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Abstract Based on the Hugenholtz—Van Hove theorem,
six basic quantities of the EoS in isospin asymmetric
nuclear matter are expressed in terms of the nucleon kinetic
energy #(k), the isospin symmetric and asymmetric parts of
the single-nucleon potentials Uy(p, k) and Usymi(p, k). The
six basic quantities include the quadratic symmetry energy
Eym2(p), the quartic symmetry energy Egyma(p), their
corresponding density slopes L,(p) and Ls(p), and the
incompressibility coefficients K;(p) and K4(p). By using
four types of well-known effective nucleon—-nucleon
interaction models, namely the BGBD, MDI, Skyrme, and
Gogny forces, the density- and isospin-dependent proper-
ties of these basic quantities are systematically calculated
and their values at the saturation density p, are explicitly
given. The contributions to these quantities from #(k),
Uo(p, k), and Ugymi(p, k) are also analyzed at the normal
nuclear density p,. It is clearly shown that the first-order
asymmetric term Ugym 1 (p, k) (also known as the symmetry
potential in the Lane potential) plays a vital role in deter-
mining the density dependence of the quadratic symmetry
energy Egmo(p). It is also shown that the contributions
from the high-order asymmetric parts of the single-nucleon
potentials (Usym,i(p,k) with i > 1) cannot be neglected in
the calculations of the other five basic quantities.
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Moreover, by analyzing the properties of asymmetric
nuclear matter at the exact saturation density pg,(0), the
corresponding quadratic incompressibility coefficient is
found to have a simple empirical relation
Kat2 = Ka(po) — 4.14L2(py).
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1 Introduction

Research on the isospin- and density-dependent prop-
erties of the equation of state (EoS) in isospin asymmetric
nuclear matter is a longstanding issue in both nuclear
physics and astrophysics [1-4]. With respect to the
exchange symmetry between protons and neutrons, the EoS
for asymmetric nuclear matter can be expressed as an even
series  of isospin asymmetry E(p,d) = Ey(p)+
dicadn Eqymi(p)&', in which the first term is the energy
per nucleon in symmetric nuclear matter and the coeffi-

cients of the isospin-dependent terms are known as the i-th
= ;ﬁ% |s=0- In recent
years, the EoS of nuclear matter has been extensively
studied by (I) microscopic and phenomenological many-
body approaches [5-8]; (II) the observables from heavy-ion
reactions [9-14]; (III) the astrophysical observations
[15-17]. For symmetric nuclear matter, the saturation
density is constrained in a relatively narrow region p, =
0.145~0.180 fm™3 and the corresponding energy per
nucleon Ey(p,) is approximately —16 MeV [18]. The
incompressibility coefficient Ky(p,) has a generally

accepted value of 240 +20 MeV constrained by both

order symmetry energy Egym;i(p)
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theoretical approaches and giant monopole resonance data
[19-21]. In addition, the skewness Jo(p,) was recently
found to have significant effects on the structures of neu-
tron stars, but its value is scattered widely from —800 MeV
to 400 MeV [22-24]. For asymmetric nuclear matter, the
value of the quadratic symmetry energy Egym2(pg) is
constrained to be 31.7 & 3.2 MeV [25, 26]. However, its
density slope and incompressibility coefficient remain
uncertain, that is, L(p,) = 58.7 £ 28.1 MeV [25, 26] and
Ko p = —550 4= 100 [27-29]. It should be emphasized that
at both sub-saturation and supra-saturation densities, the
quadratic symmetry energy is not well constrained, espe-
cially at supra-saturation densities [30-33]. The quartic
symmetry energy Eqm4(pp) is predicted to be less than 1
MeV [34-36]. In contrast to the quadratic ones, few studies
have been conducted on the quartic density slope L4(p)
and the corresponding incompressibility coefficient Ky (p,)
[37].

In the present work, we perform a systematic analysis of
six basic quantities in the EoS based on the Hugenholtz—
Van Hove (HVH) theorem [38], namely Egm2(p),
Egyma(p), La(p), La(p), K2(p), and K4(p). Among them,
the properties of Egm»(p), Egyma(p), and their slopes
Ly(p) and L4(p) were re-analyzed [39-43]. The analytical
expressions of the incompressibility coefficients K, (p) and
K4(p) in terms of single-nucleon potentials are given for
the first time. In the literature, there are various effective
interaction models: transport models such as the Bombaci—
Gale—Bertsch—-Das Gupta (BGBD) interaction [44—47], the
isospin- and momentum-dependent MDI interaction
[47-50], the Lanzhou quantum molecular dynamics
(LQMD) model [51-53], and the self-consistent mean-field
approach including the zero-range momentum-dependent
Skyrme interaction [54-56], the finite-range Gogny inter-
action [57-59], and the relativistic mean-field model
[60, 61]. The values of these quantities at the saturation
density p, are calculated using two types of BGBD inter-
actions: the MDI interactions with x = —1, O and 1, 16 sets
of the Skyrme interactions [62—72], and 4 sets of Gogny
interactions [73-75]. By taking the NRAPR Skyrme
interaction as an example, we show the isospin- and den-
sity-dependent properties of the EoS for asymmetric
nuclear matter explicitly. Meanwhile, for symmetric
nuclear matter, Eo(p), Ko(p), and Jo(p) are also analyzed
in detail. It should be emphasized that the skewness Jy(py)
was recently found to be closely related to not only the
maximum mass of neutron stars but also the radius of
canonical neutron stars, and the calculations of Jy(p) in the
present work might be helpful in further determining the
properties of neutron stars. In particular, the contributions
from the high-order terms of the single-nucleon potential
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Usgym3(p, k) and Ugyma(p, k) to these basic quantities are
evaluated in detail.

The paper is organized as follows. In Sect. 2, based on
the HVH theorem, we express the basic quantities of the
EoS in terms of the nucleon kinetic energy and the sym-
metric and asymmetric parts of the single-nucleon poten-
tial. The isospin-dependent saturation properties of the
asymmetric nuclear matter are also discussed. In Sect. 3,
the calculated results by using four different effective
interaction models are given. Finally, a summary is pre-
sented in Sect. 4.

2 Decomposition of basic quantities of EoS
in terms of global optical potential components

2.1 Basic quantities in the Equation of State
of asymmetric nuclear matter

For isospin asymmetric nuclear matter, the EoS can be
expanded as a series of isospin asymmetry
0 = (py — pp)/p- If the high-order terms are neglected, the
EoS can be expressed as E(p, ) = Ey(p) + Esym2(p)d” +
Esym,4(p)54 (see Fig. 1). Each term can be further expanded
around the saturation density of symmetric nuclear matter
po as a series of dimensionless variables y = %, which
characterizes the deviations of the nuclear density p from
po- The density slope and incompressibility coefficient of

the i-th order symmetry energy are defined as L;(p) =

and K;(p) :9p2aingT"‘;(p>, respectively. The

skewness of the EoS for symmetric nuclear matter is given

by Jo(p) = 27p° S22t

3p aEs)g;i (p)

_Ph
[Ep.0)——2 E,(p)+ E,..(0)5"+E,,,. ()5’
‘Z z P=h

T

2 3
Ey(p)=Ey(a)+ 7h(A) + 5 Ko A) + 20 i(A)

Epna(P) = Eona () + 27L2(R) + 2 Ky (R)

2
Ei(P)=E . (R)+ 2L(1)+ %KMJ

Fig. 1 (Color online) The schematic diagram of basic quantities of
the EoS in both isospin symmetric and asymmetric nuclear matter,
including Eo(p), Esym2(p), Esyma(p), Ko(po), Jo(po), L2(po), K2(po),
Ly(po), and K4(py)
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2.2 The Hugenholtz—Van Hove (HVH) theorem
and decomposition of basic quantities
of asymmetric nuclear matter

Relating the Fermi energy Er and the energy per
nucleon E, the general Hugenholtz—Van Hove (HVH)
theorem can be written as [38]

Ep=—"=E+p—=E+—, (1)
p p

where £ = pE and P = ng—ﬁ

are the energy density and
pressure of the fermion system at an absolute temperature
of zero. Accordingly, the Fermi energies of neutrons and
protons in asymmetric nuclear matter can be expressed as

[41]:

n n aé
t(kF) + Un(p7 57 kF) = ap ) (221)
o¢
t(k]g) + UP(paéak]g) :57 (2b)
p

where t(kg/ ) and Un/p(p,é,kz/ P) are the kinetic energy

and the single-nucleon potential of the neutron/proton with
the Fermi momentum k;/ P = kp(1 + ‘55)1/ 3. Furthermore,
Un/p(p,6,k) can be expanded by a series of isospin
asymmetries 0 as

Un/p(p, 6,k) =Uo(p, k) + Usym,1 (p, k)0

+ Usym,2(Pa k) (Té)z + Usym,3 (pv k) (15)3

+ Usym,4(,0a k) (‘55)47

(3)

where © = 1 is for the neutron and t = —1 for the proton,
and Up(p,k) and Ugymi(p,k) are the symmetric and
asymmetric parts, respectively. In particular, Uy(p, k) and
Usym,1 (p, k) are called isoscalar and isovector (symmetry)

potentials in the popular Lane potential [76].
By subtracting Eq. (2b) from Eq. (2a), we obtain:

[t(kg) — t(kg)] + [Un(p, 0, kg) — Up(p, 0, kp)] = éif "ggfi'
(4)

Expressing both sides of Eq. (4) in terms of é and com-
paring the coefficients of & and &°, we can obtain the
general expressions of the quadratic and quartic symmetry
energies as

12[A) + Ui(p. k)

1
Esym,2(p) = 6 kF += Usym‘] (p7 kp),

Ok w2
(5a)

5 0k) + Up(p, k)|, 1 @PLe(k) + Un(p,b)

E, = — -7
wmalP) =33 ok W 108 e "
2 4 L QM) + Us(p.K)]
F 648 IS .
1 dUsym1(p, k) 1 @Ugym1(p, k)
k3 b sym ) k - ym, )
P36 ok |2 &
1 OUgyma(p, k) 1
kg + ——22 2 kg + — Ugyma (p, k-
e R

(5b)
By adding Eqgs. (2a) to (2b), expanding both sides of this
summation in terms of d, and comparing the coefficients of

8%, we can obtain an important relationship between Eq(p)
and its density slope Ly(p)

OE,
Eo(p) + 0] — k) + Ualp k), ©
where Ly(p) is defined as 3’065807/@ and can be rewritten as
Lo(p) = 3[t(kr) + Uo(p, k)| — 3Eo(p). (7)

Obviously, Ey(pg) = t(ke) + Uo(py, kr) and Ey(p) can be
calculated from the energy density of the symmetric
nuclear matter &(p,d = 0). Simultaneously, the general
expressions of the density slopes L,(p) and Ls(p) can also
be given by comparing the coefficients of 6° and &%,
namely

10[t(k) + Uo(p, k)]

Ly(p) =5 ok

aUsme (Pa k)
+ ok

12°[1(k) + Up(p, k)]

k
e o2

ke

2
kF
kr

3
kF + E Usym‘l (P, kF) + 3Usym,2(p7 kF)a
ke
(8a)
LR + Uo(p, K)o
W 324 k2 o

4
@+ 0 £ Uolp, k)
o T 648 ok

1 PUgym.1(p, k)
k o ym, )
TR e

_ 5 0lu(k) + U(p. )

324 ok

1 21k + Uolp, k)]
216 k3

. LaUsym,l (07 k)
108 ok
ia3 Usym,] (p7 k)
54 k3
iaUsymZ(p?k)
12 Ok

aUsymﬁ(p’ k)
M

Li(p)

4
kF
kg
2
kF
kr

3
kF
kg

kF + lazUsym,Z(pv k)

kz
. 6 k2 F
F

ke

9
kF + Z Usym,}(py kF) + 3U§ym,4(p> kF)
kg

(8b)

Taking the derivative of the summation of Eqgs. (2a) and
(2b) with respect to p and comparing the coefficients, the
incompressibility coefficients of Ey(p), Esgm2(p), and
Egma4(p) are given as
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Ko(p) =9p Ol +apUO<p’ el 18[1(kr) (9a)

+ UO(kaF)] + 18E0(p)5

10[t(k) + Uo(p, k)] 13%[t(k) + Up(p, k)]
Klp)==3 o ket 3 2 K
kg ke
QA+ Ul R 1 0 LK) + Ul b))
P ok W 2 0p ok ke
aUsyml(pyk) 0 aUsym 1(p7k)
T PR T ok |,
+ 9 aUsym 2(p7kF) ,
op
(9b)
_ 5 0[t(k) + Us(p, k)] 23 &[t(k) + Uo(p, K)]| ,»
Klh)=~1& ok 162 2 K
L&) + Uolp, K| 5 5 3[rlk) + Vol K|
12 ok 324 Ok o
_Qk 0 0[t(k) + Uo(p, k)]
"op ok "
Ekz 3 *[1(k) + Up(p, k)]
525, ok> ke
LY 0 3’[t(k) + Uo(p, k)]
18°"%p e .
1, 0 0[r(k) + Us(p, k)]
21655, ok .
UaUswnl(P k) 736 Usym,1 (p, k) 2
4 o |, T 36 e | [T
19° U%yml(P,k) 3
o e |
5 0 GUSymﬂl(p,k) 1 0 6 U\ym1(p7k)
R T N L e
1 5 00 Ugymi(p,k)
HETA e =
13 aUsym,Z(pvk) 46 UsymZ(pak) 2
6 ok | Ty e |
EaUsym,Z(pvk) 1 0 a UsymZ(pvk)
o ok Mg e .
27 aUsym,3< k)
+ 7 Usym.S(pka) + 7T kaF
6 aUsym3(p k)
+ 3k1:p ap % .
OUsyma(p, k
+ 18Usym‘4(pvkl:) + 9PM
op
(9¢)

Similarly, taking the second derivative of Eq. (6) gives the
skewness of Ey(p) as follows:

*[t(kr) + Uo(p, kr)]
0p?

Ot(kr) + Uo(p, kr)] (10)
Op

+ 162[t(kr) + Uo(p, k)] — 162Ey(p).

Jo(p) = 27p?

—8lp
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2.3 The exact saturation density p , as a function
of isospin asymmetry

For isospin asymmetric nuclear matter, the saturation
density is different from that of the symmetric nuclear
matter p,. The former is defined as the exact saturation
density and can be also written as a function of the isospin
asymmetry 0 [77]

psat(é) = po+ psal,252 + psal,454 + 0(56) (11)

For symmetric nuclear matter with 6 =0, pg(0) is
reduced to p,. According to the property of the saturation
aE(m )

point | p.(6) = 0 and expanding the EoS in terms of z,

the exact saturation density can be expressed as

Poat(9) = po — 31<L02((500)) po- 8
3Ka(po)La(po)  3Lalpy)  3Jo(po)L5(py) Dy 6*.
Ko(po)* Ko(po) — 2Ko(py)’

(12)

At the exact saturation density pg(d), the energy per
nucleon of asymmetric nuclear matter is given by

ES%H((S) :E(psat(é)a 5)
LZ
= EO(pO) + Esym,Z (po)(sz + Esym,4(p0) - 21(2-0(6?3) 54
= Esat,O + Esat,252 + Esatﬁ454-
(13)

The corresponding incompressibility coefficient of the EoS
is

*E(p,d)
Kai(6) =9p%,(5) o, lpr(0)
Ji
= Ko(po) + [ Ka(pa) — 6La(p0) — 2P 1, ) 2 1 0(o%)
Ko(po)
= Rsat,0 + Ksal,252 + 0(54)
(14)
It is clearly shown that the quartic symmetry energy at the
exact saturation density is Eg4 = Esyma(p) — 2?5553)’ and
the quadratic incompressibility coefficient is
J
Ksat,Z = Kz(Po) - 6L2(Po) - 0(p0) L2(p())' (15)

Ko(po)

In previous studies [18, 29], K2 was approximated as
Kaip — Kay2 = Ko (pg) — 6L2(py) by neglecting the

—,J(‘:)%‘:)%Lz(po) term for simplicity. We will discuss its

effect on K5 in the following section.
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3 Results and discussions

We performed a systematic analysis of the basic quan-
tities in the EoS of both symmetric and asymmetric nuclear
matter at the saturation density p, by using 25 interaction
parameter sets, which include two BGBD interactions with
different neutron-proton effective masses [44—47], the MDI
interaction with x = —1, 0, and 1 [47-50], 16 Skyrme
interactions [62-72], and four Gogny interactions [73-75].
It is known that most of these interactions are fitted to the
properties of finite nuclei, and the extrapolations to
abnormal densities can be rather diverse. However, the
comparison of a large number of results from different
interactions could possibly provide useful information on

Table 1 The saturation density p, (fm~>) and basic quantities Ey(p),

Ko(po)> Jo(po) Esym,z(/’o), Esym.4(ﬂ0)’ Ly(po)s La(po)> K2(py), and
K4 (py) for totally 25 interaction sets in four kinds of interactions. The

the tendency of the density dependence of these basic
quantities. Detailed numerical results from the total 25
interaction parameter sets are summarized in Table 1. The
average values of the basic quantities in EoS are also given.
For comparison, we also list the constraints summarized in
other studies (see the last row of Table 1). As shown in
Table 1, the calculated values of Ey(py), Ko(po)s
Egm2(po), and Ly(p,) are consistent with the constraints
extracted from both theoretical calculations and experi-
mental data [18, 21, 25, 26]. Interestingly, the averaged
Egma4(po) value is almost the same as that in Ref. [77]. To
further estimate the error bars of these basic quantities, all
the calculated values in Table 1 are plotted in Figs. 2 and 3.
It is seen from Fig. 2 that the data points of Ey(p,) and

units of these quantities were MeV. In the last three rows, the
averaged values and constraints in previous studies are shown. All
interactions were taken from Ref. [44-50, 62-75]

Force Po Eo(po) Ko(po) Jo(po) Egym2(po) La(po) Ka(po) Egyma(po) La(po) Ki(po)
BGBD

Case-1 0.160 — 158 2159 — 4475 329 87.9 - 327 1.72 6.82 7.14
Case-2 0.160 — 158 2159 — 4475 33.0 121.8 101.0 —0.73 — 4.26 7.14
MDI

x=1 0.160 — 16.1 212.4 — 4473 30.5 14.7 —264.0 0.62 0.53 — 483
x=0 0.160 — 16.1 2124 — 4473 30.5 60.2 — 81.7 0.62 0.53 — 4.83
x=—1 0.160 — 16.1 2124 — 4473 30.5 105.8 100.6 0.62 0.53 — 4383
Skyrme

GSKI 0.159 — 16.0 230.3 — 405.7 32.0 63.5 — 953 0.38 0.56 — 1.61
GSKII 0.159 — 16.1 234.1 — 400.2 30.5 48.6 — 1583 0.92 3.26 3.80
KDEOv1 0.165 — 16.2 228.4 — 386.3 34.6 54.7 — 1274 0.46 0.92 — 094
LNS 0.175 — 153 211.5 — 384.0 33.5 61.5 - 1277 0.82 2.67 2.44
MSLO 0.160 — 16.0 230.0 — 380.3 30.0 60.0 —99.3 0.81 2.70 2.66
NRAPR 0.161 — 159 226.6 — 364.1 32.8 59.7 — 1237 0.96 341 4.09
Ska25s20 0.161 — 16.1 221.5 —415.0 342 65.1 —118.2 0.46 0.93 0.88
Ska35s20 0.158 — 16.1 240.3 — 378.6 335 64.4 — 1209 0.45 0.90 —0.90
SKRA 0.159 — 158 216.1 —377.2 31.3 53.0 — 138.8 0.95 3.39 4.07
SkT1 0.161 — 16.0 236.1 — 3835 32.0 56.2 — 1348 0.46 0.91 — 091
SkT2 0.161 — 159 235.7 — 382.6 32.0 56.2 — 1347 0.46 0.91 — 091
SKT3 0.161 — 159 235.7 — 382.7 31.5 55.3 — 1321 0.46 0.91 — 091
Skxs20 0.162 — 158 202.4 — 426.5 35.5 67.1 — 1225 0.53 1.27 - 022
SQMC650 0.172 —15.6 218.2 — 376.9 33.7 52.9 — 1732 1.05 3.82 4.77
SQMC700 0.171 — 155 220.7 — 369.9 335 59.1 — 140.8 0.97 3.44 4.03
SV-sym32 0.159 - 159 232.8 — 3783 31.9 57.0 — 148.2 0.89 3.11 3.50
Gogny

D1 0.166 — 164 227.2 — 446.9 30.7 18.6 — 273.6 0.76 1.75 — 1.78
DIS 0.163 — 16.0 201.8 — 508.4 31.1 22.5 — 241.0 0.44 — 0.51 — 7.56
DIN 0.161 — 16.0 224.5 — 4309 29.6 33.6 — 168.2 0.21 — 1.95 — 11.80
DIM 0.165 — 16.0 226.2 — 466.9 28.6 24.8 — 1333 0.69 — 1.05 — 20.81
Average 0.162 — 1594 222.8 — 4113 32.0 57.0 — 123.6 0.64 1.42 —1.25
Constraint — 16 240 31.7 58.7 0.62

Ref. [18] [21] [25, 26] [25, 26] [77]
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Fig. 2 (Color online) Values of basic quantities Eo(py), Ko(pg), and Jo(p,) for symmetric nuclear matter at 25 parameter sets of the BGBD,
MDI, Skyrme, and Gogny interactions. The solid and dashed lines represent the average values and their deviations, respectively

Fig. 3 (Color online) Values of 50 4
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Eqyma(po)s La(po), and Ka(po) %) 40} Egyma(Pg)=32.0 £ 1.67 (MeV) Esym,4(pg‘)=o'64 +0.41 (MeV) {2 g
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Ko(pg) are well constrained in a narrow range and the
corresponding error bars are small. The error bar of
skewness Jo(po) = —411.3 £37.0 MeV is relatively large,
especially for Gogny interactions. It is also noted that the
skewness, together with K;(p,), has recently received
much attention in the calculation of the maximum mass of
neutron stars and the radius of canonical neutron stars
[15, 22, 23]. The error bars of the high-order terms L4(p,),
K>(py), and Ky(p,) are also given, that is, L4(py) =
1.42+2.14 MeV, Ky(py) = —123.6 £83.8 MeV, and
Ka(pg) = —1.25£5.89 MeV. In addition, for the MDI
interaction, the L,(p,) and K,(p,) values with different
spin(isospin)-dependent parameter x are scattered over a
wide range. This is because the different choices of
parameter x are to simulate very different density depen-
dences of the symmetry energies at high densities [47—49].

@ Springer

In Fig. 4, we show the magnitudes of the separated terms
Eo(p), Esymvg(p)éz, Esym74(p)54 as well as the total one
E(p,9) at two different densities (p, and 2p,) and three
different isospin asymmetries (5°=0.1, 0.2 and 0.5) by
taking the NRAPR Skyrme interaction as an example. At
the saturation density p, (see graphs (a)—(c)), the contri-
bution of Ey(p) to E(p, d) is dominant. The contribution of
Esymvz(p)é2 increases with an increase in isospin asym-
metry o. It is also shown that the contribution from
Esym74(p)54 is small and comes into play at large isospin
asymmetry with 5 =0.5. At 2p, (see graphs (d)—(f)), the
Ey(p) contribution is suppressed compared with that at p,
while Eqma(p)d® plays a more important role in the EoS,
especially at 6% =0.5. It should also be noted that
Eqma(p) contributes only at a very high density and large
isospin asymmetry. The magnitude of Egma(p) can
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Fig. 4 (Color online) The
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pP=2p,

significantly affect the calculation of the proton fraction in
neutron stars at -equilibrium [14, 41].

We further expand Eo(p), Eqym2(p), and Egm4(p) as a
series of y with their corresponding slopes and incom-
pressibility coefficients. In Fig. 5, we depict the contribu-
tions from each term at different densities 0.5p,, 2p, and
3p,- As can be observed in Fig. 5, the first-order terms EJ
(Eo(po))s EY (Esyma(pg)), and EY (Egyma(py)) contribute
largely at all densities. Ef and E} terms become increas-
ingly important with increasing density. For Egm»(p) and

Contribution

Egyma(p) at 3pg, the contributions from the slopes (E% and
EL) and the incompressibility coefficients (EX and EX) are
much larger than those at 0.5p, and 2p,. In particular, the
E E§ and E}f terms at 3p,, can be as important as the first-
order terms. Thus, high-order terms should be considered
when analyzing the properties of nuclear matter systems at
high densities, such as neutron stars.

More interestingly, the basic quantities at the saturation
density are decomposed into the kinetic energy #(k) and the
symmetric and asymmetric parts of the single-nucleon
potential Uy(p, k) and Usymi(p, k). As shown in Fig. 6, the
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Fig. 6 (Color online) The Eo(p0)=Eg+Eg°

single-nucleon potential 300
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contributions from different terms #(k), Up(p,k) and
Ugym,i(p,k)(i = 1,2,3,4) are denoted by superscripts of 7,
U0, Ul, U2, U3 and U4, respectively. It is clear that
Eo(pg), Ko(py), and Jo(p,) are completely determined by
(k) and Uy(p,k). For other quantities, the contributions
from the asymmetric parts Ugmi(p, k), Usgm2(p,k),
Usym3(p, k), and Usgyma(p, k) cannot be neglected. It is
clearly shown that the first-order term Ugym(p,k) con-
tributes to all six basic quantities. The second-order term
Usym(p, k) does not contribute to Egm2(pg), but to its
corresponding slope L,(p,) and the incompressibility
coefficient K>(p,y). In principle, the Usm2(p,k) term
should also contribute to the fourth-order terms Egym 4(0p),
Ly(py), and Ky(py), but for the Skyrme interaction,
Usgym2(p, k) is not momentum-dependent and does not
contribute. In addition, there are very few studies on the
contributions of high-order terms Ugym3(p,k) and
Usym4(p, k) to the basic quantities. In Fig. 7, we show the
density-dependence of Uo(p, ki), Usym.1 (P, ki),
Usym2(p, k), Usym3(p, ke) and Ugyma(p, kp) at the Fermi
momentum kg = (37‘[2/)/2)1/ ? by using the NRAPR Sky-
rme interaction. It can be clearly seen in Fig. 7 that the
magnitudes of Up(p,kp) and Ugm(p,kr) are generally
very large, while the ones of Usym2(p,ke), Usym3(p,kr)
and Ugyma(p,kr) are very small but increase with the
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Fig. 7 (Color online) The density-dependence of Uy(p,kr),
Us-ym.,l (p7 kF), Usym‘Z (,07 kF)7 Usym,3 (P« k]:), and Usym,4 (p7 kF) The
NRAPR Skyrme interaction was applied

increasing density. Our results indicate that the Usym3(p, k)
and Ugm 4(p, k) contributions should be taken into account
for the fourth-order terms to understand the properties of
asymmetric nuclear matter, especially for the cases with
very large isospin asymmetries and high densities.

By analyzing the isospin dependence of the saturation
properties of asymmetric nuclear matter, a number of
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Table 2 The calculated values

of expansion coefficients p, Force Po Psat2 Psata Esar Kasy2 K Jo(po)/Ko(po)

(fm~3), Psat2 (fm~3), Psat4 BGBD

girz;g; g:f?ﬁs\c,fy;‘;“e“y Case-1 0.160 —0.195 0.038 - 1617 —560.1  —3779 - 207

quadratic incompressibility Case-2 0.160 — 0271 0295 —3511 —6300 —3775 - 207

coefficient Ky, o (MeV), and its MDI

two main components Kagy, x=1 0.160 —0.033 —0.040 0.11 — 3522 — 3212 —2.11

ix"l\& ?ﬁiej(}giﬁz,/ﬁl(ﬁﬁ‘rahgled x=0 0160 —0.136 —0013 —791 —4429  —316.1 — 211

values and constraints in x=-1 0.160 — 0239 0237 —2573 —5342  —3114 —2.11

previous studies are shown Skyrme
GSKI 0.159 —0.131 —0024 —836 —47603 — 364.23 - 1.76
GSKII 0.159 —009 —0056 —412  —450.04 — 366.94 - 171
KDEOv1 0.165 —0.119 —0044 —609 —45571 —363.13 — 1.69
LNS 0.175 —0.153 —0059 —812 —49675 — 385.10 - 1.82
MSLO 0.160 —0.125 —0033 —701 —45933 —360.11 — 1.65
NRAPR 0.161 —0.127 —0050 —690 —481.82 — 38591 - 1.61
Ska25s20  0.161 —0.142 —0.039 —9.11  —508.80 — 386.89 —1.87
Ska35s20  0.158 —0.127 —0.039 —8.19  — 50747 — 405.95 — 1.58
SKRA 0.159 —0.117 —0058 —555 —45680 — 364.36 - 175
SKT1 0.161 —0.115 —0045 —623 —47190 — 380.66 - 1.62
SKT2 0.161 —0.115 —0045 —623 —471.62 — 38045 - 1.62
SKT3 0.161 —0.113 —0044 —603 —46393 —374.14 —1.62
Skxs20 0.162 —0.161 —0044 —10.60 — 52516 — 383.74 —2.11
SQMC650  0.172 —0.125 —0.082 —537  —490.78 — 399.34 - 173
SQMC700 0.171 —0.137 —0.065 —693 —49514 — 396.16 — 1.68
SV-sym32  0.159 —0.117 —0.057 —610  — 49044 — 397.74 - 1.62
Gogny
DI 0.166 — 0041 — 0050 0.001 — 3852  — 3486 —1.97
DIS 0.163 —0055 —0056 —08  —3760 — 3193 — 252
DIN 0.161 —0072 —0039 —230 —369.8  — 3053 - 1.92
DIM 0.165 —0054 —0023 —067 —282.1  —2309 —2.06
Average 0.162 —0.125 —0017 —798 —4654  —360.1 - 1.86
Constraint — 500 — 370/— 550
Ref. [31] [77] [27, 28]

important quantities are calculated using 25 interaction
parameter sets, and their numerical results as well as their
averaged values are also listed in Table 2. For comparison,
the constraints of K, o and Ky o from other studies are
listed in the last row of Table 2. It is shown that the second-
order coefficient pg, ,, one of the most important isospin-
dependent parts of p, (), has a negative value in all cases,
and the fourth-order coefficient py, , also has a negative
value for the Skyrme and Gogny interactions. This means
that in most cases, the saturation density of asymmetric
nuclear matter is lower than that of symmetric nuclear
matter, especially at larger isospin asymmetry 0 (see graph
(a) of Fig. 8). For the BGBD interaction (Case-2), the
calculated value of pg, 4 is positive and relatively large.
According to the relationship in Eq. (11), this would lead to

a higher saturation density of asymmetric nuclear matter
than that of symmetric nuclear matter with isospin asym-
metry 6 close to unity. For asymmetric nuclear matter at
Psai(0), the corresponding Eg 4 values are rather diverse
and are considered to be important for the proton fraction
in neutron stars.

As shown in graph (b) of Fig. 8, the results of K(p,),
Ky 2, and Ky o are given and their values are constrained
to be K, = —123.6 = 83.8 MeV, Ky, = —465.4 +£70.0
MeV, and Ky » = —360.1 £ 39.0 MeV, respectively. The
averaged K,s o value is close to the previous theoretical
constraint of —500 + 50 MeV given in Ref. [31] if the error
bar is considered. In Table 2, there are two previous con-
straints for K¢ 2. One is Ko = —370 £ 120 MeV from a
modified Skyrme-like (MSL) model [77], and the other is
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Fig. 8 (Color online) The 0.20 T ” " :
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raph (b - --D1 -----DIN ——K
graph (b) 0.06 . . . : wiz | g0
0.0 0.1 0.2 0.3 0.4 0.5

—550 £ 100 MeV by analyzing the measured data of the
isotopic dependence of the giant monopole resonance
(GMR) in the even-A Sn isotopes [27, 28]. Compared with
these previous studies, it is clear that the Kyey> and K
values remain uncertain and require more data to further

constrain their values. In addition, as mentioned before, the

Jo(po)
Ko(po)

simplicity. However, this is clearly shown in Fig. 8b that
the contribution of this term is non-negligible. In the pre-
sent work, we include the contribution of this high-order
term, and the ratio Jo(py)/Ko(py) is constrained in the
range of —1.86 £ 0.23. Finally, we obtain a simple relation
for Ksat,Z

Ksat,Z = K2(p0) - 4'14L2(p0)' (16)

With the averaged results L,(p,) =57.0 MeV and
K>(py) = —123.6 MeV, the calculated value Koo =
—359.6 MeV is in good agreement with the average value
of —360.1 £39.0 MeV from the 25 interaction sets. This
simple empirical relation could be useful for estimating the
value of K, for asymmetric nuclear matter.

term — Ly(py) in Eq. (15) is typically ignored for

4 Summary

Based on the Hugenholtz—Van Hove theorem, the gen-
eral expressions for the six basic quantities of EoS are
expanded in terms of the kinetic energy #(k), the symmetric
and asymmetric parts of the global optical potential
Uo(p, k) and Ugymi(p, k). The analytical expressions of the
coefficients K, (p) and K4(p) are given for the first time. By
using 25 types of interaction sets, the values of these
quantities were systematically calculated at the saturation
density p,. It is emphasized that there are very few studies
on quantities L4(py), Ka(py), and K4(p,) and their average
values from a total of 25 interaction sets are Li(pg) =
1.42 £2.14 MeV, K,(p,) = —123.6 £83.8 MeV, and
Ka(pg) = —1.25 £5.89 MeV, respectively. The averaged
values of the other quantities were consistent with those of

@ Springer

previous studies. Furthermore, the different contributions
of the kinetic term, the isoscalar and isovector potentials to
these basic quantities were systematically analyzed at sat-
uration density. It is clearly shown that #(kg) and Uy(p, kF)
play vital roles in determining the EoS of both symmetric
and asymmetric nuclear matter. For asymmetric nuclear
matter, Ugym,(p,k) contributes to all the quantities,
whereas Ugym(p, k) does not contribute to Egm2(p), but
contributes to the second-order terms L, (p,) and K»(p,) as
well as the fourth-order terms Egma4(py), Ls(py), and
K4(po). In addition, the contribution from Usym3(p,k)
cannot be neglected for Egma4(po), La(pg), and K4(pg).
Usym4(p, k) should also be included in the calculations for
L4(py) and K4(py). In addition, the quadratic incompress-
ibility coefficient at pg,(d) is found to have a simple
empirical relation Kgo = K2(po) — 4.14L2(p,) based on
the present analysis.
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