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Abstract A global variance reduction (GVR) method

based on the SPN method is proposed. First, the global

multi-group cross-sections are obtained by Monte Carlo

(MC) global homogenization. Then, the SP3 equation is

solved to obtain the global flux distribution. Finally, the

global weight windows are approximated by the global flux

distribution, and the GVR simulation is performed. This

GVR method is implemented as an automatic process in

the RMC code. The SP3-coupled GVR method was tested

on a modified version of C5G7 benchmark with a thick-

ened water shield. The results show that the SP3-coupled

GVR method can improve the efficiency of MC criticality

calculation.

Keywords RMC code � Global homogenization � Variance
reduction � SPN theory

1 Introduction

The reactor criticality calculation is an essential step in

the physical design of a nuclear reactor. The reactor burnup

and neutronic/thermal (N–TH) coupling calculations [1]

are based on the reactor criticality calculation. If the

accuracy of criticality calculation cannot be guaranteed, the

accuracy of the reactor burnup and N–TH coupling cal-

culations will also not be guaranteed. The Monte Carlo

(MC) method is widely used in reactor criticality calcula-

tions because of its high fidelity. However, a non-uniform

distribution of relative errors has been found in MC criti-

cality calculations. This non-uniform distribution of rela-

tive errors has a negative influence on the efficiency and

accuracy of some local tallies. In some cases, it even causes

numerical instability in MC multi-physics simulation [2]

and MC kinetic calculation [3]. To improve the efficiency

and accuracy of MC criticality calculations and ensure the

numerical stability of MC multi-physics simulations,

the global variance reduction (GVR) methods should be

studied.

There are many variance reduction (VR) methods, such

as Zheng’s method [4, 5], the adaptive method [6], the FW-

CADIS method [7], the automated weight windows method

[8], and the importance function method [9]. These meth-

ods are well-known for their value in VR applications.

However, these methods were initially developed for MC

fixed-source calculations and not for MC criticality calcu-

lations. Some VR methods have also been developed for

MC criticality calculations. They include the UFS [10],

UTD [11], and UVM [12] methods. These methods are

easily implemented and have good universality. However,

the UFS method assumes that the fission neutrons are

uniformly distributed in the regions with fuel and have

little influence on the non-fuel regions. Moreover, only the

source bias technique and not the weight window technique

is adopted in the UFS method. This limits its value for

GVR. The UTD method can reduce the variance of various

statistics, but because its basic principle is still the same as
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that of the UFS method, it faces the same limitations. The

UVM method is newly proposed and can improve the

efficiency of MC criticality calculation and flatten the

global variance. However, the development of this method

is still in the initial stage and needs to be further studied.

A SP3-coupled GVR method is proposed here to

improve the accuracy and efficiency of MC criticality

calculation. The SP3-coupled method can be used for GVR

in MC criticality calculation and allows the analysis of the

reactor from its interior to its exterior through a single MC

criticality calculation.

The SP3 method is a numerical method for solving the

neutron transport equation with a simplified treatment of

spatial anisotropy and has been widely studied [13, 14].

The traditional SP3 method starts from a one-dimensional

model. The one-dimensional governing equation is first

found and the one-dimensional operator is subsequently

replaced with a three-dimensional operator to obtain the

three-dimensional governing equation. Compared with

the traditional transport theory, the spatial anisotropy is

simplified in the SP3 method to achieve higher calculation

efficiency. Compared with the traditional diffusion theory,

the SP3 method provides a better treatment of spatial ani-

sotropy to achieve higher calculation accuracy. Therefore,

the SP3 method balances accuracy and efficiency and has

great potential for coupling with the MC method to achieve

accelerated calculations and GVR.

In this paper, a hybrid MC method based on the SP3

theory is studied and a GVR method driven by the SP3

theory is developed for the RMC code [15]. Unlike other

hybrid MC methods, such as the fission matrix [16] and

response matrix [17] methods, the neutron transport equa-

tion is solved instead of a matrix relationship. The

remainder of this paper is organized as follows: Sect. 2

introduces the theory and provides the related formulas and

details. Section 3 presents the numerical results with some

basic analysis. A discussion is given in Sect. 4 before the

conclusion.

2 Methods

The SP3-coupled GVR method is implemented as an

automatic process in RMC code. This implies that only the

input card of the RMC code is required, and the GVR

calculation will subsequently be automatically completed

by RMC code. The flowchart for the calculation is shown

in Fig. 1. The calculation consists of three main steps:

(1) The global cross-sections are determined by MC

global homogenization.

(2) The SP3 equation is solved to obtain the global flux

distribution.

(3) The global weight windows are determined by the

global flux.

Each of the three steps is described in the following

subsections.

2.1 MC global homogenization

The SP3-coupled GVR method is a hybrid MC method

in which the MC method is coupled with the SP3 method.

A deterministic reactor code [18] for solving the SP3

equation, NLSP3, is developed. In contrast to the discrete

ordinate method (SN), global multi-group cross-sections

(MGCS) are required to solve the SP3 equation. Therefore,

the MGCS must first be determined. MC global homoge-

nization was adopted to determine the MGCS for the fol-

lowing reasons:

(1) Because a continuous-energy nuclear library is used,

no resonance effect treatment [19] is required.

(2) Because the homogenization process is not based on

an assembly model, no leakage correction [20] is

required.

(3) Because the geometric model is not approximated, a

higher accuracy can be achieved compared with

the traditional assembly homogenization.

(4) Because the global homogenization is based on the

entire reactor, the cross-sections of all the material

regions can be determined through a single

calculation.

In particular, Point (4) implies that MC global homog-

enization is suitable for an automated process. Because the

MGCS have a significant influence on the global flux dis-

tribution, a high accuracy of the MGCS must be ensured.

Fig. 1 Flowchart of the SP3-coupled GVR method
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Meanwhile, because the cross-sections in all the material

regions are determined simultaneously, a non-uniform

distribution of relative errors will lead to different cross-

section precisions in different material regions. To improve

the accuracy of cross-sections and ensure that the cross-

sections in all material regions have the same precision, the

following measures are taken [21]:

(1) A fixed-source calculation with a flat neutron source

is performed for MC global homogenization. The

spatial distribution of neutrons is positively corre-

lated with the neutron flux distribution if the VR

technique is adopted in the MC simulation. In a large

reactor, the neutron fluxes in different phase spaces

may differ, especially when the reflective and

shielding layers are considered. These differences

result in a variation in the spatial distribution of

neutrons. Therefore, although performing global

homogenization is a reasonable approach in MC

criticality calculation, it is inevitable that the cross-

sections in some regions will have higher precision

compared to other regions.

The spatial distribution of neutrons can be artificially

set in a fixed-source calculation. Suppose a flat

neutron source is provided in the fixed-source

calculation. In this case, all the material regions

have almost the same density of neutron histories,

and the cross-sections obtained will all have

almost the same precision. Therefore, the MC global

homogenization in the fixed-source calculation is

performed with a flat neutron source.

(2) The neutron fission reaction is restricted during

neutron transport. Various reactions such as scatter-

ing, fission, and absorption occur during neutron

transport. The reactor becomes critical when the loss

of a neutron because of the absorption of neutron or

its transportation outside the system is compensated

by the corresponding production of a neutron in a

fission reaction. Typically, a fission reaction pro-

duces two or three neutrons.

In a supercritical system, the loss of one neutron is

accompanied by the production of more than one

neutron. Therefore, if fission neutrons are produced

during the fixed-source calculation, the number of

simulated neutrons will increase, and the calculation

will never be terminated. As stated earlier, global

homogenization is performed during the MC fixed-

source calculation. To ensure the feasibility of the

fixed-source calculation, neutron fission reaction is

restricted during MC global homogenization: The

neutrons only perform random walks in the system,

and no fission reaction occurs. However, various

reaction probabilities are recorded during neutron

transport.

(3) The critical spectrum is approximated using the Watt

fission spectrum. The MC homogenization involves

a process of compressing and grouping the neutron

energy spectrum. The neutron spectrum is essential

in MC global homogenization. However, because the

critical spectrum is unknown before the fixed-source

calculation, it can only be approximated.

As stated before, neutron fission is restricted during

the neutron transport process. This restriction leads

to errors. Therefore, the neutron spectrum can be

artificially adjusted according to the fission spectrum

when the flat neutron source is set during the fixed-

source calculation. It is known that the fission

spectrum of U-235 is described by the Watt spec-

trum [22]. Therefore, the external fission source is

distributed according to the Watt spectrum.

pðEÞ ¼ Ce�E=a sinh
ffiffiffiffiffiffi

bE
p

ð1Þ

where C, a, and b are coefficients that are ordinarily

equal to 0.453 MeV, 0.965 MeV, and 2.29 MeV-1,

respectively.

It should be noted that although the Watt spectrum

may not be a good one for the external source and is

not universal for different fission nuclides, it is the

best approximation that we can come up with now.

(4) Corrections are adopted to make the neutron spec-

trum asymptotic to the criticality spectrum. The

main consideration in the Watt fission spectrum are

the fission reactions that occur during the neutron

transport process. The Watt fission spectrum is a

good approximation in the reactor core region where

many fission reactions occur. However, in regions

without fissile materials, the neutron spectrum is

mainly influenced by scattering reactions, and the

error will be larger when the Watt spectrum is used

to approximate the critical spectrum. Therefore,

there should be as many scattering reactions as

possible before the neutrons are lost. After many

collisions, the neutron energy spectrum in the

reflective and shielding layers become close to the

real spectrum. To make the neutron spectrum

asymptotically approach the critical spectrum, the

cutoff weight limit is reduced when more scattering

reactions occur. In the SP3-coupled GVR method in

this study, the weight cutoff threshold was set to

1.0E-8, which is the default value in the RMC code

for the VR simulation. In the nonanalog MC method,

the scattering reactions are effectively increased by

reducing the cutoff weight windows. After multiple

collisions in the reflective and shielding layers, the
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energy spectrum of the neutrons becomes close to

the critical spectrum. However, at this stage, the

weight of the neutrons is small. The neutrons

therefore have little influence on the tallied results.

To increase the influence of neutrons after multiple

collisions on the cross-sections, the reaction rate is

recorded based on the number of reactions rather

than the weight of neutrons.

We calculated the MGCS using a fixed-source calcula-

tion, which is an approximation. Thus, the MGCS obtained

inherently has errors, which implies that the efficiency is

improved at the cost of calculation accuracy. The SP3

solution only provides the parameters for VR, and the final

result is given by MC criticality calculation. Thus, even if

the accuracy of MGCS is compromised, the error in the

MGCS does not greatly affect the accuracy of the final

result. This is one of the reasons why we adopt an

approximate method to solve for the MGCS.

The SP3 equation is solved to obtain the global flux

distribution. The total grouped cross-sections Rt;g, grouped

absorption cross-sections Ra;g, grouped fission production

cross-sections mRf;g, inter-group scattering matrix Rs;g0!g,

and fission spectrum vg need to be input to the NLSP3

code. Therefore, only these five grouped cross-sections are

calculated in the MC global homogenization. It should be

stated that it is not easy to obtain the anisotropic cross-

sections during the MC global homogenization. To reduce

the computational cost, only isotropic cross-sections are

considered.

The grouped flux distribution and grouped reaction rates

are tallied to calculate the grouped cross-sections. The

traditional volume-weighted method is employed in which

the MGCS is defined as

R
i

x;g �
R

Vi
Rx;g/gðrÞdV

R

Vi
/gðrÞdV

x ¼ a; f ; s; . . . g ¼ 1; . . .;G; ð2Þ

where r is a spatial variable, /gðrÞ is the global flux dis-

tribution, and the subscript i in Vi labels the different

spatial regions.

The track length is used to tally the flux distribution and

reaction rates. The flux is calculated as

/g ¼
R Eg�1

Eg
dE

R

V dV
PN

i¼1 W � TLi
VðEÞ

V
PN

i¼1 Wi
0

; ð3Þ

and the reaction rate as

Rg ¼ Rg/g ¼
R Eg�1

Eg
dE

R

V dV
PN

i¼1 W � TLi
VðEÞ � Rðr;EÞ

V
PN

i¼1 Wi
0

:

ð4Þ

The homogenized cross-section is therefore

Rg ¼
R Eg�1

Eg
dE

R

V dV
PN

i¼1 W � TLi
VðEÞ � Rðr;EÞ

R Eg�1

Eg
dE

R

V dV
PN

i¼1 W � TLi
VðEÞ

; ð5Þ

where Eg and Eg-1 are the lower and upper bounds of the

gth energy interval, respectively; W � TLi
V is the product of

the weight and track length of the ith neutron in region V;

and N is the total number of simulated neutrons.

The calculation of fission energy spectrum is relatively

simple. The fission energy spectrum is calculated with

reference to the number of fission neutrons produced in

each energy group. The number of fission neutrons pro-

duced is then normalized to obtain the energy-dependent

probability of neutron production in the energy interval E.

The fission energy spectrum is equal to the energy-de-

pendent probability of neutron production, that is,

vðEÞ ¼ pðEÞ; ð6Þ

where pðEÞ is the energy-dependent probability of neutron

production.

The process of calculating the scattering matrix is the

same as that for calculating the fission energy spectrum.

The neutron energies before and after scattering are tallied

to calculate the scattering probability:

Pg!g0 ¼
R Eg0�1

Eg0
dE0 R Eg�1

Eg
dE

R

V /ðr;EÞRsðr;E ! E0ÞdV
R Eg�1

Eg
dE

R

V /ðr;EÞRsðr;EÞdV
:

ð7Þ

Using the scattering probability, the inter-group transfer

cross-section is calculated as

Rs;g!g0 ¼ Pg!g0 � Rs;g: ð8Þ

The MGCS is calculated using Eqs. (3)–(8) during the

MC global homogenization. The MGCS of all material

regions required by the NLSP3 code can thus be deter-

mined simultaneously in a single fixed-source calculation

for subsequent use in the SP3 global calculation.

2.2 Solution of the SP3 equation

The SP3 equation is solved to obtain the global flux

distribution. The SP3 equation is adopted because of the

following reasons:

(1) Compared with the diffusion and CMFD equations,

the SP3 equation has higher accuracy [23].

(2) Solving the SP3 equation takes approximately the

same amount of time as solving the diffusion

equation [24].

(3) The SP3 equation is easier to be applied to larger

systems because it requires less memory and com-

puting time compared to the SN equation.
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(4) To date, there has been no research on coupling the

SP3 theory and the MC method for GVR. For

academic interest, we would like to make an attempt

to investigate this topic.

The SPN theory [13, 14] is a simplified spherical har-

monics method for solving the neutron transport equation.

It is widely studied because it has great potential for next-

generation reactor physics calculations. There are two

variants of the SPN theory, namely, the traditional and the

rigorous SPN theories. In the traditional SPN theory, the

one-dimensional governing equation is first found from a

one-dimensional model, and the one-dimensional operator

is subsequently replaced with a three-dimensional operator

to obtain the three-dimensional governing equation. The

traditional SPN theory lacks a rigorous mathematical basis.

The rigorous SPN theory is derived based on the varia-

tional method and the concept of grouped angular flux. The

angular flux is clearly defined in the rigorous SPN theory

so that the physical fundamentals are completely consid-

ered in the treatment of boundary conditions. These two

SPN theories share the same SPN equation but use dif-

ferent boundary conditions.

Although a complete mathematical derivation is pro-

vided in the rigorous SPN, the solution of the rigorous SPN

equation suffers from numerical instability because of its

incompatibility with the traditional transverse integral

technique [25]. The traditional SPN equation is therefore

solved in the SP3-coupled GVR method. The ‘‘N’’ in

‘‘SPN’’ represents the order of the polynomial expansion.

When N is equal to 3, the SP3 equations are obtained as:

�Dk
0;gr2 /k

0;gðrÞ þ Rk
r0;g /

k
0;gðrÞ � 2Rk

r0;g /
k
2;gðrÞ ¼ Sk

0;gðrÞ;
ð9aÞ

�Dk
2;gr2 /k

2;gðrÞ þ Rk
r2;g /

k
0;gðrÞ �

2

5
Rk

r0;g /
k
0;gðrÞ

¼ � 2

5
Sk
0;gðrÞ; ð9bÞ

where the superscript k is the nodal index, the subscript g is

the energy interval index, /k
0;g is the zeroth-order scalar

flux at the kth node in the gth energy interval, /k
2;g is the

second-order scalar flux at the kth node in the gth energy

interval, and

Dk
0;g ¼ 1

3Rk
t;g

; ð10aÞ

Dk
2;g ¼ 9

35Rk
t;g

; ð10bÞ

Rk
r0;g ¼ Rk

t;g � Rk
s;gg0 ; ð10cÞ

Rk
r2;g ¼ 9

5
Rk
t;g �

4

5
Rk
s;gg0 : ð10dÞ

The source is

Sk
0;gðrÞ ¼ R

G

g0¼1
g0 6¼g

Rk
0;g0g½/

k
0;gðrÞ � 2/k

2;gðrÞ�

þ 1

Keff
vk

g R
G

g0¼1
mRk

f;g0 ½/
k
0;g0 ðrÞ � 2/k

2;g0 ðrÞ�: ð11Þ

The boundary conditions [26] for the traditional SP3

equation are

J�
0 ðrÞ ¼

1

4
/M
0 ðrÞ �

1

2
n
* � JM

0 ðrÞ �
3

16
/M
2 ðrÞ; ð12aÞ

J�
2 ðrÞ ¼

21

80
/M
2 ðrÞ �

1

2
n
* � JM

2 ðrÞ �
3

80
/M
0 ðrÞ; ð12bÞ

where the superscript M represents the quantities at the

node boundary, and J�
0 and J�

2 are the zeroth-order and

second-order partial currents, respectively.

The numerical instability problem was encountered

when the SP3 equation was solved using the traditional

nonlinear iterative method [27]. The zeroth-order flux is

usually hundreds of times larger than the second-order flux.

When the traditional coupling corrective relationship was

used to calculate the corrective factors, there was also a

100-fold difference between the zeroth-order and second-

order corrective factors, which led to an ill-conditioned

iteration matrix and convergence failure. The following

new coupling corrective relationship is proposed to solve

the numerical instability problem:

Jk
0;guþ ¼�Dk;FDM

1;guþ ðf kþ1
0;gu�/

kþ1

0;g � f k
0;guþ/

k

0;gÞ � Dk;NOD
1;guþ ðf kþ1

0;gu�/
kþ1

0;g þ f k
0;guþ/

k

0;gÞ

�Dk;FDM
3;guþ ðf kþ1

2;gu�/
kþ1

2;g � f k
2;guþ/

k

2;gÞ � Dk;NOD
3;guþ ðf kþ1

2;gu�/
kþ1

2;g þ f k
2;guþ/

k

2;gÞ

ð13aÞ

Jk
2;guþ ¼�Dk;FDM

2;guþ ðf kþ1
2;gu�/

kþ1

2;g � f k
2;guþ/

k

2;gÞ � Dk;NOD
2;guþ ðf kþ1

2;gu�/
kþ1

2;g þ f k
2;guþ/

k

2;gÞ

�Dk;FDM
4;guþ ðf kþ1

0;gu�/
kþ1

0;g � f k
0;guþ/

k

0;gÞ � Dk;NOD
4;guþ ðf kþ1

0;gu�/
kþ1

0;g þ f k
0;guþ/

k

0;gÞ

ð13bÞ

where Dk;FDM
2;guþ and Dk;FDM

2;guþ are the zeroth-order and second-

order pseudo-diffusion coefficients, respectively; Dk;FDM
2;guþ

and Dk;FDM
2;guþ are the zeroth-order and second-order coupling

corrective coefficients, respectively; and f kþ1
0;gu� and f kþ1

0;gu�
are the zeroth-order and second-order discontinuity factors,

respectively.

A new nonlinear iterative method [25] was proposed

based on the above mentioned coupling corrective rela-

tionship, and the NLSP3 reactor core code was developed.

Figure 2 illustrates the nonlinear iterative strategy. Using

the NLSP3 code and global cross-sections, the global flux

distribution can be obtained easily.
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2.3 GVR for MC criticality calculation

The MC criticality calculation is composed of several

inactive and active cycles. Each cycle is a fixed-source

calculation with a cycle-estimated result. All the active

cycles are averaged as follows to obtain the final result of

MC criticality calculation:

X ¼
PN

n¼1 Yn

N
; ð14Þ

where the subscript n denotes the cycle index, X the final

result of MC criticality calculation, N the total number of

active cycles, and Yn the cycle-estimated result of the nth

active cycle. Yn is given by

Yn ¼
PM

i¼1 Yi
n

M
; ð15Þ

where Yi
n is the ith neutron history of the nth active cycle,

and M is the number of fission sources in a single cycle.

The standard deviation of the final result is calculated

from the deviation between the individual active cycles:

SX ¼
ffiffiffiffiffi

S2

N

r

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 � X
2

N � 1

s

; ð16Þ

where

X2 ¼
PN

n¼1 Yn
2

N
: ð17Þ

Therefore, the standard deviation increases with the

deviation between the individual active cycles. The devi-

ation between the individual active cycles should therefore

be reduced to reduce the standard deviation of MC criti-

cality calculation. As stated before, a fixed-source calcu-

lation is performed for each cycle, and the deviation

between the individual cycles is reduced by various VR

techniques.

Suppose that all the active cycles are performed with the

same weight windows. The individual cycle-estimated

results will then be close to another. This leads to a

reduction in the standard deviation. Therefore, the key to

improve MC criticality calculation is to obtain high-pre-

cision weight window parameters efficiently.

In the SP3-coupled GVR method, only the forward SP3

calculation is performed. Because there is no known

adjoint theory of the SP3 method, we cannot obtain the

adjoint flux for the time being. We have therefore focused

on GVR for the criticality calculations in the meantime.

We believe that the forward flux distribution is sufficient

for determining the weight window parameters. Therefore,

we use the forward flux distribution to approximate the

weight window parameters.

The global flux distribution determined by the SP3

equation is denoted as /k
g, where the superscript k denotes

the spatial region and the subscript g denotes the energy

interval. The SP3-coupled method can only bias the spatial

position of neutrons. Therefore, the independent energy

variable should be eliminated by accumulating the energy-

dependent flux in the spatial region:

/k ¼
X

G

g¼1

/k
g; ð18Þ

where /k is the space-dependent flux distribution, which is

normalized before it is used to approximate the global

weight windows, and

/k ¼ /k=maxð/kÞ; ð19Þ

where maxð/kÞ is the largest space-dependent flux. Using

the normalized global flux distribution, the global weight

windows are determined as

Ws;k ¼ /k; ð20Þ

where Ws,k is the global space-dependent survival weight

window in the kth space region. Using Eq. (20), the weight

windows of all spatial regions can be determined, follow-

ing which the ceiling and floor weight windows can be

determined using the following formulas:

Wc;k ¼
5Ws;k

3
; ð21Þ

and

Wf;k ¼
Ws;k

3
: ð22Þ

where Wc,k and Wf,k are the ceiling and floor weight win-

dows in the kth space region, respectively. The standard

weight window technique with the weight windows of all

spatial regions is then used for GVR.

Fig. 2 Nonlinear iterative strategy of the NLSP3 code
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3 Numerical results

The SP3-coupled GVR method was tested on the C5G7

benchmark [28]. In the original C5G7 model, GVR can be

easily achieved because the water shield layer is not suf-

ficiently thick to pose a deep penetration problem. To

better demonstrate the advantages of the SP3-coupled

method for GVR, we artificially increased the thickness of

the shield layer. The materials and geometry of the reactor

core were derived from the C5G7 benchmark, and the core

region was surrounded by a water shield layer, which was

64.362 cm thick and three times thicker than the side of the

core assembly side as shown in Fig. 3.

The superimposed mesh geometry was used for the SP3-

coupled GVR simulation. The C5G7 reactor core had a

4 9 4 assembly layout and the assemblies was surrounded

by a water shield that was three times thicker as the

assembly. The model was divided into a total of

10 9 10 = 100 material meshes in the modified C5G7

benchmark. The MGCS of the 100 meshes were deter-

mined through the MC global homogenization over the

four energy intervals of [0, 6.25 9 10–7], [6.25 9 10–7,

5.53 9 10–3], [5.53 9 10–3, 8.21 9 10–1], [8.21 9 10–1,

[20] MeV [29].

A fixed-source calculation was performed for the MC

global homogenization. The choice of the number of source

neutrons per material mesh is a challenging issue. A larger

number of source neutrons for the fixed-source calculation

will increase the precision of obtained cross-sections but

will also require more computation. To achieve a balance

between efficiency and accuracy, the number of source

neutrons per material mesh was chosen as 10,000 based on

our experience.

Therefore, a total of 1,000,000 source neutrons were

simulated for the MC global homogenization. The SP3

solution only provided weight windows, and the final result

was given by MC criticality calculation. Thus, even if there

was an error in the MGCS, the accuracy of final result was

not affected greatly. This is why the number of source

neutrons per material mesh was empirically determined for

solving the MGCS.

The RMC code called the SP3 solver for global calcu-

lation with the cross-sections of the 10 9 10 material

meshes. Each material mesh was divided into a total of

4 9 4 = 16 nodes with each node being 5 cm 9 5 cm in

size. Therefore, a total of 40 9 40 = 1600 nodes were used

to solve the SP3 equation. After solving the SP3 equation,

the flux distribution in the 1600 nodes was obtained. The

three convergence criteria for the inner, outer, and keff
iterations in the NLSP3 code were set to 10–3, 10–3, and

10–4, respectively. The calculations were performed with

24 threads, and the calculation time taken for MC global

homogenization and SP3 solver was 1.14 mins.

Given the global flux distribution, the global weight

windows can be determined using Eqs. (20)–(22). The MC

criticality calculation was then performed using the global

weight windows. There were 10,000 neutrons per cycle, 50

inactive cycles, and 450 active cycles in the SP3-coupled

GVR criticality calculation. 15.67 mins were required to

complete the MC global homogenization, SP3 solver

solution, and GVR criticality calculation.

For comparison, the standard MC simulation method

was also performed to calculate the flux distribution of the

1600 nodes. Because GVR was not performed in the

standard simulation method, we call this the direct simu-

lation. There were 1000,000 neutrons per cycle, 50 inactive

cycles, and 450 active cycles in the direct simulation. The

calculation time was 151.80 mins. The distributions of

relative errors in the SP3-coupled GVR and the direct

simulations are compared in Fig. 4. The distributions of

total flux in the SP3-coupled GVR and the direct simula-

tions are compared in Fig. 5.

As shown in Fig. 5, the distributions of total flux

obtained by the direct and the SP3-coupled GVR simula-

tions are in good agreement. The deviation was calculated

to be less than three times the standard deviation. Mean-

while, it can be seen from Fig. 4 that when the modified

C5G7 benchmark was simulated directly, the relative errors

increased with the distance away from the reactor core.

Compared with the direct simulation, the global variance

distribution in the SP3-coupled GVR simulation was flat-

tened in the entire system. High accuracy was achieved in

both the reactor core and the shielding layer. Therefore, the

Fig. 3 (Color online) Modified C5G7 benchmark
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SP3-coupled GVR method can improve the efficiency of

MC criticality calculations. To better quantify its GVR

performance, three quantities were compared:

1. The average figure of merit (AV.FOM), which is

defined as

AV.FOM ¼ N

T �
PN

i¼1 Re
2
i

: ð23Þ

2. The standard deviation of the relative deviation, which

is defined as

rRe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N
�
XN

i¼1
Re2i �

1

N2
�

XN

i¼1
Re2i

� �2
r

: ð24Þ

3. The ratio of the maximum to the minimum variances

(rmax/rmin), i.e.,

rmax=rmin ¼
maxðReiÞ
minðReiÞ

: ð25Þ

The quantitative results for the direct and SP3-coupled

GVR simulations are compared in Table 1.

The results show that, compared with the direct simu-

lation, the average figure of merit (AV. FOM) was

improved 33 folds in the SP3-coupled GVR method.

Meanwhile, the ratio of the maximum to minimum vari-

ances was reduced by a factor of five. The value of the

SP3-coupled GVR method for GVR and its ability to

improve the efficiency of MC criticality calculation are

hence clearly demonstrated.

It has been argued that it is unnecessary to couple the

SP3 method with the MC method for GVR, and that the

diffusion method is sufficient. To demonstrate the

advantage of coupling the SP3 method with the MC

method for GVR over coupling the diffusion method, we

also developed a diffusion-coupled GVR method based on

the RMC code. The flowcharts of the diffusion-coupled

GVR and the SP3-coupled GVR methods are almost

identical except for the solver used to solve the global flux

distribution. In the SP3-coupled GVR method, the SP3

equation is solved, while in the diffusion-coupled method,

the diffusion equation is solved. To solve the diffusion

equation, the diffusion coefficient is required. Therefore,

the total cross-section Rt;g used in the SP3 equation was

converted into the diffusion coefficient Dg.

Calculations were then performed on the same model

using the diffusion-coupled GVR method with the same

calculation parameters. The obtained AV.FOM from the

results of the diffusion-coupled method was 136.81. As

shown in Table 1, the AV.FOM of the result of the SP3-

coupled method was 383.94, which is 2.81 times that of the

diffusion-coupled method. Therefore, the SP3-coupled

GVR method showed better GVR performance than the

diffusion-coupled GVR method. We believe that the SP3

Fig. 4 (Color online) Variance distribution of the SP3-coupled GVR

and direct simulations

Fig. 5 (Color online) Distribution of the total flux in the SP3-coupled

GVR and direct simulations

Table 1 Results of GVR and direct simulations

Quantities Direct simulation SP3-coupled GVR

AV.FOM 1.1364 9 101 3.8394 9 102

r.Re 2.4070 9 10–2 1.2893 9 10–2

rmax/rmin 6.1998 9 102 1.2196 9 101

Times (min) 151.80 15.67
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method has great potential to be coupled with the MC

method for accelerated calculations and GVR.

4 Discussion and conclusion

An automatic process based on the MC global homog-

enization, the SP3 global solver, and GVR criticality cal-

culation was developed in the SP3-coupled GVR method.

The numerical results show that this method can improve

the efficiency of the MC criticality calculation.

The SP3-coupled method proposed in this paper was

developed for MC criticality calculations. It, therefore,

superficially resembles the traditional two-step reactor

physical calculation framework. However, the SP3-coupled

method differs from the traditional framework in three

aspects: (1) global homogenization is performed, instead of

assembly homogenization; (2) the homogenization process

is completed during the fixed-source calculation, and not

during the criticality calculation; and (3) global MC

homogenization and the global reactor calculation are

achieved in a one-step process instead of a two-step pro-

cess. Moreover, only the weight window parameters for

MC criticality calculation are output in the SP3-coupled

method. The final results are obtained from the MC cal-

culation rather than the global calculation of the NLSP3

code.

The SP3-coupled method has similarities and differ-

ences with other hybrid MC methods, such as the fission

matrix and the response matrix methods. They share sim-

ilar calculation processes in which some local information

of the system is recorded in advance and used to build a

global formula, and the global information is obtained by

solving the global formula. In the fission matrix method,

the fission coupling relationship between different regions

is recorded first. In the response matrix method, the rela-

tionship between the currents and sources in different

regions is recorded first. In the SP3-coupled method, the

homogenized cross-sections in different regions are recor-

ded first. The matrix relationship is solved in the fission

matrix and response matrix methods to obtain global

information. In contrast, in the SP3-coupled method, the

neutron transport equation is solved. We, therefore, believe

that the SP3-coupled method has advantages in terms of

numerical stability, development potential, and application

scope.

In this study, the traditional SP3 equation is solved in

the SP3-coupled method and the forward flux is used to

approximate the weight windows. To further improve its

performance for GVR, the rigorous SPN theory proposed

by Prof. Yung-An Chao and the adjoint method for the

SPN theory should be studied to obtain better weight

window parameters.
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