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Abstract When using the beam scanning method for

particle beam therapy, the target volume is divided into

many iso-energy slices and is irradiated slice by slice. Each

slice may comprise thousands of discrete scanning beam

positions. An optimized scanning path can decrease the

transit dose and may bypass important organs. The mini-

mization of the scanning path length can be considered as a

variation of the traveling salesman problem; the simulated

annealing algorithm is adopted to solve this problem. The

initial scanning path is assumed as a simple zigzag path;

subsequently, random searches for accepted new paths are

performed through cost evaluation and criteria-based

judging. To reduce the optimization time of a given slice,

random searches are parallelized by employing thousands

of threads. The simultaneous optimization of multiple sli-

ces is realized by using many thread blocks of general-

purpose computing on graphics processing units hardware.

Running on a computer with an Intel i7-4790 CPU and

NVIDIA K2200 GPU, our new method required only 1.3 s

to obtain optimized scanning paths with a total of 40 slices

in typically studied cases. The procedure and optimization

results of this new method are presented in this work.

Keywords Particle beam therapy � Treatment planning �
Scanning path optimization

1 Introduction

In the past decade, there has been growing interest in

cancer therapy using particle beams, especially proton and

carbon beams [1]. There are 73 particle therapy facilities in

operation and 45 new facilities under construction

according to the latest data from the PTCOG. Scanning

irradiation methods are utilized by most new particle

therapy facilities. Compared with passive scattering and

wobbling methods, scanning irradiation methods can avoid

the cumbersome use of patient-specific compensators and

collimators [2]. In the active beam scanning method, the

narrow pencil beams are steered by a pair of deflection

magnets in the lateral direction, while scanning irradiation

of the target in the depth direction is usually achieved by

varying the particle beam energy, either through range

shifters installed in the irradiation nozzle, beam trans-

portation lines, or by using the direct energy variation of a

synchrotron [3, 4].

In scanning treatment plans, a target volume is divided

into many iso-energy slices. Each of these slices is further

divided into many discrete beam positions (beam spots),

where an optimized number of particles are assigned by the

treatment planning software [5]. The scanning method

includes two categories: spot and raster scanning. During

the irradiation of a given slice using the raster scanning

method, the beam is not switched off while moving the

beam from one beam spot or beam position to another

beam spot, unlike spot scanning [6, 7]. In the raster scan-

ning method, the beam is turned off when the irradiation of

a given slice is finished and then the next beam energy

value of the next slice to be irradiated is set by the control

system. In general, the irradiation can be performed more

efficiently using the raster scanning method compared with
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the spot scanning method, as there is no frequent beam

turning-on and turning-off operations during the irradiation

process. The broader interest in raster scanning is mainly

due to the faster repainting capability that it offers, which is

important in the presence of moving targets or other cases

where intra-fraction geometric variation exists [8–10]. In a

raster scanning system, the dose delivered during the

transition time is usually added to the dose delivered on the

next beam spot through a smart dose control algorithm.

Because the beam is not turned off during the irradiation of

a given slice, except for an interlock situation, the transit

particles delivered between planned beam positions along

the scanning path are roughly proportional to the total path

length [5]. Therefore, an optimized scanning path can

significantly reduce the possible dose deviation. Moreover,

each slice may comprise thousands of discrete beam

positions. When the scanning spots pattern is relatively

regular and simple, the demand for an optimized scanning

path is relatively small and an ordinary zigzag path (back-

and-forth and top-to-bottom succession) is sufficient.

However, due to the inhomogeneity of tissues in front of

the target and the influence caused by the shape of the

target, in many clinical cases the scanning position patterns

can be highly irregular and may contain many vacant areas

where important organs may exist. An optimized scanning

path can efficiently reduce the effect caused by transit

particles to realize a better dose distribution and provide

better protection of important organs [11]. In comparison

with scattering and wobbling methods, treatment planning

plays a more important role in patient treatment using

beam scanning methods. Besides dose calculation and dose

optimization, scanning path optimization in treatment

planning can also contribute to maximizing the benefits of

scanning methods.

The importance of scanning path optimization was dis-

cussed in two published studies [2, 11]. In both studies, the

simulated annealing (SA) algorithm was chosen to find the

optimized scanning paths. These optimized scanning paths

were then compared with the original zigzag paths. In the

study of Kang et al. [2], scanning path optimization based

on the SA algorithm was tested on archived patient and

study cases, including one prostate case and three head and

neck cases. The results showed that the scanning path

optimization method based on the SA algorithm yielded

path lengths that were * 13–56% shorter than those of the

zigzag patterns [2]. Pardo et al. compared the delivered

dose distributions obtained by zigzag scanning and opti-

mized paths. The results showed an obvious reduction in

transit dose when the optimized path was used. The

reduction in transit dose can potentially allow for the use of

higher beam intensities, thus decreasing the treatment time

[11]. In all the previous studies, the scanning paths were

optimized slice by slice. In clinical cases, the number of

slices of the target volume may be up to one hundred,

which means that optimizing scanning paths slice by slice

is time-consuming. In the work of Kang et al. [2], which

used MATLAB on a computer with a 3.2 GHz processor,

the SA optimization program required approximately

6 min for one beam comprising 45 energy slices and a total

number of 1650 spots. In the work of Pardo et al. [11],

which used C?? on a computer with a 3.2 GHz processor,

the SA optimization program required approximately

6 min for one beam comprising 38 energy slices and a total

number of 6892 spots. In either case, it took more than 8 s

on average for each slice.

The primary goal of this research is to provide a new

method and computer implementation for scanning path

optimization by taking advantage of the general-pur-

pose computing on graphics processing units (GPGPU)-

based parallel computing technique. The method is

described in Sect. 2, and the results are presented in Sect. 3.

2 Experimental section

2.1 Scanning path optimization as a modified

traveling salesman problem

The scanning path optimization problem is analogous to

the famous traveling salesman problem (TSP) [12] and can

be solved approximately using heuristic methods, such as

the SA algorithm. Optimizing the scanning path of one iso-

energy slice can be described as follows: Given a certain

number of scanning positions and the distances between

each pair of beam positions, find the least-cost scanning

path passing through all of the planned scanning positions

without repeated visits. In a raster scanning system, beam

scanning is performed relatively more frequently in one

direction (X) and less frequently in another (Y). In order to

reduce the position errors caused by magnetic hysteresis,

scanning is designed to begin from the top row (x direction)

and ends at the bottom row of the scanning pattern of a

slice. Furthermore, dissimilar to a typical TSP, scanning is

not required to return to the starting position. Therefore, the

cost to move from the scanning position A (x1, y1) to B (x2,

y2) is then the Euclidean distance, where (x1, y1) and (x2,

y2) are the Cartesian coordinates of grid points A and B in a

given slice. Given the total number of scanning positions

K, the scanning order is (X1, Y1), (X2, Y2) … (XK, YK).

Scanning position (X1, Y1) is the starting position and (XK,

YK) is the ending position. The total path length, f, of the

scanning path, P, is given by [2]

f Pð Þ ¼
XK�1

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xnþ1 � xnð Þ2þQ� ynþ1 � ynð Þ2

q
: ð1Þ
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This equation is the objective function to be minimized.

Q is a penalty factor for the scanning motion in the Y di-

rection and is usually set to 1.0, as for this work. The

Q value can be set higher than 1.0 to intentionally reduce

scanning motion in the Y direction.

2.2 Scanning path optimization program based

on the SA algorithm

The SA algorithm imitates the cooling and annealing

processes of molten metal to find a global minimum of the

objective function [13, 14]. It basically includes iterative

random searching procedures characterized with predeter-

mined accepting rules and scheduled cooling of the tem-

perature parameter [15]. Similar to the work of Pardo et al.

[11], a C?? program was developed. The main work flow

of the program includes the generation of an initial zigzag

path and the optimization of the scanning path through the

cooling and annealing mimicking procedure [5]. The pro-

gram starts with an initial temperature parameter

(T0 = 0.5), and then T0 is cooled down over 1000 steps

toward zero. With each temperature parameter, the pro-

gram executes 100 9 Ns random searches. Ns is the total

spot number of a given slice. At each search step, the cost

value, f, is calculated and path updating is determined

according to the probabilistic function characterized by the

temperature parameter. This setting of operational param-

eters was effective for finding a satisfactory path solution.

There are several methods to generate a new scanning

path from the current one. For simplicity, we only consider

the method [16] shown schematically in Fig. 1; two scan-

ning spots are randomly selected, and then the scanning

orders of the spots between these two selected spots are

reversed.

Figure 1a shows the initial zigzag scanning path.

Assuming that spots 5 and 10 are randomly selected, the

scanning orders of the spots between spots 5 and 10 need to

be reversed. In the next step, the program connects spot 5

with spot 9, and spot 6 with spot 10, as shown in Fig. 1b.

The program then cuts the connections between spots 5 and

6, and spots 9 and 10. The newly generated path is shown

in Fig. 1c. The path difference between the paths in

Fig. 1a, c can be computed as

Dl ¼ L 5; 9ð Þ þ L 6; 10ð Þ � L 5; 6ð Þ � L 9; 10ð Þ: ð2Þ

Rearranging the scanning path during the random sear-

ches in this way provides the benefit of obtaining the path

length change without excessive calculations. Furthermore,

it allows for both large and small modifications of the path

length. Large modifications are effective for accelerating

the convergence in the initial stage and to escape from

local minima, while small modifications are efficient in the

proximity of the minimum [11].

2.3 Fast path optimization of a single slice

with parallel random searches

After applying our developed path optimization program

to a number of cases including those mentioned in the

literature, we found that it often requires thousands of

serial random searches before updating to an accepted new

scanning path. We studied four clinical and two study cases

mentioned in Kang’s work [2] and analyzed the occurrence

frequency of the required number of random searches, Ni,

before updating to an accepted path. The result of this

study is summarized in Table 1.

It can be observed in Table 1 that less than 10% of the

accepted paths were obtained within 100 random searches

and more than 50% of accepted paths were obtained over

1000 random searches in all six cases. The average num-

bers of random searches that the scanning path optimiza-

tion program required before updating to an accepted new

path are greater than 1756 in all six cases. More scanning

paths of other patterns were tested, and the results were

similar. These results demonstrate that the previous method

of scanning path optimization based on the SA algorithm,

as in the literature, requires large numbers of serial random

Fig. 1 Elaborate procedure to

randomly generate a new

scanning path. Spots 5 and 10

are randomly selected, and the

scanning orders of the spots

between these two selected

spots are reversed
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searches, which account for a major part of the optimiza-

tion time. Therefore, it is a natural strategy to seek the

possibility of parallelizing this random search process to

substantially reduce the optimization time.

A brief description of our newly developed parallelized

method of scanning path optimization based on the SA

algorithm is shown in Fig. 2. In our new scheme, the serial

random searches of previous works [2, 5, 11] are replaced

with parallel random searches. This new process can be

deemed as replacing the throwing of a single dice 1024

times with throwing 1024 dices at one time. CUDA parallel

programming [17] is employed to realize these parallel

random searches. The flowchart of a CUDA program using

the parallel random search method is shown in Fig. 3.

In a CUDA parallel programming framework, compu-

tation tasks are categorized into CPU host and GPU device

tasks which are executed by calling CUDA kernels. When

the kernels are called on the host (CPU), the kernels start a

thread grid and are executed N times in parallel by N dif-

ferent threads on the device (GPU) [17]. A thread grid

consists of many thread blocks that are assigned for dif-

ferent tasks. A thread block comprises multiple threads. As

shown in Fig. 3, in the new program, Nt threads simulta-

neously search for an accepted new path based on the same

current path P0 in each iteration, and the maximum number

of Nt is 1024 due to the limit of the GPU hardware. It

should be noted that when Nt is set to 1, the parallel random

search method is identical to the previous serial imple-

mentation found in the literature. When a parallel random

search step is finished, one of the following three situations

may occur: (1) No new accepted path is found and no path

updating takes place; (2) only one new accepted path is

found and the program updates the path; and (3) more than

one new accepted path is found, and the program randomly

chooses one accepted path to update. Then, the program

repeats the search process following the previously

described cooling and annealing procedure. After a certain

number of parallel random search iterations, the ending

conditions are satisfied and the program will then return to

the current path and exit. In this developed program, ran-

dom numbers are generated by the cuRAND library [17] to

guarantee the equivalence of serial random and simulta-

neous random searches. Furthermore, this equivalence is

strengthened by randomly selecting one accepted path

when multiple accepted paths are found in one parallel

random search iteration step.

Table 1 Occurrence frequency

of the required number of

random searches, Ni, and the

related statistics in all six

studied cases

Case ID Number of spots Ni B 100 (%) Ni[ 1000 (%) Average of Ni Maximum of Ni

1 112 8.9 50.6 1757 20,089

2 145 6.6 57.1 2046 21,299

3 244 4.8 72.5 5472 63,003

4 218 5.5 68.0 3481 48,724

5 100 9.3 56.8 2709 34,823

6 108 8.4 64.4 3430 43,044

Fig. 2 Explanation of the method to reduce the optimization time of

the scanning path optimization based on the SA algorithm by

replacing large numbers of serial random searches with parallel

random searches. a Examples of serial random searches. b Examples

of parallel random searches
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2.4 Simultaneous optimization of scanning paths

of multiple slices

In the previous section, the optimization of a single slice

using the parallel random search method is realized by

employing thousands of threads of one thread block.

Considering that the optimizing processes of the scanning

paths in different slices are independent and have no

demand for data transmission, the Nb thread blocks are

employed for the simultaneous optimization of the

Fig. 3 Flowchart of a new program using parallel random search method taking advantage of CUDA programming
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scanning paths of Nb slices. Therefore, each thread block

handles one slice. The detailed optimization process in

each thread block is identical to the process described in

the previous section. The optimization across all blocks is

concurrent but independent, so the scanning paths of

multiple slices can be optimized in parallel. In clinical

cases, the number of slices can be up to one hundred. For

example, when the target thickness is 200 mm and the slice

pitch is 2 mm, the number of slices is 100. Therefore, the

simultaneous optimization of scanning paths of multiple

slices can substantially reduce the optimization time.

3 Results

3.1 Results of path length reduction

The developed path optimization program was validated

by applying it to clinical situation problems. We used the

six cases mentioned in Kang’s work as described in the

above sections. The path length optimization results of all

six different patterns are given in Table 2. The initial

zigzag and optimized paths of two clinical cases are shown

schematically in Figs. 4 and 5.

From Table 2 and Figs. 4 and 5, it is easily observed

that the scanning path lengths are largely reduced and

useless movements between the scanning positions are

suppressed as expected. When the spatial arrangement of

scanning spots is irregular and contains disperse clusters in

the slice, the path length reduction can be greater than

50%. Besides these cases, various other complex patterns

were also tested. All these show that the developed pro-

gram using the parallel random search scheme is effective

in reducing the scanning path lengths. Additionally, the

path length reduction rates obtained in this work are found

to be similar or even better than those disclosed in pub-

lished works.

3.2 Results of the optimization time reduction

In order to verify the optimization time reduction pro-

duced by the parallelization of the random searches, we

compared the calculation time using the single-thread

CPU-based serial random and GPU-based parallel random

search programs. The CPU used in the testing work is a

3.6 GHz Intel Core i7-4790 CPU. The CUDA program

runs on a PC hosting a NVIDIA Quadro K2200 GPU with

the same CPU. For each tested case, the program is exe-

cuted ten times and the average optimization time is

computed. The testing results of the six cases mentioned in

Sect. 3.1 are shown in Table 3. It is observed that the

parallel random search-based program is at most nine times

faster than the serial random search-based program. The

relation between the improved optimization time and

number of employed threads for parallel random search is

discussed in the next section.

The developed parallel random search program is then

applied to simultaneously optimize the scanning paths of

40 slices. When the total spot number of all 40 slices is

4000, the optimization time is only 1.3 s using the same

hardware mentioned above. Completing the same task with

the same CPU hardware, the optimization time of the C??

single-thread program based on the conventional serial

random search method is 61.3 s. These optimization results

further demonstrate the advantage of the proposed GPU-

based new parallel random search method.

4 Discussion

During the optimization process of the parallel random

search method, because of the requirement of thread syn-

chronization and memory access efficiency as well as the

time needed for updating the paths after an accepted path is

found, using N threads for parallel random searches does

not cause an optimization speed increase by a factor of

N. Given these limitations, the fact that our parallel search

method still outperformed the conventional serial random

search method by up to nine times means that our new

method has obvious advantages in the path optimization of

a single slice. In addition, the advantage of using GPU

implementation for the parallel search method when opti-

mization of multiple slices is needed is inarguable.

Therefore, in this work CUDA programming using a GPU

is adopted to realize the developed parallel random search

method, while the method can also be realized using large

numbers of CPUs.

Table 2 Path length optimization results of the six studied cases. Si,

So, and DS denote the initial path length, optimized path length, and

the reduction rate, respectively

Case ID Case type Si (mm) So (mm) DS (%)

1 Head and neck 530 371 30.0

2 Head and neck 603 467 22.6

3 Study 1192 779 34.6

4 Study 1046 708 32.3

5 Prostate 1137 507 55.4

6 Prostate 1384 518 62.6
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5 Conclusion

A new and efficient parallel random search method for

scanning path optimization was developed. The large

numbers of serial random searches in the conventional

scanning path optimization method based on the SA

algorithm were replaced with parallel random searches. By

applying the developed code to clinical data found in the

literature, it was found that better scanning paths and

Fig. 4 Path length optimization result of a single slice found in case 1, a head and neck cancer patient. The left and right plots show the initial

zigzag path and optimized path obtained in this work, respectively. The path length reduction is 30%

Fig. 5 Path length optimization result of a single slice found in case 6, a prostate cancer patient. The left plot shows the initial zigzag path; the

right plot shows the optimized path obtained in this work. The path length reduction is 62.6%

Table 3 Average optimization

time comparison of the

conventional serial random

search (Ts) and new parallel

random search (Tp) methods

Case ID Ts (s) Tp (s) Ts/Tp

1 1.639 0.217 7.6

2 2.121 0.249 8.5

3 3.502 0.404 8.7

4 3.171 0.395 8.0

5 1.431 0.173 8.3

6 1.592 0.176 9.0
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shorter optimization times can be achieved. The CUDA

program developed in this work is capable of simultane-

ously optimizing as many as 100 slices of the scanning

paths, which meets the clinical requirement of particle

beam therapy, and the optimization speed is fast enough for

achieving real-time optimization. The developed path

optimization code can be integrated with a particle beam

treatment planning system.
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