(2y + 1)(20ZR)*" "V (a2)?
L2y + D2y +2)2 +1](2y +2)

g%I(Z) =

§u(2) = (278 (2). (30)

2.3 Spontaneous fission

Spontaneous fission decay is studied by employing the
quantum tunneling effect through the potential barrier. The
decay constant of spontaneous fission is expressed as

i:—:VSPs, (31)
sf

where v, S, and Pg are model-dependent quantities, namely

assault frequency, preformation probability, and barrier

penetrability, respectively. In the above equation, P = SPg

and the spontaneous-fission half-lives are calculated as

T_1n2_hln2 1
w2 E/P’

(32)

where & is the Planck constant, and E, = hv/2 is the zero-
point vibration energy. The penetration probability is
evaluated using the action integral K:

P = exp(~K), (33)
and hence, the decimal logarithm of 7(s) is given by

log,o T = 0.43429K — 20.8436 — log,, E,. (34)

If E,=0.5 MeV, then the above equation becomes

@ Springer
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Fig. 7 (Color online) Chart of spontaneous fission (purple), alpha
decay (brown), f-decay (cyan), and cluster emitters (yellow) with
atomic numbers Z = 104-126. The Q-values were calculated using
the FRDM95 mass tables

Table 4 Identified cluster emitters in the superheavy nuclei region

Parent nuclei 0 (MeV) log T/, Cluster
220g 304.08 — 5.08 80Ky
230g 303.63 —4.63 80Ky
28122 338.25 — 6.02 947r
300122 337.45 —6.21 947r
29123 338.66 —17.18 oy
300124 356.06 - 1735 %Mo
306126 364.27 — 8.78 %Mo
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Table 5 Identified alpha emitters in the superheavy nuclei region

Parent nuclei 0 (MeV) log Ty /2 Parent nuclei 0 (MeV) log Ty /2 Parent nuclei 0 (MeV) log T, ),
26Rf 10.15 0.92 2TDg 10.34 — 251 280y 13.59 —6.78
BIRf 10.05 0.78 YIRg 11.61 - 372 BlLy 13.35 — 6.98
8RS 9.94 —0.16 2BBRg 11.44 — 3.56 2821y 13.13 —5.14
BIRf 9.67 0.35 Rg 11.37 —342 WLy 12.91 —5.78
2600Rf 9.4 — 112 2TTRg 10.88 — 221 4y 12.7 — 3.89
6IRf 9.14 1.56 2PRg 10.44 —1.23 Ly 12.51 —3.99
262Rf 8.92 0.52 80Rg 10.24 0.62 2861y 12.34 —4.25
8D 10.45 0.55 B2Rg 9.89 2.15 BTy 12.19 — 3.98
29Db 10.36 - 035 21 Cn 12.1 — 4.89 2881y 12.06 — 3.56
260Dy 10.08 0.26 212Cn 11.96 — 4.65 20y 11.83 - 1.75
261D 9.81 0.65 213Cn 11.87 — 433 Dy 11.73 —2.36
263pp 9.34 1.52 214Cn 11.8 —4.16 221y 11.64 — 1.88
210Dp 8.45 3.25 215Cn 11.76 — 398 MLy 11.55 —1.23
298¢ 10.84 —0.15 276Cn 11.74 —2.98 219Tg 14.06 —7.36
260gg 10.74 —2.16 277Cn 11.49 —3.15 8ITg 14.02 — 825
615 10.47 — 048 28Cp 11.25 — 247 83Ty 13.56 —5.36
26280 10.2 — 1.86 2Cn 11.03 —2.36 85Ty 13.14 —-5.12
2035g 9.95 0.25 280Cn 10.81 — 1.78 287Tg 12.78 — 4.88
20950 9.16 2.56 Blcy 10.62 —0.99 2897 12.5 — 4.65
2608 11.21 — 142 285Cnp 10 1.56 217g 12.28 — 298
263Bp 10.59 - 1.76 23 Nh 12.4 —5.65 24T 12 — 145
2658 10.12 0.12 2T5Nh 12.24 — 479 Blog 14.44 — 7.65
266Bh 9.94 0.22 21Nh 12.2 —4.78 820g 14.43 —7.63
210Bh 9.56 1.89 27TNh 12.18 —4.52 830g 14.19 — 745
211Bh 9.53 0.18 2Nh 11.7 —2.89 B40g 13.97 —6.25
212Bh 9.27 1.12 2INh 11.26 —2.12 B50g 13.76 — 6.41
214Bh 8.78 1.23 282Nh 11.07 — 1.69 860g 13.56 —6.24
2635 11.27 — 2.56 284Nh 10.73 — 0.16 B70g 13.37 - 525
265Hg 10.77 — 4.56 285Nh 10.59 0.78 880g 13.21 —5.98
266Hg 10.55 — 1.85 286Nh 10.47 0.88 240g 12.53 — 3.88
267Hg 10.37 — 142 287Nh 10.35 0.76 250g 12.44 —1.25
268 10.23 0.69 2I5F] 12.78 — 4.69 25119 14.37 —5.69
269 10.13 1.42 2I6R] 12.72 —5.12 27119 13.96 — 425
2I0Hg 10.05 1.78 217 12.68 —5.36 29119 13.62 - 597
2IHg 10 0.45 2I8E] 12.66 — 546 22119 13.23 —5.28
2I3Hg 9.71 — 0.56 2I9F] 12.42 —4.12 27119 12.78 - 397
275 9.23 —0.15 280F) 12.19 — 4.36 287120 14.56 — 6.58
2661t 11.27 - 1.93 28I 11.96 —3.78 288120 14.37 - 6.25
267\t 11.06 — 252 282F] 11.76 —3.15 290120 14.03 — 6.46
29Mt 10.74 —232 B3R 11.56 —2.99 22120 13.76 — 585
1Mt 10.57 — 1.85 288 10.86 —0.25 298120 132 — 3.87
B3Mt 10.49 —1.23 29 10.75 0.62 29120 13.11 —4.12
2I4Mt 10.23 —0.12 2TTMc 13.19 — 6.85 300120 13.02 — 4.36
I5Mt 9.99 —1.25 28Mc 13.16 — 648 20121 14.59 — 6.28
276\t 9.75 —0.36 29Mc 13.14 — 5.96 26121 13.87 — 548
8MIt 9.33 1.36 280Mc 12.9 - 512 300121 13.53 — 522
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Table 5 continued

Parent nuclei 0 (MeV) log Ty /2 Parent nuclei 0 (MeV) log 712 Parent nuclei 0 (MeV) log 712
268D 11.62 — 3.56 BIMc 12.67 —5.36 303122 13.77 — 498
269Dg 11.45 —3.24 23Mc 12.24 —4.25 304122 13.67 —4.99
210pg 11.31 — 3.68 25Mc 11.88 —3.12 304123 14.18 - 512
21pg 11.21 — 0.58 288Mc 11.47 —0.89 306124 14.49 — 5.66
12D 11.14 —3.09 29Mc 11.36 —0.52 308124 14.28 —5.98
213Dg 11.1 —2.96 290Mec 11.26 - 025 310124 14.05 — 5.87
214Dg 11.07 — 245 28]y 13.64 - 6.75

275D 10.81 —2.12 PLy 13.61 —6.12

log,o T = —log;, P — 20.5426. The action integral K is
evaluated as follows:

K= @ / " (BER) - 0)) R (35)

The term E(R) is the macroscopic energy in terms of the
surface, volume, Coulomb, proximity energy, shell cor-
rection, and pairing energy term [62], and m is the rest
mass of the neutron. A few superheavies are spherical, the
rest are deformed, primarily prolate or oblate. To include
this effect, deformations are also involved in the calcula-
tion of E(r), which is adopted from Ref. [62]. In the above
equation, R is the separation distance between the center of
the fission fragments, and R, and R; are the turning points,
which are evaluated using the boundary conditions E(R,)
and E(R,) = Q. However, the term B(r) is the inertia with
respect to r and is evaluated using the semi-empirical
model for inertia [63]:

B(r) = #(1 T kexp [— % (r — Repp /Ro)} ) , (36)

where p and k are the reduced mass of the fission fragments
and a semi-empirical constant (k = 14.8), respectively.
Rsph is the distance between the center of mass of the

fission fragments, set as Rsph /Ro = 0.75 in the symmetric

case. The decay constant (1) and the total fission decay
constant are evaluated as described in Ref. [62].

2.4 Results and discussion

The mass excess values play a major role in the pre-
diction of the decay mode and the corresponding half-lives.
The predicted half-lives are sensitive to the Q-values, and
small changes in the Q-values result in a notable change in
the half-lives, with a magnitude of order 10' to 10% [36].
Mass excess tables such as WS4 [64], EBW [65], HFB28
and HFB29 [66], DZ10 [67], KTUY [68], finite-range
droplet model (FRDM) [69], and AME16 [70] are available

@ Springer

Table 6 Identified ' emitters in the superheavy nuclei region

Parent nuclei 0 (MeV) log T >
264Db 2.24 — 0.04
268Bh 293 —0.83
20F] 0.79 1.28
286Mc 4.53 — 3.68
227y 4.96 —4.12
20119 7.20 - 6.27
29119 5.75 — 5.01
22121 8.29 —17.56
24121 8.06 - 17.15
28121 6.83 —6.32
302121 5.12 — 5.49
28123 8.42 — 8.04
300123 8.27 — 7.64
302123 6.72 —7.23
306123 5.73 — 642
304125 7.81 — 855
306125 7.61 —8.15
308125 6.99 - 1775
310125 6.47 - 1735
312125 5.79 — 6.96

in the literature. In the present study, we used the updated
AME16 [70] mass excess values up to Z = 118, and above
Z > 118, the mass excess values are taken from the FRDM
[69]. The dominant decay mode is identified by studying
the competition between different decay modes: «-decay,
p-decay, cluster decay, and spontaneous fission in the
superheavy nuclei region 104 <Z < 126.

A detailed literature review indicates that there is no
experimental evidence for cluster radioactivity in the
superheavy region. Furthermore, experimental studies of
cluster decay in the actinide region are available. To vali-
date the present study, the cluster-decay half-lives obtained
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Fig. 8 (Color online) Heat map showing the variations of atomic
number, mass number of parent and logarithmic half-lives of different
decay modes (life times) for 104 <Z <126

in the present study in the actinide region were compared
with the experiments, and good agreement was observed.
With this confidence, we studied cluster decay in the
superheavy region, and the results are presented in Table 1.
Similarly, Table 2 shows a comparison of the studied
logarithmic half-lives (in years) of spontaneous fission
from the present study with those from available experi-
ments. It can be seen that the cluster-decay and sponta-
neous-fission half-lives obtained in the present study are
close to those of the experiments.

As a part of this investigation, we studied the o-decay
properties of superheavy nuclei using the formalism
explained in the theory section. The predicted alpha-decay
half-lives were validated by comparison with those from
available experiments in the superheavy region. The results
are given in Table 3.

From the comparison, it is observed that the predicted
half-lives are in good agreement with those of the experi-
ments. With this confidence, we obtained the alpha-decay
half-lives of superheavy nuclei in the region 104 <Z <126
Fig. 2.

shows a wide range of o-decay half-lives. For a given
superheavy nucleus, the alpha decay half-lives increase as
the neutron number of its isotopes increases. For instance,
the a-decay half-lives are of the order of nanoseconds at
N/Z = 1.307692 for Rutherfordium, whereas for the same
superheavy element, the «-decay half-lives are of the order
of 10%s at N /Z = 1.504762. Similarly, all neutron-rich
superheavy nuclei have comparably longer o-decay half-
lives, which is in agreement with the report available in
Ref. [73]. The obtained a-decay half-lives of all possible
superheavy nuclei are presented in the heat map in Fig. 2.

The right vertical bar shows the magnitude of the log T
values. The color variation from navy blue to wine indi-
cates values in the range 107'°-10% s. The contrast in the
blue region lies between 107! s and 1077 s, in the green
region, it lies in the range 107°-10~* s, and the range
107* — 1073 s is presented in the yellow region. Finally,
the red-to-wine region shows higher half-lives in the range
1072 — 10? s. The inset of Fig. 2 on the top left side pro-
vides information on the magnified portion of a-decay half-
lives in the superheavy region Z = 104 — 114, whereas the
bottom-right inset provides information on the magnified
portion of the superheavy region Z = 115 — 126. After the
detailed investigation of the «-decay, a search was made to
identify the cluster emitters in the superheavy region.
Cluster radioactivity is energetically favorable if the Q-
values are positive. We studied the possibility of cluster
decay with 3<Z:<45 in the superheavy region
104 <Z < 126. For a given parent nucleus, the half-lives
corresponding to various cluster emission were evaluated,
and the cluster corresponding to shorter half-lives was
identified. Furthermore, the cluster emitters corresponding
to shorter half-lives for different isotopes of a given
superheavy element were also identified. Eventually,
cluster emissions corresponding to the shortest half-lives
Tc were identified; these are referred to as cluster-decay
half-lives (T¢). The predicted cluster decay half-lives in the
atomic number region 104 <Z <126 correspond to all the
studied cluster emissions, as shown in Fig. 3.

This figure enables us to identify the cluster emission
corresponding to the shorter half-lives of a given super-
heavy element. The half-lives of superheavy nuclei with
Z = 115-120 against cluster radioactivity are shorter for
86Kr than those of the other studied clusters. The super-
heavy nuclei with Z = 104, 106, 108, 110, 112, 114, 124,
and 126 have shorter half-lives against *°Mo cluster
emissions than those of the other studied clusters. The
decay half-lives are shorter for the °'Y emission from
superheavy nuclei with Z = 109, 111, 113, 121, and 123.
Similarly, the half-lives of superheavy nuclei with Z = 105
and 107 against cluster radioactivity are shorter for *’Tc
and !'9'Rh than those of the other studied clusters.

Cluster radioactivity in the superheavy nuclei region has
shorter half-lives for cluster neutron numbers 44-48 from
parent nuclei with neutron numbers 130-200, as shown in
Fig. 4.

The range of cluster decay half-lives for superheavy
elements with 104 <Z <126 is shown in Fig. 5.

Shorter half-lives are observed for N/Z > 1.37068, and
larger half-lives are observed for N/Z <1.37068. From the
figure, it is clear that up to superheavy nuclei
104 <Z < 115, larger cluster-decay half-lives are observed,
whereas shorter cluster-decay half-lives are observed in the
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superheavy region 116 <Z <126. The inset of Fig. 5 on
the top-left side shows a magnified portion of the loga-
rithmic half-lives (7¢) in the superheavy region
104 < Z <115, whereas the inset at the right bottom shows
a magnified portion of the shorter logarithmic half-lives
(Tc) in the superheavy region 116 <Z <126. This fig-
ure also shows that some of the superheavy nuclei have
lifetimes of the order of ns to us and exhibit cluster decay.

The other prominent decay mode that was studied is
spontaneous fission, which is also energetically feasible in
heavy and superheavy nuclei. It may occur in such nuclei
owing to an increase in the Coulomb interactions. Refer-
ences [10, 11, 38, 74-77] report consistent ¢-decay chains
from superheavy nuclei followed by spontaneous fission.
The spontaneous fission half-lives are studied using the
theory explained in Sect. 2.3. The variations of sponta-
neous fission half-lives in the superheavy region Z = 104—
126 are shown in Fig. 6.

The log Tq values vary between —50(dark blue region)
and 50 (dark-red region). For instance, at atomic number
Z = 104, for isotopes 245-275, the logT)/;(SF) values
ranging from —50 to 5 are shown, whereas the half-lives
with smaller values are indicated by the color range from
navy blue to blue. The half-lives ranging from nanoseconds
to 10° s are indicated by the color range from yellow to
light orange. Similarly, in the atomic number range Z =
119 and above, larger values of spontaneous-fission loga-
rithmic half-lives are indicated by the red color range.
Thus, on either side of Fig. 6, for isotopes corresponding to
the atomic number range Z = 104—126, smaller half-lives
are observed, whereas in the middle region of the figure,
larger values of log T/, are observed up to Z =116. In
contrast, smaller half-lives are observed for higher isotopes
(Z > 116), and larger log T/, for lower isotopes (Z <116).
A similar trend was also observed in a previous study [78],
in which the half-lives of nuclei Z = 92-104 were com-
pared with experimentally available values.

A detailed investigation of the Q-values corresponding
to f-decay in the superheavy region demonstrates that -
decay is energetically possible with Z = 105, 107, 113,
114, 115, 117, 119, 121, 123, 125, and 126, whereas /™ -
decay is not energetically possible. Furthermore, we also
studied f-decay half-lives using the formalism explained in
Sect. 2.2.1.

The competition between different possible decay
modes, namely a-decay, cluster-decay, fi-decay and spon-
taneous fission, enables us to identify the dominant decay
mode for superheavy elements in the atomic number region
104 <Z <126 of all possible isotopes Fig. 7.

shows the decay modes of the superheavy nuclei. In the
studied superheavy region, we identified around 20
BT emitters, which are presented in Table 6. We also
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identified 35 cluster emitters, which are presented in
Table 4.

It was demonstrated that the majority of superheavy
nuclei undergo a-decay and spontaneous fission. The o-
emitting superheavy nuclei are listed in Table 5.

The identified alpha emitters have half-lives of
approximately us to 100 s in the superheavy region
104 <Z < 126. Table 4 lists the identified cluster emissions
with the corresponding half-lives. The amount of energy
released during cluster emission, cluster emitted, and
log Ty, values are presented in the table. The minimum
cluster decay half-lives correspond to 86Ky, 97r, °1Y, and
%Mo for the nuclei 292’293Og, 29830019p 299123, 300124,
and 390126, respectively. From the available literature, it is
also evident that the heavy particle radioactivity of 80Kr is
observed in the superheavy nucleus Z = 118 [36, 79]. In
addition, Rb, Sr, Y, Zr, Nb, and Mo cluster emissions [80]
were observed for Z = 119-124, respectively. As in pre-
vious studies, in the present study, shorter half-lives in the
superheavy region Z = 118, 122-124, and 126 were
observed, with 8Kr, *Zr, °1Y, and °Mo cluster emissions,
respectively. Similarly, approximately 20 possible f*
emitters were identified in the superheavy region
105 <Z <125, and they are presented in Table 6.

The information provided Table 7 regarding the half-
lives and branching ratios presents ambiguities in terms of
determining a single decay mode. The branching ratios
relative to the minimum half-lives among the studied decay
modes are obtained, and the second column of the
table shows the log T}/, values corresponding to sponta-
neous-fission, a-decay, f'-decay, and cluster-decay half-
lives. For instance, the superheavy nucleus 2®3Rf exhibits
shorter log T/, values for spontaneous fission and BT -de-
cay than for other decay modes. The branching ratio of
spontaneous fission and f-decay was obtained, and it was
found that the branching ratio corresponding to sponta-
neous fission and B was 55% and 45%, respectively.
Similarly, we identified the branching ratios for the
superheavy region 104 <Z <126, which are presented in
Table 7.

Finally, Fig. 8 shows the lifetimes of the superheavy
elements after the competition between different decay
modes was studied.

It can be seen that the lifetime varies from ns to min and
decreases as the atomic number increases. For instance, the
average lifetime of a superheavy element with Z = 104 is
approximately 10 min, whereas that of a hypothetical
superheavy element with Z = 126 is of the order of ms.
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3 Conclusion

We systematically investigated all possible decay
modes, namely a-decay, f-decay, cluster decay, and
spontaneous  fission, in the superheavy region
104 <Z < 126. The findings of this study were validated by
comparison with experiments. Approximately 20 8% and 7
heavy particle emitters were found in the superheavy
region. Furthermore, the nuclei with almost the same half-
lives for the two decay modes were also reported, with the
corresponding branching ratios. However, an experimental
study is necessary to draw definite conclusions.
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