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Abstract Because of the growing concern over the radia-

tion dose delivered to patients, X-ray cone-beam CT

(CBCT) imaging of low dose is of great interest. It is dif-

ficult for traditional reconstruction methods such as Feld-

kamp to reduce noise and keep resolution at low doses. A

typical method to solve this problem is using optimization-

based methods with careful modeling of physics and

additional constraints. However, it is computationally

expensive and very time-consuming to reach an optimal

solution. Recently, some pioneering work applying deep

neural networks had some success in characterizing and

removing artifacts from a low-dose data set. In this study,

we incorporate imaging physics for a cone-beam CT into a

residual convolutional neural network and propose a new

end-to-end deep learning-based method for slice-wise

reconstruction. By transferring 3D projection to a 2D

problem with a noise reduction property, we can not only

obtain reconstructions of high image quality, but also lower

the computational complexity. The proposed network is

composed of three serially connected sub-networks: a

cone-to-fan transformation sub-network, a 2D analytical

inversion sub-network, and an image refinement sub-net-

work. This provides a comprehensive solution for end-to-

end reconstruction for CBCT. The advantages of our

method are that the network can simplify a 3D recon-

struction problem to a 2D slice-wise reconstruction prob-

lem and can complete reconstruction in an end-to-end

manner with the system matrix integrated into the network

design. Furthermore, reconstruction can be less computa-

tionally expensive and easily parallelizable compared with

iterative reconstruction methods.

Keywords Cone-beam CT � Slice-wise � Residual U-net �
Low dose � Image denoising

1 Introduction

CBCT is widely used in many fields such as clinic

diagnosis, public safety inspection, and nondestructive

testing. In the field of CBCT reconstruction, analytic

methods such as FDK [1] are effective and practical to

reconstruct 3D objects. To reduce the potential radiation

risk, there are major efforts to lower X-ray radiation dose

[2, 3] and to speed up CT scans [4]. Because computer

hardware has greatly evolved, researchers have looked to

optimization-based iterative methods to reduce noise [5, 6].

Iterative algorithms like algebraic reconstruction tech-

niques (ART)-type [5], SIR [7], and MBIR [8] have been

used to reconstruct objects when projection data is noisy. In

the past few years, compressed sensing (CS) algorithms

have been studied [9, 10]. These studies have shown that

high-quality CT images can be reconstructed by iterative

methods, which can incorporate both models of imaging

physics and additional constraints [11–13]. A typical

example is image denoising based on total variation (TV)

regularization [14, 15]. However, optimization-based
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iterative reconstruction is normally computationally

expensive. Therefore, it is almost impossible to use such

iterative algorithms when real-time reconstruction is

required.

Recently, deep learning and convolutional neural net-

works (CNN) have been widely used in image processing

[16–18]. In the CT field, researchers have published some

studies using different kinds of CNNs to gain better

reconstruction images [19–21]. Researchers have shown

that deep learning methods can be used to help with low-

dose image denoising, metal artifact reduction, and sparse-

data CT [22–25]. Recently, a U-net [26] structure for a

large receptive field was also proposed to reduce noise in

low-dose CT images [19]. The successful implementation

of CNN in solving the problem of noisy data has shown

that CT noise caused by the low-dose condition has char-

acteristics that can be learned and reduced by CNNs.

However, the networks mentioned above focused only on

learning the characteristics in the image domain. Further-

more, not much study has been focused on the issue of

cone-beam CT reconstruction. Considering the popular

imaging modality of CBCT scan, we intended to catch the

features in both the projection domain and the image

domain, as well as employ the Radon transform relation-

ship between these two domains. For a certain cross section

of an object, we started our work by trying to implement a

residual U-net structure. That structure would estimate fan-

beam projection data using cone-beam projection data. In

this way, we aimed to transfer the problem from 3D

imaging to 2D imaging. In this work, we combine the

processes of projection estimation, image reconstruction,

and image refinement together into one network. Hence,

we incorporate the complete imaging physics model of

CBCT, as well as characterize data features in both the

projection and image domains. An end-to-end reconstruc-

tion network is built accordingly.

2 Theory and method

In this section, we first introduce briefly the basic phy-

sics of a dental cone-beam CT system and address the

problem of our interest. Then, a residual convolutional

neural network-type neural network is specifically con-

structed according to the physics and reconstruction theo-

ries of X-ray CT. Detailed network architecture is

presented and explained together with the step-by-step

training method.

2.1 Physics of a dental cone-beam CT imaging

A typical cone-beam CT imaging system with a circular

orbit is shown in Fig. 1. The rotation center is set as the

origin O. The point D is the projection of O on the detector

plane. As shown in the front view of the detector in Fig. 1,

the position of D is denoted as cD; rDð Þ. We denote the

projection data as a matrix P3D 2 < CVð Þ�R, which is

acquired with a detector array of R rows and C columns. In

total, V projection views are acquired in one scan. To save

cost, the detector is designed to cover half the FOV (field

of view). For a certain slice of the phantom, an M 9 M

cross-section attenuation map of the phantom can be

denoted as l. We assume a virtual fan-beam CT scan of l,
and with a C’-column detector covering the full projection

of the FOV. The corresponding fan-beam CT projection

can be denoted by q; q 2 <ðVC0Þ�1, with the same projec-

tion views as P3D.

As shown in Fig. 1, in a cone-beam CT, the image l is

projected onto as many as R* rows on the detector, i.e.,

projections on these rows are related to l.

2.2 Main architecture of the network

Our proposed reconstruction network is an end-to-end

solution, i.e., the input is P3D and the output is l̂. Because
P3D covers half of the FOV, the network will first estimate

the corresponding half of the virtual fan-beam projection,

which is denoted as p̂, using P3D. Then, the missing half of

the virtual fan-beam projection (denoted as p̂0) is estimated

from p̂. Concatenating p̂ and p̂0 gives a complete set of fan-

beam projections q̂. We set p̂; p̂0 2 <ðVCÞ�1. A sub-block

of the network executes the filtered back-projection (FBP)

algorithm reconstruction. Finally, the network refines lFBP

and outputs l̂. Details of our network are expressed as

follows.

The whole network is composed of three sub-net-

works: the cone-to-fan transformation sub-network, the

2D analytical inversion sub-network, and the image

refinement sub-network. Two residual U-nets are utilized

in the cone-to-fan transformation and image refinement

sub-networks. As shown in Fig. 2, the U-net structure we

use consists of four stages connected by pooling layers

in the first half and upsampling layers in the second half.

The number of channels for the first convolution layer of

the U-net is v.
In the cone-to-fan transformation sub-network, P3D is

the input. As shown in Fig. 2, in one branch, we recon-

struct image l0 with P3D using an analytical reconstruction

algorithm [27]. The simulated available half of the fan-

beam projection of l0 is denoted as p0. In another branch,

P3D is inputted into U-net A. U-net A is expected to learn

the characteristics of P3D and output the residual between

p0 and p̂. The red arrow denotes the missing half of the fan-

beam projection p̂0 that is estimated with p̂, according to

the symmetry over rotation of a fan-beam scan [28].

123

59 Page 2 of 9 H.-K. Yang et al.



According to our experience, CT reconstruction is sen-

sitive to errors in projection data. It is hard for the cone-to-

fan transformation sub-network to fully catch the charac-

teristics of a sinogram. Hence, we configured a sinogram-

to-image-domain transformation sub-network. We exactly

follow the computation as an analytical reconstruction and

hence refer to it as ‘‘2D analytical inversion sub-network.’’

The procedure of this sub-network includes three steps:

weighting, filtration, and back-projection. All three of these

steps can be realized by matrix–vector multiplication.

Therefore, we can formulate the 2D analytical inversion

sub-network as FBP reconstruction steps:

l̂FBP ¼ HT
wFWq̂ ð1Þ

here W is a diagonal matrix for ray-by-ray weighting, the

matrix F represents a ramp filtration process in the detector

axis for all views, and HT
w is a weighted back-projection

operator. The superscript T denotes a matrix transform.

These three matrices are predetermined by the CT scanning

geometry and can be pre-calculated. The 2D analytical

inversion sub-network essentially executes a Radon inverse

transform and completes the domain transformation. Sub-

sequently, the image-domain loss can be easily fitted in.

Because the inverse Radon transform is the physics model

in CT imaging, this sub-network is deterministic and does

not need to be trained, in theory. In other words, there is no

learning in this sub-network.

The outputs of the 2D analytical inversion sub-network

l̂FBP are further fed forward into an image refinement sub-

network. As shown in Fig. 2, the image refinement sub-

network also has a residual U-net CNN structure. This sub-

network (U-net B) further refines l̂FBP and outputs the final

Fig. 1 Physical schematic

diagram of a cone-beam CT

imaging system (Color online)

Fig. 2 Main structure of the dual-domain deep learning network (Color online)
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reconstruction of the linear attenuation map l̂ of the slice

of interest. According to our experience, a feasible choice

is to set v to 24 in U-net A and to 16 in U-net B. We refer

to this whole proposed network as the dual-domain deep

learning (DDL) reconstruction.

2.3 Network training

When training, we first train the cone-to-fan transfor-

mation sub-network separately by a loss of l2-norm,

esub ¼ 1
K

PK
k¼1 l̂FBP � l�k

�
�

�
�2
2
, with l�k being the kth image

label, and K being the number of images in a training set.

Then, we train the whole network together. Similarly, the

ultimate loss for this network is e ¼ 1
K

PK
k¼1 l̂k � l�k

�
�

�
�2
2
.

The error backpropagation algorithm for the cone-to-fan

transformation sub-network and the image refinement sub-

network is not different from the commonly used stochastic

gradient descent (SGD) in the deep learning field [26].

From Eq. (1), we can see that the chain rule for back-

propagation errors through the 2D analytical inversion sub-

network can simply be written as:

oe
oq̂

¼ WTFTHw

oe
ol̂FBP

: ð2Þ

3 Experiments and results

To examine the performance of the proposed method,

we arranged our research to reconstruct a certain slice of a

cone-beam dental CT.

3.1 Validating the network on simulated low-dose

CT data

In total, 110 patients’ normal-dose CT projection data

were obtained from a cone-beam dental CT. Among them,

100 randomly chosen patients’ data were used in training,

while the other 10 patients’ data were used for validation.

All these 110 patients were chosen randomly from hospi-

tals. The personal information of these patients was

anonymized. The data were taken from the same dental CT

system. Training data and validation data were indepen-

dent. For the cone-beam scan system, the source-to-origin

distance (lSO) was 485 mm, and detector-to-origin dis-

tances was 250 (lDO) mm. A flat-panel detector of 658 rows

and 656 columns with bin size (bD) 0.2
2 mm2 was used,

i.e., R = 658, C = 656. The position of Point D on the

detector, cD; rDð Þ equaled (329.5, 637.5). During each scan,

600 projections were taken. The reconstruction area was on

the 640 9 640 (M2) grid with voxel size bI of 0.25
2 mm2.

We reconstructed a slice 35.375 mm (i.e., h = 35.375 mm

as shown in Fig. 1) away from the mid-plane and the

maximum cone angle h of the involved data was 5.02

degrees. As a result, R� rows of detector bins were needed

in this case. R� can be calculated by:

R� ¼ lDO þ lSOð ÞbIM tan h
bD lSO þ bIM=2ð Þ : ð3Þ

To achieve labels for our network, we collected data

scanned with the X-ray source set to be 100 kV and 4 mA.

Each projection was acquired in 20 ms. This was deemed a

normal-dose situation, and the corresponding blank scan

was denoted as IN. We simulated the low-dose projections

P3D
L; train and P3D

L; validation, with blank scan IL randomly cho-

sen according a Poisson distribution with mean equal to

20–25% of IN. P
3D
L; train; lN;train formed paired data for the

training of the proposed network.

We denoted the projection data in the training and val-

idation sets as P3D
N; train and P3D

N; validation, respectively. A

statistical image reconstruction algorithm using nonlocal

mean (NLM) regularization [29] was applied to obtain the

labels,

l̂3D ¼ argmin
l3D

H3Dl3D � P3D
N; train

�
�
�

�
�
�
2

2
þb

XJ

j¼1

fNLM lðjÞ
h i

( )

;

ð4Þ

with l3D and H3D the 3D object and the corresponding

projection matrix, respectively, lðjÞ the jth slice of l3D with

J slices in total, b a weighting coefficient, and fNLM �ð Þ the
slice-wise NLM cost function. We solved Eq. (4) itera-

tively using an analytical reconstruction from P3D
N; train as an

initial value. After l̂3D was obtained, the slice that was

35.375 mm away from the mid-plane was extracted to be

the label lN of our network.

When training the cone-to-fan transformation sub-net-

work separately, the loss function of the network esub
reached its convergence (i.e., relative change of esub was

less than 0.01%) in about 250 epochs. Subsequently, the

whole network was trained together. The relative change of

the ultimate loss function e was less than 0.01% after

another 150 epochs. The convergence curve in the training

process is plotted in Fig. 3. In validation, P3D
L; validation was

the input data with lN;validation used as a reference for per-

formance evaluation.

As a demonstration, we show some intermediate results

in Fig. 4. We can see that analytical reconstruction can

provide high-frequency information for the slice of interest.

The cone-to-fan transformation sub-network can recover

the low-frequency information caused by the approxima-

tion in analytical reconstruction for the cone-beam prob-

lem. Details of intermediate results from the cone-to-fan
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transformation sub-network (l̂FBP) are also provided in

Table 1.

Using low-dose data, we compared our method with U-

net [19, 26] only in the image domain and with analytical

reconstruction [27]. The image-domain U-net-based

method also used lN as labels and used l0, i.e., the ana-

lytical reconstructions [27] of P3D
L; train, as inputs. We also

replaced the U-net A&B in our method with plain CNN,

which has approximately the same computation as the

U-net we used. U-net A was replaced by a nine-layer CNN,

which contained 24, 24, 24, 24, 24, 12, 12, 12, and 1

kernels (3 9 3), respectively. U-net B was replaced with a

five-layer CNN, which contained 16, 32, 16, 16, and 1

kernels (3 9 3), respectively. These results are included in

our comparison.

Three cases in the validation data set are shown in Fig. 5

with zoom-in of the region of interest (ROI) in the blue

boxes for demonstration. The horizontal profiles of the

difference images between the reconstructions and the

labels along the red line in Fig. 5 are plotted in Fig. 6. We

can see that structural information is severely contaminated

in analytical reconstructions for low-dose data. Image-

Fig. 3 Convergence curve in

the training process (Color

online)

Fig. 4 Intermediate results of the proposed network. Display window for p0 and p̂: [0 4.0]. Display window for p̂� p0: [0 0.6]. Display window

for l̂FBP: [0 0.07]

Table 1 Quantitative

comparison of reconstruction

methods

Methods RRMSE SSIM SNR

DDL with U-net 0.0589 ± 0.0016 0.9957 ± 0.0006 20.6768 ± 0.5722

Estimation of lFBP 0.0704 ± 0.0027 0.9939 ± 0.0007 19.1384 ± 0.5251

DDL with plain CNN 0.0718 ± 0.0017 0.9936 ± 0.0008 18.9579 ± 0.5572

Image-domain U-net 0.0768 ± 0.0017 0.9927 ± 0.0009 18.3803 ± 0.5373

Analytical reconstruction 0.1629 ± 0.0097 0.9682 ± 0.0040 11.8569 ± 0.6597
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domain U-net-based methods can work well in reducing

noise but the edges are a little blurred. The proposed net-

work performs best in recovering structural details com-

parable to the normal-dose case.

Moreover, we quantitatively evaluated the image quality

of all validation reconstructions in terms of relative root

mean square error (RRMSE), the structural similarity

(SSIM) index, and signal-to-noise ratio (SNR). The

RRMSE index for each reconstruction image was com-

puted as,

Fig. 5 Reconstructions in validation set. From left to right: normal-dose reconstruction (labels), low-dose reconstructions from DDL with U-net,

DDL with plain CNN, image-domain U-net, analytical reconstruction. Display window: [0 0.07]

Fig. 6 Horizontal profiles of

the difference image of the

reconstructions and labels along

the red line in Fig. 5. The red

and green lines of DDL results

show smaller differences from

the labels than the other two

lines, and the red line of DDL

with U-net result is slightly

better than the green line (Color

online)
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RRMSE =
l̂� lNk k2
lNk k2

; ð5Þ

with l̂ and lN denoting the output of the network and the

corresponding label, respectively. The SSIM index for each

reconstruction image was computed as,

SSIM ¼
2 �̂l�lN þ C1

� �
2rl̂lN þ C2

� �

�̂l
2 þ �l2N þ C1

� �
r2l̂ þ r2lN þ C2

� � ; ð6Þ

where �̂l and �lN are the means of l̂ and lN, respectively, rl̂
and rlN are standard deviations of l̂ and lN, and rl̂lN is the

cross correlation. The constants C1 and C2 are stabilizers.

The SNR was computed as,

SNR = 10log10

P

j

lN�j � �lN
� �2

P

j

l̂j � lN�j

� �2

2

6
6
4

3

7
7
5; ð7Þ

where j indexes the pixels. Results are shown in Table 1. It

is shown that our DDL design is the most important factor

for realizing high-quality reconstructions in this low-dose

CT reconstruction problem. The RRMSE, SSIM, and SNR

of l̂FBP in Table 1 show that the cone-to-fan transformation

sub-network can do a good job in the estimation of fan-

beam projections, leading to rather good images from the

subsequent analytical inversion sub-network. The addi-

tional image refinement sub-network further improves the

image quality of the reconstructions.

3.2 Validating the network on practical CT data

We also imaged a skull head phantom (shown in Fig. 7)

for practical experiments. The low-dose scans were done

on the same dental CT system used above. The voltage of

the X-ray source was set to 80 kV and the current was set

to 2 mA. Under this low-dose situation, the blank scan IL
was about 25% of IN. The reconstructions are shown in

Fig. 8.

From these results, we can see that the proposed method

can effectively reduce the noise in practical low-dose CT

reconstructions. All main structures of the phantom are

well reconstructed by the trained network.

4 Computational complexity

The computational complexity of the proposed method

can be estimated from the computation load of the three

sub-networks. The major computation load in both cone-to-

fan transformation and image refinement sub-networks is in

the convolution layers. If we count the multiplications

only, there will be

Xl � Yl � kernel size� ½kernel# of the ðl� 1Þth layer�
� ðkernel# of the lth layerÞ

multiplications for the lth convolution layer. Here, l is the

layer index, with channels of dimension (Xl 9 Yl). Hence,

the number of multiplications in the network will be

approximately,

XL

l¼2

Xl � Yl� al � alð Þ � jl�1 � jl � 5 projections:

Here, jl and al � al denote the channel number and the

kernel size of the lth convolution layer, respectively, and L

is the total number of convolution layers in the network. In

Table 2, we list the multiplications in CNN layers of the

dominant computation load. In our experiments, R* = 92,

R = 658, C = 656, M = 640, vA = 24, and vB = 16. The

computation of the 2D analytical inversion sub-network is

mainly a 2D back-projection. In addition to the computa-

tion in convolution layers, two back-projections and one

projection are needed. For simplicity, we treat projection

and back-projection as having the same amount of com-

putational complexity. Therefore, we can see that the

computational complexity is approximately 5þ 3ð Þ=2 ¼ 4

2D iterations in an iterative reconstruction method. This is

much faster than many iterative methods in this field. We

use an Intel core i7-5930 K CPU (3.5 GHz), and a GeForce

GTX TITAN X GPU. With our method, the time–cost of

one-slice reconstruction is about 5.2 s, while an NLM

Fig. 7 Phantom used in practical experiments
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regularized iterative method takes about 260.2 s to

converge.

5 Conclusion

We propose a new framework of X-ray CT reconstruc-

tion based on deep learning for slice-wise reconstruction in

a cone-beam CT system. The proposed method utilizes a

novel structure containing three parts, which were designed

for cone-to-fan projection estimation, 2D analytical inver-

sion transform, and image refinement, respectively. The

cone-to-fan transformation and the image refinement sub-

networks are both built using residual U-net structures. A

2D analytical inversion transformation sub-network com-

pletes the domain transformation from projection domain

to image domain. The cone-to-fan transformation sub-

network is trained first. Then, the whole network is trained

using ultimate image-domain loss. Our results with a

realistic phantom show that the proposed method can

effectively reduce noise and recover detailed structures in

scanned objects. Reconstructions have higher image qual-

ity than commonly used low-dose cone-beam CT

reconstructions.

It is worth pointing out that when the targeted slice is far-

ther away from the mid-plane of a cone-beam CT, the pro-

jection of the slice is contained in multiple detector rows. The

data of the slice of interest are mixed with many other slices,

and thismakes itmore challenging to obtain the 2D projection

of the slice. Because the cone angle of practical CT systems is

usually within - 5 to ? 5 degrees, we have researched the

most difficult situation, where the cone angle is about 5

degrees, as an example. By building up similar branches for

different slices, one could conveniently reconstruct a volume

of interest or multiple inconsecutive slices.

This proposed network is initially designed to incorpo-

rate the imaging physics (modeled by a CT system matrix)

in the network design so that it can learn the characteristics

of both projection and image domains in an end-to-end

mechanism. It combines the capability of physical models

and information mining from big data sets. Moreover, this

network simplifies the 3D imaging process by transferring

it into a 2D form so that only a 2D system matrix is needed

in the projection-to-image-domain transfer thereby reduc-

ing the memory requirement. By decoupling the 3D pro-

jection into an independent 2D problem, significant

computation time can be saved compared with 3D pro-

jection and back-projection in iterative methods. Finally,

the reconstruction using the trained network can be com-

pleted with good speed using currently available parallel-

computing power. These advantages could be greatly

beneficial to real-time applications.

In this work, we use dental CBCT data to confirm the

effectiveness of our method of reconstructing a certain

slice of a scanned object. We do not consider the issue of

metal artifacts in this work. Our group is working on

restraining metal artifacts as a separate problem [30]. For

future work, we plan to combine our work together and

Fig. 8 Reconstructions of a skull head phantom. From left to right: low-dose reconstructions from statistical reconstruction using NLM

regularization, DDL with U-net, DDL with plain CNN, image-domain U-net, and analytical reconstruction. Display window: [0 0.07]

Table 2 Multiplications in

CNN layers of dominant

computation load

Layer # Multiplications in U-net A Layer # Multiplications in U-net B

2 9RCR�vA 16 9M2vB
3 9RCv2A 17 9M2v2B
4 9=8ð ÞRCv2A 18 9=8ð ÞM2v2B
5 9=4ð ÞRCv2A 19 9=4ð ÞM2v2B
11 9=2ð ÞRCv2A 25 9=2ð ÞM2v2B
12 9=8ð ÞRCv2A 26 9=8ð ÞM2v2B
13 18RCv2A 27 18M2v2B
14 9RCv2A 28 9M2v2B
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further optimize the network for 3D volumes. We will

extend the method to other CT scan geometries as well.

References

1. Y. Xing, L. Zhang, A free-geometry cone beam CT and its FDK-

type reconstruction. J. X-ray Sci. Technol. 15(3), 157–167 (2007)

2. K. Ozasa, Epidemiological research on radiation-induced cancer

in atomic bomb survivors. J. Radiat. Res. 57(Suppl 1), i112–i117
(2016). https://doi.org/10.1093/jrr/rrw005

3. D.L. Miglioretti, E. Johnson, A. Williams et al., The use of

computed tomography in pediatrics and the associated radiation

exposure and estimated cancer risk. Jama Pediatr. 167(8),
700–707 (2013). https://doi.org/10.1001/jamapediatrics.2013.311

4. L.J.M. Kroft, J.J.H. Roelofs, J. Geleijns, Scan time and patient

dose for thoracic imaging in neonates and small children using

axial volumetric 320-detector row CT compared to helical 64-,

32-, and 16- detector row CT acquisitions. Pediatr. Radiol. 40(3),
294–300 (2010). https://doi.org/10.1007/s00247-009-1436-x

5. A.C. Silva, H.J. Lawder, A. Hara et al., Innovations in CT dose

reduction strategy: application of the adaptive statistical iterative

reconstruction algorithm. AJR Am. J. Roentgenol. 194(1),
191–199 (2010). https://doi.org/10.2214/AJR.09.2953

6. A.K. Hara, R.G. Paden, A.C. Silva et al., Iterative reconstruction

technique for reducing body radiation dose at CT: feasibility

study. AJR Am. J. Roentgenol. 193(3), 764–771 (2009). https://

doi.org/10.2214/AJR.09.2397

7. I.A. Elbakri, J.A. Fessler, Statistical image reconstruction for

polyenergetic X-ray computed tomography. IEEE Trans. Med.

Imaging 21(2), 89–99 (2002). https://doi.org/10.1109/42.993128

8. K. Li, J. Tang, G.H. Chen, Statistical model based iterative

reconstruction (MBIR) in clinical CT systems: experimental

assessment of noise performance. Med. Phys. (2014). https://doi.

org/10.1118/1.4867863

9. P.T. Lauzier, J. Tang, G. Chen, Prior image constrained com-

pressed sensing: implementation and performance evaluation.

Med. Phys. 39(1), 66–80 (2012). https://doi.org/10.1118/1.

3666946

10. G.H. Chen, J. Tang, S. Leng, Prior image constrained compressed

sensing (PICCS): a method to accurately reconstruct dynamic CT

images from highly undersampled projection data sets. Med.

Phys. 35(2), 660–663 (2008). https://doi.org/10.1118/1.2836423

11. J. Liu, Y. Hu, J. Yang et al., 3D feature constrained reconstruc-

tion for low dose CT imaging. IEEE Trans. Circuits Syst. Video

Technol. 28(5), 1232–1247 (2016). https://doi.org/10.1109/

TCSVT.2016.2643009

12. Y. Chen, L. Shi, Q. Feng et al., Artifact suppressed dictionary

learning for low-dose CT image processing. IEEE Trans. Med.

Imaging 33(12), 2271–2292 (2014). https://doi.org/10.1109/TMI.

2014.2336860

13. J. Liu, J. Ma, Y. Zhang et al., Discriminative feature represen-

tation to improve projection data inconsistency for low dose CT

imaging. IEEE Trans. Med. Imaging 36(12), 2499–2509 (2018).

https://doi.org/10.1109/TMI.2017.2739841

14. E.Y. Sidky, X. Pan, Image reconstruction in circular cone-beam

computed tomography by constrained, total-variation

minimization. Phys. Med. Biol. 53(17), 4777–4807 (2008).

https://doi.org/10.1088/0031-9155/53/17/021

15. X. Jia, Y. Lou, J. Lewis et al., GPU-based fast low-dose cone

beam CT reconstruction via total variation. J. X-ray Sci. Technol.

78(3), 139–154 (2010). https://doi.org/10.3233/XST-2011-0283

16. Y. Lecun, Y. Bengio, G. Hinton, Deep learning. Nature

521(7553), 436 (2015). https://doi.org/10.1038/nature14539

17. T.Y. Lin, A. Roychowdhury, S. Maji, Bilinear CNN models for

fine-grained visual recognition. IEEE Int. Conf. Comput. Vis.

(2015). https://doi.org/10.1109/iccv.2015.170

18. A. Ramcharan, K. Baranowski, P. Mccloskey et al., Deep

learning for image-based cassava disease detection. Front. Plant
Sci. (2017). https://doi.org/10.3389/fpls.2017.01852

19. E. Kang, J. Min, J.C. Ye, A deep convolutional neural network

using directional wavelets for low-dose X-ray CT reconstruction.

Med. Phys. 44(10), e360–e375 (2017). https://doi.org/10.1002/

mp.12344

20. H. Chen, Y. Zhang, M.K. Kalra et al., Low-dose CT with a

residual encoder-decoder convolutional neural network (RED-

CNN). IEEE Trans. Med. Imaging 99, 1 (2017). https://doi.org/

10.1109/TMI.2017.2715284

21. H. Chen, Y. Zhang, W. Zhang et al., Low-dose CT via convo-

lutional neural network. Biomed. Opt. Express 8(2), 679–694

(2017). https://doi.org/10.1364/BOE.8.000679

22. Q. Yang, P. Yan, Y. Zhang et al., Low-dose CT image denoising

using a generative adversarial network with wasserstein distance

and perceptual loss. IEEE Trans. Med. Imaging 37(6), 1348–1357
(2018). https://doi.org/10.1109/TMI.2018.2827462

23. Y. Zhang, H. Yu, Convolutional neural network based metal

artifact reduction in X-ray computed tomography. IEEE Trans.

Med. Imaging 37(6), 1370–1381 (2018). https://doi.org/10.1109/

TMI.2018.2823083

24. Y. Han, J.C. Ye, Framing U-net via deep convolutional framelets:

application to sparse-view CT. IEEE Trans. Med. Imaging 37(6),
1418–1429 (2018). https://doi.org/10.1109/TMI.2018.2823768

25. H. Chen, Y. Zhang, Y. Chen et al., LEARN: learned experts’

assessment-based reconstruction network for sparse-data CT.

IEEE Trans. Med. Imaging 37(6), 1333–1347 (2018). https://doi.

org/10.1109/TMI.2018.2805692

26. O. Ronneberger, P. Fischer, T. Brox, U-net: convolutional net-

works for biomedical image segmentation. Int. Conf. Med. Image

Comput. Comput. Assist. Interv. 9351, 234–241 (2015). https://

doi.org/10.1007/978-3-319-24574-4_28

27. J. Hao, L. Zhang, L. Li et al., A practical image reconstruction

and processing method for symmetrically off-center detector

CBCT system. Nucl. Sci. Technol. 24(4), 17–22 (2013)

28. D.L. Parker, Optimal short scan convolution reconstruction for

fan beam CT. Med. Phys. 9(2), 254–257 (1982). https://doi.org/

10.1118/1.595078

29. H. Zhang, J. Ma, J. Wang et al., Statistical image reconstruction

for low-dose CT using nonlocal means-based regularization.

Comput. Med. Imaging Graph. 38(6), 423–435 (2014). https://

doi.org/10.1016/j.compmedimag.2014.05.002

30. K. Liang, L. Zhang, H. Yang, et al. Optimize interpolation-based

MAR for practical dental CT with deep learning, in The 5th

International Conference on Image Formation in X-ray Com-

puted Tomography (CT meeting 2018) (2018), pp. 423–425

123

Slice-wise reconstruction for low-dose cone-beam CT using a deep residual convolutional… Page 9 of 9 59

https://doi.org/10.1093/jrr/rrw005
https://doi.org/10.1001/jamapediatrics.2013.311
https://doi.org/10.1007/s00247-009-1436-x
https://doi.org/10.2214/AJR.09.2953
https://doi.org/10.2214/AJR.09.2397
https://doi.org/10.2214/AJR.09.2397
https://doi.org/10.1109/42.993128
https://doi.org/10.1118/1.4867863
https://doi.org/10.1118/1.4867863
https://doi.org/10.1118/1.3666946
https://doi.org/10.1118/1.3666946
https://doi.org/10.1118/1.2836423
https://doi.org/10.1109/TCSVT.2016.2643009
https://doi.org/10.1109/TCSVT.2016.2643009
https://doi.org/10.1109/TMI.2014.2336860
https://doi.org/10.1109/TMI.2014.2336860
https://doi.org/10.1109/TMI.2017.2739841
https://doi.org/10.1088/0031-9155/53/17/021
https://doi.org/10.3233/XST-2011-0283
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/iccv.2015.170
https://doi.org/10.3389/fpls.2017.01852
https://doi.org/10.1002/mp.12344
https://doi.org/10.1002/mp.12344
https://doi.org/10.1109/TMI.2017.2715284
https://doi.org/10.1109/TMI.2017.2715284
https://doi.org/10.1364/BOE.8.000679
https://doi.org/10.1109/TMI.2018.2827462
https://doi.org/10.1109/TMI.2018.2823083
https://doi.org/10.1109/TMI.2018.2823083
https://doi.org/10.1109/TMI.2018.2823768
https://doi.org/10.1109/TMI.2018.2805692
https://doi.org/10.1109/TMI.2018.2805692
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1118/1.595078
https://doi.org/10.1118/1.595078
https://doi.org/10.1016/j.compmedimag.2014.05.002
https://doi.org/10.1016/j.compmedimag.2014.05.002

	Slice-wise reconstruction for low-dose cone-beam CT using a deep residual convolutional neural network
	Abstract
	Introduction
	Theory and method
	Physics of a dental cone-beam CT imaging
	Main architecture of the network
	Network training

	Experiments and results
	Validating the network on simulated low-dose CT data
	Validating the network on practical CT data

	Computational complexity
	Conclusion
	References




