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Abstract A self-adaptive differential evolution neutron

spectrum unfolding algorithm (SDENUA) is established in

this study to unfold the neutron spectra obtained from a

water-pumping-injection multilayered concentric sphere

neutron spectrometer (WMNS). Specifically, the neutron

fluence bounds are estimated to accelerate the algorithm

convergence, and the minimum error between the optimal

solution and input neutron counts with relative uncertain-

ties is limited to 10–6 to avoid unnecessary calculations.

Furthermore, the crossover probability and scaling factor

are self-adaptively controlled. FLUKA Monte Carlo is used

to simulate the readings of the WMNS under (1) a spec-

trum of Cf-252 and (2) its spectrum after being moderated,

(3) a spectrum used for boron neutron capture therapy, and

(4) a reactor spectrum. Subsequently, the measured neutron

counts are unfolded using the SDENUA. The uncertainties

of the measured neutron count and the response matrix are

considered in the SDENUA, which does not require com-

plex parameter tuning or an a priori default spectrum. The

results indicate that the solutions of the SDENUA agree

better with the IAEA spectra than those of MAXED and

GRAVEL in UMG 3.1, and the errors of the final results

calculated using the SDENUA are less than 12%. The

established SDENUA can be used to unfold spectra from

the WMNS.

Keywords Water-pumping-injection multilayered

spectrometer � Neutron spectrum unfolding � Differential
evolution algorithm � Self-adaptive control

1 Introduction

Since the first introduction of the Bonner sphere spec-

trometer (BSS) in 1960 [1], it has been widely used in

neutron spectrometry measurements, e.g., the isotopic

neutron source [2], boron neutron capture therapy (BNCT)

[3, 4], and radiation protection near a reactor [5–7], owing

to its advantages in isotropic response and wide energy

range. A newly designed neutron spectrometer, i.e., the

water-pumping-injection multilayered concentric sphere

neutron spectrometer (WMNS), uses water as a moderator

[8–10], and its principle of neutron spectrometry mea-

surement is similar to that of the BSS. The structure of the

WMNS is illustrated in Fig. 1. Seven stainless steel

spherical shells are arranged concentrically to build six

spherical gaps, five of which are used to contain water (the

thickness of the water gap from the outside to the inside is

2.5, 3.75, 8, 1.25, and 1 cm, in that order), and the

remaining gap is filled with lead. The water is indepen-

dently pumped into each gap to form a measurement unit

(combination) to moderate the incident neutrons, and an

easy-to-replace spherical 3He proportional counter (model:
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LND 2705) is placed in the innermost part to detect thermal

neutrons [11, 12]. Five gaps afford up to 32 measurement

combinations with different water thicknesses (similar to

the ball with different diameters in the BSS); therefore, 32

measurement combinations can be used to obtain the

neutron count. Switching between measurement combina-

tions was realized using an external water-pumping-injec-

tion system [13]. A 1 cm lead was utilized to measure

high-energy neutrons. The WMNS is a portable and flexi-

ble neutron spectrometer. An active or passive detector can

be used depending on the measurement environment, and

only one reading electric system is required. Moreover, the

‘‘ball–ball interference’’ problem in the traditional BSS is

eliminated by integrating the multiconcentric spheres. The

measurement combinations are coded by 0 and 1, e.g., the

combination code of Fig. 1 is ‘‘00Pb110,’’ where ‘‘0’’

represents a gap filled with air, ‘‘1’’ represents a gap filled

with water, and ‘‘Pb’’ represents lead.

The readings of the 3He proportional counter, also

known as measured counts, are the nuclear reaction event

counts of 3He(n, p)3H under different measurement com-

binations. The target spectrum is unfolded from these

measured counts using the neutron unfolding algorithm,

and the neutron unfolding process can be presented in a

discrete form as follows [14]:

Cmeas
j þ ej ¼

Xn

i¼1

Rijui j ¼ 1; 2; 3; . . .m; ð1Þ

where Cmeas
j is the measured neutron count reading from

the jth measurement combination, ej the reading uncer-

tainty of the jth measurement combination, Rij the response

of the jth measurement combination to the neutron of the

ith energy group, and ui the neutron fluence of the ith

energy group. Typically, the number of measurement

combinations is significantly smaller than the number of

energy groups.

In the WMNS, to minimize the time required for

switching measurement combinations, 18 measurement

combinations were selected. Thirty-six energy groups were

divided logarithmically at equal intervals in the range from

10-9 to 20 MeV to reduce the underdetermined degree of

the unfolding process. Therefore, m = 18 and n = 36. The

FLUKA Monte Carlo code [15] was used to calculate the

response matrix, as shown in Fig. 2, where parallel

monoenergetic neutron beams, starting from a disk with a

diameter of 28 cm, which was the same as the diameter of

the outermost stainless steel shell of the WMNS, irradiated

the WMNS to obtain responses. The distance between the

source and the center of the spectrometer was 60 cm. The

RESNUCLEi card was used to score the stopping nuclei on
3He. The stopping nuclei were tritium nuclei and protons

because of the 3He(n, p)3H reaction; subsequently, half of

all the nuclei were collected as the reading of the detector

because when each tritium nucleus or proton was produced,

a neutron was detected simultaneously. The thermal

Fig. 1 Schematic diagram of

WMNS

Fig. 2 (Color online) Response matrix of WMNS
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neutron scattering data S(a, b) were applied to the transport
of neutrons below 4 eV in polyethylene and water using

the LOW-NEUT and LOW-MAT cards [16].

Currently, various methods, such as the maximum

entropy method [17] and iterative method [18] used in the

unfolding with Maxed and Gravel 3.1 (UMG 3.1) [19] can

be used to unfold the neutron spectrum. Their solutions are

compared with those of the present study herein. An

excellent priori default spectrum is required when using

UMG 3.1 to unfold the neutron energy spectra [17] because

in the maximum entropy method, a priori default spectrum

is a benchmark for UMG 3.1 and determines when to

output the solution; in the iterative method, the priori

default spectrum is the initial of the iteration. Shahabinejad

et al. [20] used a two-step genetic algorithm (TGA) to

unfold neutron energy spectra, and the results showed a

closer match in all energy regions, particularly in the high-

energy regions, compared with the typical genetic algo-

rithm (GA). Energy groups in the high-energy range were

unfolded at the first step and then used to construct the

initial value of the second step. One year later, they used a

particle swarm optimization algorithm (PSOA) [21] to

unfold the neutron spectrum from a pulse height distribu-

tion and a response matrix, and the results demonstrated

consistency with the TGA. In the PSOA, the acceleration

constants c1, c2, and inertia weight w are empirically pre-

defined by the authors. Hoang et al. [22] applied a different

two-step GA to unfold neutron spectra obtained from

activation foils. Unlike a previous study [20], in the first

step, only the energy groups in the region from 20 to

35 MeV were unfolded, whereas in the second step, the

entire energy spectrum was unfolded while maintaining the

result of the first step. Chang et al. [9] established a

backpropagation artificial neural network [23] neutron

spectrum unfolding code, and the neural network was

trained under 32 neutron spectra. Furthermore, the capa-

bility of the code was verified using eight neutron spectra.

As mentioned above, the methods in UMG 3.1 rely on an a

priori default spectrum, whereas parameter tuning in GA

and PSOA frameworks are complicated, and neural net-

work training is time consuming and complex.

In this study, we focused on the necessity to unfold the

neutron spectrum from a WMNS. A self-adaptive differ-

ential evolution neutron spectrum unfolding algorithm

(SDENUA), which includes the neutron fluence bound

estimation and parameter self-adaptive control technique, is

proposed herein. The error between the input neutron counts

and the calculated counts was limited to 10–6 to improve the

quality of the solutions and reduce the calculation time. The

measured neutron counts of (1) the spectrum of Cf-252 and

(2) its spectrum after being moderated, (3) a spectrum used

for BNCT, and (4) a spectrum from a reactor in the IAEA

403 report [24] were simulated using the FLUKA code.

Subsequently, the measured neutron counts with relative

uncertainties were obtained using the SDENUA. The

SDENUA does not require complex parameter tuning and

an a priori default spectrum, and the established SDENUA

can be used unfold spectra from the WMNS.

The remainder of this paper is organized as follows. In

Sect. 2, first, the neutron fluence bounds are estimated;

second, the techniques related to the self-adaptive differ-

ential evolution algorithm used for neutron energy spectra

unfolding are explained in detail along with the formula-

tion of the algorithm; and third, the termination criterion of

the algorithm is proposed. In Sect. 3, the unfolded spectra

of this study are shown and compared with those of the

UMG 3.1, and the uncertainties of the unfolded spectra are

discussed. Finally, the conclusion is presented in Sect. 4.

2 Material and methods

2.1 Estimation of neutron fluence bounds

In the optimization problem, the search space bound of

each variable must be pre-estimated because the scale of

the search space significantly affects the operating time and

convergence of the algorithm [14]. In other words, the

neutron fluence of each energy group must be bounded

before unfolding. It is well known that the actual neutron

energy spectrum is due to its physical properties, and that

the minimum neutron fluence value of all energy groups is

0; however, the upper fluence must be estimated. In Ref.

[25], it was assumed that the measured count of a particular

measurement unit is fully contributed by a particular

energy group, and that the minimum fluence value of these

estimates is the upper bound of the energy group, as shown

in Eq. (3). For the ideal monochromatic pulse neutron

energy spectrum, this method can directly provide the

neutron fluence at which the pulse is located. Although this

method is based on strict mathematical derivation, because

the contribution of the fluence outside the particular energy

group to the neutron count is disregarded, the result of this

method is only approximate.

The neutron energy spectrum is typically continuous

[14], and we assume that the fluence change between

adjacent energy groups is relatively smooth. Therefore, the

range estimated using the method above is narrowed by the

following conditions:

umax
i ¼ u1

i þ u3
i

2
; ð2Þ

u1
i ¼ MINðCmeas

j =RijÞ; ð3Þ

u3
i ¼

u1
i � u1

i=3d ePiþ2
i u1

i

; ð4Þ
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where umax
i is the fluence upper bound of the ith energy

group, u1
i the fluence upper bound of the ith energy group

estimated using the method in Ref. [25], and u3
i the fluence

upper bound of the ith energy group with three energy

groups; i=3d e rounds to the nearest integer greater than or

equal to i/3, which is the first of every three u1 ¼
½u1

1;u
1
2; . . .u

1
i . . .u

1
n� (n is the number of the energy group),

whereas Cmeas
j and Rij are the same as those in Eq. (1).

Finally, the fluence upper bound of the ith energy group is

in the interval ui 2 ð0; umax
i Þ.

It is noteworthy that a smooth neutron spectrum is a

prerequisite; otherwise, the fluence of the peak will be

underestimated. Therefore, estimating the fluence upper

bound of the energy spectrum, which contains a sharp

peak, is not recommended.

2.2 Self-adaptive differential evolution algorithm

The differential evolution algorithm was introduced by

Storn et al. [26]. This algorithm has garnered significant

attention owing to its simple framework and robust global

search capabilities, and the agreement between the indi-

viduals and solutions is evaluated by the fitness value

generated by the fitness function. The iterative loop of the

algorithm includes evolutionary operations, such as ini-

tialization, mutation, crossover, and selection. For neutron

unfolding, the algorithm population is composed of several

individuals. An individual corresponds to a neutron spec-

trum comprising several genes. The positions of the genes

correspond to the positions of the energy group, and the

values of the genes correspond to the neutron fluence,

which is the variable of the unfolding problem to be solved.

The SDENUA is introduced in detail below.

Initialization of the neutron fluence of each energy

group was achieved by randomly selecting the neutron

fluence from the neutron fluence estimation interval

ð0; umax
i Þ. A key issue in initialization is the number of

individuals included in the population. An excessively

small population size can result in premature convergence,

whereas an excessively large population size will result in a

long calculation time and insufficient mixing. Gämperle

et al. analyzed the results of a 20-dimensional (20 vari-

ables) problem [32] and reported that a reasonable option

for the population size was between three and eight times

the number of variables; meanwhile, ten times the number

of variables was recommended in Ref. [27]. To ensure that

the population contained a sufficient number of diverse

vectors to participate in the mutation, as well as to improve

the search and traversal ability of the population in the

evolutionary process, the population size in this study was

set to ten times the number of the energy group (Pop-

Size = 10 9 36), and the population size was maintained

throughout the entire unfolding process. Such a population

size implies a larger number of calculations; hence, a time-

conserving technique is proposed, as will be described in

Sect. 2.3.

The mutation operation, which guides the direction of

evolution of the population, was executed using Eq. (5)

[28]. The search step length is controlled by the scaling

factor. Therefore, the mutation operation provides two

functions: the search direction and search step length

control evolution.

vi;g ¼ ki;g þ Fi � ðxB�PopSize
best;g � ki;gÞ þ Fi � ðxr;g � xf;gÞ;

ð5Þ

where vi;g is the ith temporary individual in the gth gen-

eration, ki;g the ith target individual in the gth generation,

and x
B�PopSize
best;g the high-fitness individual. xr;g is randomly

selected from the current population P, xf ;g is randomly

selected from (Pf [ P), and Pf is a set used to save failed

individuals (i.e., individuals with lower fitness in the

selection step). Fi is the scaling factor for each target

individual.

Prior to the mutation operation, all individuals in the

current population P were sorted in the descending order

based on their fitness. High-fitness individuals were ran-

domly selected from the top 100*B% individuals after

sorting, and B was a uniform random number on the

interval [0.05, 0.60]. The upper bound at 0.6 of B was more

suitable for the 36-dimension unfolding problem as it

enabled more high-fitness individuals to participate in the

mutation step as well as reduced the risk of premature

convergence. The set Pf was created with a size of 100

from the beginning of the first iteration, and the individuals

with lower fitness in the selection step were sorted as fol-

lows: when Pf was full, the failed individuals in Pf were

updated based on the ‘‘first in, first out’’ rule. Pf maintained

the failed individuals from 100 generations and provided

more different genes for mutation.

Each scaling factor was generated independently based

on a normal distribution, i.e., Fi � NðuF; 0:1Þ, which can

yield better results compared with the Cauchy sampling

method, and uF was updated [28] at the end of each gen-

eration as follows:

uF ¼ ð1� cÞ � uF þ c �meanLðSFÞ; ð6Þ

where meanL(�) is the Lehmer mean, expressed as

meanLðSFÞ ¼
P

F2SF F
2

P
F2SF F

; ð7Þ

where SF is a set for all failed mutation factors in each

generation, and the uF saved in SF is used to provide the

prior historical information for the next uF update. SF is

blanked at the beginning of each generation. c is a uniform
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random number on the interval [0.05, 0.20], and it controls

the life span of uF with generations from 5 to 20 [28];

uF ¼ 0:5 at the initialization.

The crossover operation is based on the temporary

individuals generated by the mutation operation and causes

them to crossover with the target individuals as follows:

u j
i;g ¼

v j
i;g; r j �CRi

k j
i;g; otherwise

(
; ð8Þ

where u j
i;g is the jth gene of the ith candidate individual, v j

i;g

the jth gene of vi;g, k
j
i;g the jth gene of ki;g, r

j a uniform

random number on the interval [0, 1], and CRi the cross-

over probability of each candidate individual.

The basic unit of crossover is the gene, and the genes in

the temporary and target individuals are extracted to con-

struct a candidate individual based on the crossover prob-

ability. The candidate individuals indirectly transmit the

effect from the mutation operation to the target individual,

and the effect is controlled by the crossover probability.

The self-adaptive adjustment of the crossover probability

based on historical evolution information is more effective

than the traditional constant control method.

Each CRi is generated, as shown in Eq. (9), and updated

using Eq. (10) [28].

CRi ¼
CRi � NðuCR; 0:1Þ; otherwise

CRi ¼ 0:5; CRi\0:5
CRi ¼ 0:95; CRi [ 0:95

8
<

: ; ð9Þ

uCR ¼ ð1� cÞ � uCR þ c � SMean
CR ; ð10Þ

where SMean
CR is the average of all elements in the set, SCR, and

each CRi is sent to the set SCR if the fitness of the target

individual is higher than that of the candidate individual in the

selection operation. SCR is blanked at the beginning of each

iteration. c is a uniform random number on the interval [0.05,

0.20] and controls the life span of uF with generations from 5 to

20 [28]; at the initialization [26, 28]. To ensure that the genes of

both the temporary and target individuals can be passed on

partially to the candidate individuals, CRi was truncated to

[0.5, 0.95] [29, 30]. The candidate individual generated by the

crossover operation was then sent to the selection operation.

The selection operation determines whether to refuse or

allow the candidate individual to enter the population based

on the following:

kiþ1;g ¼
ui;g; f ðui;gÞ[ f ðki;gÞ
ki;g; otherwise

�
; ð11Þ

where f (�) is the fitness function. If the candidate indi-

viduals with lower fitness are rejected from the population

to maintain the average fitness of the population at a higher

level. In that case, the mutation and crossover operations

will be futile if we do not utilize the candidate individuals.

The fitness function [22] is used to evaluate the close-

ness between the input neutron counts and individuals

(solutions), as follows:

f ¼
Xm

j¼1

Cu
j � Ccal

j

� �2

Cu
j

� �2

2
64

3
75

�1

; ð12Þ

where Cu
j is the input neutron count of the jth measurement

combination generated with a relative uncertainty, Ccal
j ¼

Pn
i R

u
iju

cal
i is the calculated neutron count of the jth mea-

surement combination, Ru
ij is a response generated with

relative uncertainty, and ucal
i is the neutron fluence of the

ith energy group of the calculated spectrum (solution). If

the solution is closer to Cu
j , then the fitness is higher. In the

spectrum unfolding process, the fitness function is the only

criterion for determining the quality of the solution.

Therefore, the performance of the fitness functions can

significantly affect the solution as well as the performance

of the algorithm. To reduce the dependence of the algo-

rithm on the fitness function, the fitness value of the opti-

mal solution was restricted to obtain a physically

acceptable solution, as will be described in the next section.

2.3 Termination criterion

The neutron energy spectrum unfolding problem is a

first-kind Fredholm integral problem, and a perfect solution

cannot be obtained based on the integral fitness function

shown in Eq. (12); furthermore, a fundamental hypothesis

for the unfolding algorithm is that solutions with an

acceptable spectral quality can be obtained based on the

fitness function [22]. In addition, to improve the probability

of convergence and obtain high-fitness solutions, a larger

maximum iteration number is typically required to truncate

the fitness of the final solution, such as that presented in

[14, 20], where the authors empirically defined a larger

maximum iteration number for spectrum unfolding. How-

ever, an overestimation of the maximum iteration number

would increase the calculation time, whereas an underes-

timation would yield a pseudo-optimal solution before

convergence. Therefore, a better termination criterion is

proposed herein.

The spectrum quality factor (QS) [14] was used as a

metric to evaluate the quality of the solution; it is expressed

as follows:

QS ¼ 100 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 uref

i � ucal
ið Þ2

Pn
i¼1 ðucal

i Þ2

vuut ; ð13Þ

where uref
i is the neutron fluence of the ith energy group of

the reference spectrum (solution) and ucal
i is the same as
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that in Eq. (12). A perfect solution results in a QS value of

0.

In the unfolding process, the quality of the optimal

solution is expected to improve as the fitness of the solu-

tions increases; this implies that the QS of the solutions

conforms to the monotonic non-increasing trend. The

relationship between QS and the fitness of the ‘‘for BNCT’’

spectrum is shown in Fig. 3; as shown, when the fitness of

the solutions increased, the QS of the solutions fluctuated.

Although the fitness of the final solution was extremely

high, the QS of the final solution was not the lowest in

history. In other words, the optimal solution was disre-

garded, and the calculation resulted in a QS rebound after

the generation with the lowest QS, which was meaningless

and harmful in some cases. However, the QS is an evalu-

ation indicator based on a known energy spectrum. In the

actual energy spectrum unfolding process, we can only use

fitness to evaluate the solutions. To minimize the QS of the

final solution, after numerous experiments, the fitness of

the optimal solution was limited to 106 as the iteration

termination criterion to replace the maximum iteration

number; this reduced the operating time and improved the

quality of the final optimal solution.

To investigate the effects of the uncertainties from the

measured neutron counts and response matrix on the final

results, the inputs of each run in the SDENUA were gen-

erated as follows:

Cu
j ¼ Cmeas

j þ randð�ej; ejÞCmeas
j ; ð14Þ

Ru
ij ¼ Rij þ randð�rij; rijÞRij; ð15Þ

where Cu
j and Ru

ij are the measured neutron count with

uncertainty estimation and the response matrix with

uncertainty estimation, respectively; Cmeas
j , Rij, and ej are

the same as those in Eq. (1), rij the uncertainty of each

response, and rand(�) the uniform random sampling

function. The maximum errors of the measured neutron

count simulated from the relative reference spectra were

0.37%, 0.75%, 2.23%, and 3.10%. The average and max-

imum errors of the response matrix were 0.75% and

10.23%, respectively. The flowchart of the SDENUA is

shown in Fig. 4.

3 Results and discussion

As shown in Fig. 5, after multiple independent runs, the

QS of the solutions with an average of 20 independent runs

was lower except in the ‘‘reactor’’ spectrum. Therefore, 20

times is a reasonable setting for actual applications.

As shown in Fig. 6, the termination generations of the

final optimal solution of each spectrum differed for 20 runs

when the fitness of the solutions reached 106. The average

termination generation for 20 runs of the ‘‘Cf-252’’ spec-

trum was the 1157th generation; ‘‘Cf-252 Mod’’ spectrum,

the 544th; ‘‘for BNCT’’ spectrum, the 451th; and ‘‘reactor’’

spectrum, the 472th. The termination generations suit-

able for ‘‘Cf-252’’ and ‘‘Cf-252 Mod’’ were overestimated,

whereas those for ‘‘for BNCT’’ and ‘‘reactor’’ were

underestimation. Therefore, a universal maximum number

of iterations might not exist. Hence, it is proved once again

that in the neutron spectrum unfolding problem, particu-

larly when considering multiple energy spectrum types,

using the maximum number of iterations as the termination

condition is not an optimal solution.

Fig. 3 (Color online) Relationship between QS and fitness of ‘‘for

BNCT’’ spectrum Fig. 4 Flowchart of SDENUA
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The termination generations varied significant between

runs, and more generations were required for the Cf-252

spectrum. As shown in Fig. 8a, many energy groups with

zero fluences appeared. To ensure a small error between

the input and calculated counts, the algorithm can only

render the fluences approximately 0 in the side positive

range because the negative fluences were rejected. This

implies that the solution space that can satisfy the error

constraint is narrowed, and more iterations are required.

Moreover, only the energy groups with fluences can con-

tribute to the neutron counts when the solution is con-

volved with the response matrix. The fewer nonzero terms

in the Cf-252 solution, the greater is the instability of the

Cf-252 solution; hence, the distribution of the solutions

will expand.

The oscillations in the unfolded spectra are an inherent

feature of the numerical solution to the Fredholm equation

[19, 20, 31], and a Gaussian smoothing method was

adopted to smooth the final optimal solution to overcome

the oscillations. In Gaussian smoothing, the smoothing

window size is 7, and sigma is 1.4.

As shown in Fig. 8, the neutron fluence at the peak

position of the solutions of the SDENUA were underesti-

mated; this is attributable to the optimal solution of the

SDENUA smoothed by the Gaussian method increasing the

error artificially. However, the results shown in Fig. 7

indicate that the positive effect of Gaussian smoothing was

greater than that the smoothing effect.

As described above in the introduction section, the

methods in UMG 3.1 begin with an a priori default spec-

trum. For a fair comparison, an excellent priori spectrum

was obtained using the UMG 3.1 unfolding code. Fur-

thermore, the inputs (Cu
j and Ru

ij) were generated using

Eqs. (14) and (15), respectively, and the chi-square was set

to 10-6 to compare with the fitness upper bound in the

SDENUA. Figure 8 shows the priori spectra and the

unfolding results of the four spectra in the IAEA 403 report

[24].

Except for Fig. 8a, the unfolding results of the other

three energy spectra show obvious errors compared with

the reference spectra in the energy range from 10–9 to

10-7 MeV. As shown in Fig. 2, the response functions of

energies from 10–9 to 10–7 MeV overlapped significantly,

thereby weakening the unfolding power of the response

functions in this energy range. Owing to the integral fitness

function, as shown in Fig. 8c, d, although the final optimal

solutions fluctuated in a large range around the reference

spectra, the fitness of the final solutions still reached 106.

This implies that the solution space that can satisfy the

error constraint is expanded, and that fewer iterations for

searching are required, as shown in Fig. 6.

Fig. 5 (Color online) QS of solutions with average over multiple

independent runs in SDENUA

Fig. 6 (Color online) Termination generation of final optimal

solution of 20 runs when fitness of solutions reached 106

Fig. 7 (Color online) QS of final solutions from SDENUA smoothed

using Gaussian and without smoothing
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The results yielded by UMG 3.1 are interesting.

Although an excellent priori default energy spectrum was

obtained, the agreement between the results and reference

spectra was poor. This may be due to the neutron counts

and response matrix input with uncertainties, as well as

UMG 3.1 unfolding the neutron spectra based strictly on

the inputs.

The uncertainties of the unfolded results were from both

the uncertainty terms of the measured neutron counts and

the response matrix. Figure 9 shows that the final results

yielded by the SDENUA had errors ranging from - 6 to

12%, as calculated using the following equation:

Ej ¼
Ccal
j � Cmeas

j

Cmeas
j

� 100; ð16Þ

where Ej is the error of the jth measurement combination,

Ccal
j is the calculated count of the jth measurement com-

bination, and Cmeas
j is the same as that in Eq. (1).

Although the fitness value of the final solution was

limited to 106, a 12% error existed between the unfolding

result and the exact measured count owing to the intro-

duction of uncertainties from both the measured counts and

Fig. 8 (Color online) Neutron spectra unfolding results (with average

of over 20 independent runs in SDENUA): a spectrum of isotope

source of Cf-252, b spectrum of Cf-252 source after being moderated,

c spectrum used for BNCT, and d spectrum of a certain reactor from

Germany. Uncertainties for the calculated spectra were less than 5%.

(calculations are presented in the ‘‘Appendix’’)

Fig. 9 (Color online) Uncertainties of unfolded results. Uncertainties

for calculated neutron counts were less than 5% (calculations are

presented in the ‘‘Appendix’’)
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the response matrix. In the neutron unfolding problem,

more attention is typically focused on obtaining a suit-

able spectrum instead of a spectrum with ultra-small

counting errors [20]. This is because ultra-small errors do

not yield an ideal analytical solution for the first-kind

Fredholm integral problem biased on the integral fitness

function [14]. Therefore, combining Figs. 8 and 9, we

believe that the errors of the unfolded results show an

acceptable accuracy level.

The fitness function in this study was used to match the

integral quantities of the input neutron counts and the

calculated neutron counts. This will trigger a discussion

regarding the mechanism of the selection operation. The

candidate individual that has failed to evolve will be denied

entry into the population in time to avoid a deterioration in

the population quality. Meanwhile, as shown in Fig. 3,

when the fitness value of an individual (solution) is higher,

the corresponding QS (the error indicator) may be low;

hence, the error between the solution and the actual energy

spectrum may be worse even though the fitness value is

high. In addition, an individual is composed of multiple

genes, and a few excellent genes will be immediately

eliminated from the population because of the low fitness

of the candidate individuals. Consequently, a potential

candidate individual will be immediately affected because

of its low fitness value.

Regarding the SDENUA established in this study, the

QS values of the optimal solutions of ‘‘Cf-252’’ and ‘‘Cf-

252 Mod’’ in Fig. 7 were worse than those of ‘‘for BNCT’’

and ‘‘reactor’’ when the final optimal solution reached 106.

In other words, limiting the fitness of the final optimal

solution might jeopardize the unfolding accuracy of the

‘‘Cf-252’’ and ‘‘Cf-252 Mod’’ energy spectra. We

hypothesize that one of the reasons for this phenomenon is

that the ‘‘Cf-252’’ and ‘‘Cf-252 Mod’’ energy spectra

contained fewer energy groups with fluences, i.e., equiva-

lent to reducing the number of effective constraint items for

neutron counts calculated in the convolution process. In

summary, for such an energy spectrum containing a large

number of 0 fluence energy groups, 106 as the fitness upper

of the optimal solution may not be sufficiently large;

however, considering other types of energy spectra, a

tradeoff was necessary.

Regarding the a priori spectrum in the neutron energy

spectrum unfolding problem, researchers have posed dif-

ferent opinions. The developers of UMG 3.1 reported [17]

that the problem of neutron energy spectrum unfolding

should be based on an excellent priori default energy

spectrum. They believed that adding the physical infor-

mation of the neutron energy spectrum enabled more

accurate unfolding results to be obtained. However, in

some studies, researchers who used artificial intelligence

algorithms reported that it was difficult to estimate an

excellent priori spectrum in some cases. Therefore,

dependence on the a priori energy spectrum should be

reduced. The former was explained from the perspective of

physics, whereas the latter from mathematics. We believe

that it is difficult to obtain an accurate solution by only

solving the first-kind Fredholm integral problem, although

this has been attempted previously [19–21]. In terms of the

algorithm based on the fitness function, some physical

information regarding the neutron energy spectrum can be

added to the fitness function as a constraint instead of

attempting to construct an excellent priori spectrum, such

as the continuity of the neutron spectrum. This might

contribute positively to unfolding, which require numerous

experiments and in-depth investigations.

4 Conclusion

The SDENUA yielded promising results for a WMNS.

In the mutation operation, the information of high-fitness

and failed individuals was used to improve the guidance for

the evolution direction of the population; hence, the fitness

of the final optimal solution reached 106 rapidly to output

an acceptable solution, thereby improving the quality of the

solution and reducing the operating time. Historical expe-

rience information was adopted to perform self-adaptive

control of the scaling factor and crossover probability. The

constructed self-adaptive difference algorithm was used to

unfold the readings simulated from the (1) spectrum of Cf-

252 and (2) its spectrum after being moderated, (3) a

spectrum used for BNCT, and (4) a spectrum from a reactor

in the IAEA 403 report. The unfolding spectra agreed

better with the reference spectra than those of UMG 3.1.

This demonstrated that in the absence of an a priori default

spectrum, and with the uncertainties of the measured

neutron counts and response matrix, the unfolded results

were at an acceptable level with errors less than 12%.
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Appendix

In this study, the type A standard uncertainty [33] was

used and calculated as follows:
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DUA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðxi � xÞ2

nðn� 1Þ

s

;

where DUA is the uncertainty of type A with the same units

as variable x, xi the calculated value of variable x based on

the spectra uncertainty estimation (xiis the calculated

neutron fluence of the ith run; in the neutron count

uncertainty estimation, xi is the calculated neutron count of

the ith run), x the mean of variable x, and n the number of

independent runs. The uncertainty of type A in percentage

is estimated as follows:

DUA
p ¼ DUA

xexac
� 100;

where xexac is the exact value of variable x.
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