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Abstract Cerebral perfusion computed tomography (PCT)

is an important imaging modality for evaluating cere-

brovascular diseases and stroke symptoms. With wide-

spread public concern about the potential cancer risks and

health hazards associated with cumulative radiation expo-

sure in PCT imaging, considerable research has been

conducted to reduce the radiation dose in X-ray-based

brain perfusion imaging. Reducing the dose of X-rays

causes severe noise and artifacts in PCT images. To solve

this problem, we propose a deep learning method called

NCS-Unet. The exceptional characteristics of non-sub-

sampled contourlet transform (NSCT) and the Sobel filter

are introduced into NCS-Unet. NSCT decomposes the

convolved features into high- and low-frequency compo-

nents. The decomposed high-frequency component retains

image edges, contrast imaging traces, and noise, whereas

the low-frequency component retains the main image

information. The Sobel filter extracts the contours of the

original image and the imaging traces caused by the con-

trast agent decay. The extracted information is added to

NCS-Unet to improve its performance in noise reduction
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and artifact removal. Qualitative and quantitative analyses

demonstrated that the proposed NCS-Unet can improve the

quality of low-dose cone-beam CT perfusion reconstruc-

tion images and the accuracy of perfusion parameter

calculations.

Keywords Cerebral perfusion CT � Low-dose � Image

denoising � Perfusion parameters

1 Introduction

Perfusion computed tomography (PCT) is commonly

used for the diagnosis of stroke symptoms [1, 2]. The

C-arm scanning mode is a reciprocal scan rather than a

continuous unidirectional one, and the scan time for C-arm

cone-beam CT (CBCT) is 5 s [3, 4]. With reciprocating

scanning, an additional pause time of 1 s is required. The

slower scanning speed of the C-arm increases the radiation

dose and causes errors in the calculation of the perfusion

parameters [5]. Appropriately reducing the scan time and

dose of C-arm CBCT while providing image details close

to normal dose conditions is a direction that must be

investigated for perfusion imaging [6–8]. Previous studies,

including those on iterative reconstruction [9–13], dic-

tionary learning [14, 15], the low-rank characteristic of

matrices [16–20], total variation regularization [21–23],

and sparse sampling[24–27], were dedicated to improving

the quality of low-dose PCT images and the calculation

accuracy of perfusion parameters. Liu et al. proposed a

dynamic rollback reconstruction method based on CBCT

[28]. This method improved the temporal resolution by

increasing the number of sampling points. Among these

methods, the classical approach involves directly post-

processing the reconstructed PCT images. For example, Ma

et al. developed an algorithm called MAP-ndiNLM, an

iterative image-reconstruction algorithm based on the

maximum a posteriori principle, to produce a clinically

acceptable cerebral PCT with a low-dose PCT image [29].

Mendrik et al. proposed a time-intensity distribution sim-

ilarity bilateral filter to reduce noise in four-dimensional

PCT scans and retain the time-intensity distribution [30].

Ma et al. proposed an innovative method that uses normal-

dose scan information as a priori information to induce

signal recovery in low-dose PCT images [31]. Supanich

et al. used HighlY constrained back PRojection(HYPR)

image reconstruction to reduce the dose and reconstruct

images with low image noise [32]. Huang et al. proposed a

threshold selection method to optimize the energy thresh-

olds based on the target component coefficients line by line

and then obtained the overall optimal energy threshold

using frequency voting, which can obtain better quality

images in k-edge imaging [33]. Another solution is to use

deconvolution to compute the perfusion parameters

directly. Boutelier et al. introduced a delay-insensitive

probability method for hemodynamic parameter estima-

tion, theoretical residual functions, and concentration-time

curves [34]. He et al. introduced a spatiotemporal decon-

volution method to improve the characterization of residual

functions and quantify the perfusion parameters [35]. CT

high-resolution imaging has an irreplaceable role in other

areas as well. Sun et al. quantified the pore throat, pore size

distribution, and mineral composition of low-permeability

uranium-bearing sandstones using high-pressure mercury

compression, nuclear magnetic resonance, X-ray diffrac-

tion, and wavelength-dispersive X-ray fluorescence [36].

Recently, deep learning has demonstrated a competitive

performance in medical image processing [37–44]. The

image produced by the scanner often suffers from artifacts

and noise because of sampling and dose limitations or

physical defects, which may adversely affect diagnostic

performance. Deep-learning-based methods can overcome

the problem of accurate noise detection in the image

domain when a sufficient number of good samples are

provided. For instance, Hu et al. proposed a novel low-dose

CT (LDCT) noise reduction method and mapped LDCT

images from corresponding normal-dose images in a slice-

by-slice manner [45]. Kang et al. proposed an optimized

convolutional neural network (CNN) structure for CT

image denoising. Based on the ability of a directional

wavelet transform to detect the directional component of

noise, they constructed a deep CNN network in the wavelet

domain [46]. The DnCNN model proposed by Zhang et al.

utilized residual learning and batch normalization to

accelerate the training process and improve denoising

performance [47]. Ma et al. adopted a CNN focusing on

residual density, called AttRDN, for LDCT sinogram

denoising to prevent the loss of detailed information, which

has potential for clinical applications [48]. Yang et al.

incorporated the imaging physics of CBCT into a residual

convolutional neural network and proposed a new end-to-

end deep-learning-based slice reconstruction method [49].

An overwhelming challenge that CT perfusion imaging

must address is the use of LDCT perfusion data to calculate

perfusion parameters [50]. To address this challenge, we

propose a deep learning method called NCS-Unet to post-

process low-dose PCT images and calculate the perfusion

parameters. Non-subsampled contourlet transform (NSCT)

is used to process the feature maps after convolution.

Additionally, the Sobel filter in our NCS-Unet extracts the

edge information of the original image and the imaging

traces of the contrast agent. The proposed NCS-Unet was

compared with the BM3D denoising algorithm [51], dis-

criminative feature representation (DFR) sparse dictionary

learning method [52], and REDCNN image domain post-

processing algorithm [45] for low-dose PCT restoration.
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The peak signal-to-noise ratio (PSNR) and structural sim-

ilarity (SSIM) were used to evaluate restoration perfor-

mance. Singular value decomposition (SVD) was used to

calculate the perfusion parameters, including cerebral

blood flow (CBF), cerebral blood volume (CBV), and mean

transit time (MTT) processed using four different

algorithms.

2 Method

As shown in Fig. 1,the channels of the input image is

increased to 32 after two 3 9 3 convolutions, and then

NSCT is performed on the features. NCS-Unet consists of

convolutional pre-processing, non-subsampling pyramidal

(NSP) decomposition, Sobel edge extraction, feature

extraction blocks, and NSP merging. The high- and low-

frequency information are fused with the gradients of the

original image. Finally, the fused information is processed

respectively using three multiscale feature extraction

blocks to obtain the high-quality PCT image.

2.1 Non-subsampled contourlet transform (NSCT)

and Sobel filter

Wavelet transform [53–55] is a more sparse represen-

tation of one-dimensional and piecewise differentiable

functions than Fourier transform [56–58]. However, it is

difficult to extend the good properties from one-dimen-

sional signals to two-dimensional or even higher-dimen-

sional signals. Because the high-dimensional wavelet

transform is based on the one-dimensional wavelet tensor

product of the one-dimensional wavelet basis, each

dimension of the signal is downsampled by the same size.

The isotropy of the conventional wavelet transform sam-

pling operation is limited to a few directions; therefore,

there is no translational invariance. It is not sufficient to

represent edge orientation in two-dimensional or higher

dimensional images. Vetterli et al. proposed contourlet

transformation [59]. Contourlet transformation is an effi-

cient method of representing two-dimensional images. In

contrast to wavelet transform [60–64], contourlet transform

uses an element called a base structure to fit the original

image, which is similar to a contour segment. The support

interval of the base is a rectangular structure whose aspect

ratio can vary with the scale, and this structure also has

directionality and anisotropy. Zhou et al. proposed NSCT

[65] to solve the problem of contourlet transform not

having translation invariance. Contourlet transform is not

translation invariant because of the upsampling structure

and the corresponding downsampling structure in the

Laplace pyramid and directional filter bank. To preserve

the multiscale property, Laplace transform is replaced by

the NSP decomposition structure. The non-downsampling

directional filter bank (NSDFB) is added to preserve

directionality.

When the image is decomposed using an L-layer non-

down-sampling pyramid to achieve multiscale decompo-

sition, L?1 subband maps of the same size as the original

image can be obtained. The NSP decomposition consists of

a low-pass and a high-pass filters. If it is necessary to fully

restore the decomposed subband map when using a two-

channel filter bank to decompose the image. Each filter

should satisfy the following relationship:

H0ðzÞG0ðzÞ þ H1ðzÞG1ðzÞ ¼ 1; ð1Þ

where H0ðzÞ is a low-pass decomposition filter, H1ðzÞ is the
high-pass decomposition filter, G0ðzÞ is a low-pass recon-

struction filter, and G1ðzÞ is the high-pass reconstruction

filter.

The frequency information is decomposed into 2k sub-

bands by the directional filter bank using a k-level binary

Fig. 1 (Color online) Low-dose PCT post-processing framework called NCS-Unet that introduces the Sobel filter and NSCT
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tree. The diagram in each direction, matched with the size

of the original image, represents only the information

within its direction. When the high-frequency subband map

is decomposed in the k-layer direction, a 2k directional

subband diagram of the same size as the original image can

be obtained simultaneously. The L-layer NSCT of the

image yields a low-frequency subband map and
PJ

j¼1 2
ki

directional subbands, where j is the number of decompo-

sition layers, and ki is the number of directional decom-

positions. The input image is decomposed into two

independent components corresponding to the high- and

low-frequency information. Subsequently, the non-down-

sampled sampling direction filter bank decomposes the

high-frequency subband map into several directional sub-

band diagrams, and the low-frequency subband map then

repeats the same operations. NSCT is a fast image trans-

formation with multiscale, multidirectional, and translation

invariance that the wavelet transform does not have.

NSCT is performed on the features after convolution.

After decomposing the extracted features into high- and

low-frequency features, two subnetworks are used for

independent training. Because only one NSP decomposi-

tion is performed, the low-frequency image retains more

complete details. The high-frequency features contain

noise and edge information, and a Sobel filter is employed

to increase the weight of the edge information. The Sobel

filter is a typical linear filter used for edge detection. It is

based on two 3 9 3 kernels that are sensitive to edges in

the horizontal and vertical directions, respectively. The

Sobel filter extracts the gradient information of an image in

the horizontal and vertical directions. The Sobel filter

calculates the difference between the pixel values in the

horizontal and vertical directions to obtain an approximate

value of the image gradient.

As shown in Fig. 2, the vertical and horizontal gradients

of the input image are extracted by the Sobel filter. In

addition to extracting the contour of the original image, the

merged image gradient extracts imaging traces caused by

the attenuation of the contrast agent. Image gradients are

fused in shallow features to increase the learning infor-

mation of image contours and contrast agents. This infor-

mation is added to improve the performance of NCS-Unet

in removing noise and artifacts during the training phase of

the network.

2.2 Multiscale feature extraction blocks

The multiscale feature extraction block shown in Fig. 3

extracts details of both high- and low-frequency features.

The parameters of NCS-Unet and multiscale feature

extraction are listed in Tables 1 and 2. The multiscale

feature extraction block consists of convolutional layers,

ReLU activation function layers, max pooling layers, and

upsampling layers. The size of the convolution kernel of a

convolutional layer is 3 9 3, and the downsampling layer

consists of a convolutional layer with a step size of 2. The

transposed convolutional layer with a step size of two

constitutes the upsampling layer in the network. Each

multiscale feature extraction block adopts the encoder–

decode architecture of a typical Unet. The encoder com-

presses the features of the input image while extracting

redundant information and the features of the image. The

decoder restores the original resolution of the image. To

better share image detail information with other layers in

NCS-Unet, skip connections are added between features of

the same resolution during upsampling and downsampling.

During encoding, the reduction in resolution facilitates

the preservation of the main features from the image, while

redundant and high-frequency information are ignored. The

features extracted during encoding and decoding are

merged. The trained NCS-Unet determines the respective

weights of the image details and noise reduction function.

The loss function used by the NCS-Unet during training is

expressed as follows:

lossðx; yÞ ¼ MSEðx; yÞ ¼ 1

MN

XM�1

i¼0

XN�1

j¼0

½yði; jÞ � xði; jÞ�2;

ð2Þ

where y(i, j) and x(i, j) denote the simulated PCT and

corresponding reference images, respectively. M and N are

the height and width of the image, respectively.

3 Experiments and results

3.1 Experimental data and hyperparameters

In this study, the dataset for training and testing con-

tained CT images provided by United Imaging. The dataset

contained normal-dose CT images of 23 patients, and each

patient had eight tomograms. Each tomogram contained 30

consecutive reconstructed images to represent the entire

process from contrast injection to contrast outflow. The

normal-dose scan was performed with the following pro-

tocol: 250 mA, 80 kVp, slice thickness of 8.0 mm. A cone-

beam imaging geometry was simulated to obtain projec-

tions of the dataset. Specifically, the source-to-detector

distance and source-to-scanned object were 1000.00 and

870.00 mm, respectively.

In addition, we added the Poisson noise model, formu-

lated in Eq. (3), to the projection data of the dataset and

then reconstructed the simulated LDCT image with one-

tenth of the normal dose.
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Fig. 2 (a1)–(a2) are original images; (b1)–(b2) Sobel vertical gradients of original images; (c1)–(c2) Sobel horizontal gradients of original

images; (d1)–(d2) Sobel gradients of original images

Fig. 3 (Color online) Multiscale feature extraction block

Table 1 Parameters of NCS-

Unet
Convolutional layer Channel/convolution kernel Image resolution

C1 16/3 9 3 128 9 128

C2 32/3 9 3 128 9 128

NSCT 32/null 128 9 128

Merge Sobel gradient 33/null 128 9 128

High frequency Low frequency – –

Block1 Block4 33/null 128 9 128

Block2 Block5 33/null 128 9 128

Block3 Block6 33/null 128 9 128

C3 C4 1/3 9 3 128 9 128

NSCT merger 1/null 128 9 128
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Zi � Poisson Z0i � exp �Pið Þf g; i ¼ 1; 2; . . .;N ð3Þ

The size of the detector parameters was 512 mm 9

512 mm, and the size of the detection element was

0.5 mm. Forward projections were collected from 720

views with a 0.5-degree angular interval. All reconstructed

CT images had 512 9 512 pixels, with a pixel size of

0.156 mm. PCT images of the patient were used as the test

set for the ablation experiment. The fivefold cross-valida-

tion scheme was used in a comparison experiment to

demonstrate the excellent restoration ability of NCS-Unet

on perfused images. The classification of the training and

test sets was randomized. CT images from the training set

were segmented, rotated, and shifted to increase the

amount of training data. The size of the original CT image

Table 2 Multiscale feature

extraction block architecture
Convolutional layer Channel/convolution kernel Image resolution

C1 33/3 9 3 128 9 128

Downsample D1 33/3 9 3 64 9 64

C2 66/3 9 3 64 9 64

Downsample D2 66/3 9 3 32 9 32

C3 132/3 9 3 32 9 32

Downsample D3 132/3 9 3 16 9 16

C4 264/3 9 3 16 9 16

Transpose convolution T1 264/3 9 3 32 9 32

T1 concat C3 396/null 32 9 32

C5 132/3 9 3 32 9 32

Transpose convolution T2 132/3 9 3 64 9 64

T2 concat C2 198/null 64 9 64

C6 66/3 9 3 128 9 128

Transpose convolution T3 66/3 9 3 128 9 128

T3 concat C1 99/null 128 9 128

C7 33/3 9 3 128 9 128

Fig. 4 Denoising results of different methods. (a1)–(a3) normal-dose

PCT images, (b1)–(b3) low-dose PCT images, (c1)–(c3) results

processed using DFR, (d1)–(d3) results processed using BM3D, (e1)–

(e3) results processed using REDCNN, and (f1)–(f3) results processed
using NCS-Unet
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was resized to 128 9 128. We used the Adam algorithm to

optimize the loss function. The quadratic gradient correc-

tion was introduced, and the default parameters were used.

Beta1 was set to 0.9, and beta2 was set to 0.999. To

accelerate the convergence of the network, we set the ini-

tial value of the learning rate to 1e-3. The total number of

training epochs was 40. As the number of training epochs

increased, the learning rate decreased. All neural network

methods were implemented using the Tensorflow frame-

work. The computer configurations were as follows:

Intel(R) Core (TM) i7-4790K 4.00 GHz CPU, NVIDIA

GTX 2080Ti GPU with 11 GB memory. Ablation experi-

ments and cross-validation were performed to verify the

performance of NCS-Unet. We also compared the results

of the different methods in terms of subjective evaluation

and objective metrics. The objective metrics used included

the PSNR and SS. The PSNR is defined as follows:

PSNR ¼ 10 log
L2

MSE

� �

; ð4Þ

where L is the maximum gray level in the image.

The PSNR provides an objective standard for describing

image distortion and noise level. The larger the value, the

smaller the difference between the image to be measured

and the reference image. The SSIM defined is as follows:

SSIMðim; gtÞ ¼ lðim; gtÞ � cðim; gtÞ � sðim; gtÞ; ð5Þ

lðim; gtÞ ¼
2limlgt þ c1

l2im þ l2gt þ c1
; ð6Þ

cðim; gtÞ ¼ 2rimrgt þ c2
r2im þ r2gt þ c2

; ð7Þ

sðim; gtÞ ¼ rim;gt þ c3
rimrgt þ c3

; ð8Þ

where lim and l2im are the mean and variance of the image

to be measured (im), respectively, lgt and l2gt are the mean

and variance of the reference image (gt), respectively, rim;gt
is the covariance of im and gt, and c1, c2, and c3 are con-

stants. The structural similarity measures the degree of

image similarity based on three aspects: brightness, con-

trast, and structure. Its value ranges from 0 to 1. The higher

the value of the structural similarity, the higher the

Fig. 5 Difference between the normal-dose image and the image

processed using the comparison method in this study. (a1)–(a3)
Differences between the normal-dose and low-dose images, (b1)–(b3)
differences between the normal-dose image and image processed

using the DFR algorithm, (c1)–(c3) differences between the normal-

dose image and image processed using the BM3D algorithm, (d1)–
(d3) differences between the normal-dose image and the image

processed using REDCNN, and (e1)–(e3) differences between the

normal-dose image and image processed using NCS-Unet
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similarity between the image to be measured and the ref-

erence image.

3.2 Comparison of restoration results

In this study, images and the zoomed details of the

region of interest (ROI) restored using different methods

were visually compared with normal-dose PCT images.

The comparison methods included the BM3D denoising

algorithm, DFR sparse dictionary learning method, and

REDCNN postprocessing algorithm based on deep learn-

ing. These three methods used the same training dataset

and test set as the NCS-Unet network in this study. The

fivefold cross-validation scheme was used in a comparison

experiment. The data from the 23 patients were divided

into five parts, three of which had data from five patients

each, and the other two had data from four patients each.

One of the five parts was used as the test set and four parts

were used as the training set. This process was repeated

five times until each part in the entire dataset was used for a

single test. The classification of the training and test sets

was randomized. The aforementioned three methods used

the same training dataset and test set as the NCS-Unet

network in this study.

The results of the denoising experiments are shown in

Fig. 4. The denoising results of the three methods were

Fig. 6 (Color online) Single-value decomposition of the PMA

software used to calculate the perfusion parameters for the results

processed using different methods. Columns 1–6 show the perfusion

parameter maps of the CBF, CBV, and MTT calculated from the

normal-dose, low-dose, DFRC-processed, BM3DC-processed,

REDCNNC-processed, and NCS-Unet-processed images,

respectively

Table 3 Statistical properties (mean ± standard deviation) of different algorithms in the comparison experiments

Algorithms PSNR (dB) SSIM

I II III IV V Mean I II III IV V Mean

DFR 36.98 35.02 36.89 34.51 36.75 36.03 ± 1.05 0.6973 0.6281 0.7285 0.6037 0.7294 0.6774 ± 0.0521

LDCT 30.28 29.88 29.93 30.41 29.90 30.08 ± 0.22 0.6031 0.3527 0.5445 0.4131 0.6021 0.5031 ± 0.1022

BM3D 38.68 37.13 38.51 36.64 38.44 37.88 ± 0.83 0.6433 0.6414 0.7240 0.6419 0.7064 0.6714 ± 0.0362

REDCNN 38.47 39.69 39.64 38.14 39.41 39.07 ± 0.64 0.6876 0.7329 0.6976 0.7367 0.7387 0.7187 ± 0.0216

NCS_Unet 38.63 39.81 38.56 40.22 38.78 39.20 ± 0.68 0.8303 0.7768 0.6976 0.8492 0.8485 0.8212 ± 0.0282
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selected from the same test data for comparison, and the

image display window width was [0,80] HU. Figure 4a1–

a3 show normal-dose PCT images. The second column

(b1)–(b3) are the low-dose PCT images, which were

equivalent to 10% of the normal dose; the results of dic-

tionary learning DFR processing are shown in (c1)–(c3);

the results of the BM3D algorithm processing are shown in

(d1)–(d3); (e1)–(e3) are the results of the REDCNN image

post-processing algorithm; (f1)–(f3) are the results of the

NCS-Unet processing in this study. We observed that the

image details of low-dose PCT images were overwhelmed

by a significant amount of noise, including the imaging of

the brain structure and injected contrast agent. Some arti-

facts were also caused by forward and reverse projection.

Noise and artifacts can affect the diagnosis by clinicians.

Because PCT images of the normal dose have some noise,

the denoising effect of dictionary learning is poor, and the

detailed recovery of the contrast agent is not satisfactory.

Compared with algorithms such as DFR dictionary learning

and the BM3D algorithm, the processing performance of

deep learning is significantly better. Both the image post-

processing algorithms REDCNN and NCS-Unet proposed

in this paper can reduce most of the noise and remove

artifacts, but the edge details of REDCNN are insufficient,

and part of the contrast agent information is blurred. NCS-

Unet adds high- and low-frequency decomposition and

edge information extracted by the Sobel filter. During

training phase, the image details were separated from the

noise and artifacts. Compared with REDCNN, the results

processed using NCS-Unet retained more image details.

The details and the contrast agent part of the original

normal-dose CT image can be observed very distinctly in

the part of Fig. 4 indicated by the red arrow. After adding

noise, the simulated low-dose image could not clearly

discriminate the traces of the contrast agent and noise. The

image for DFR dictionary learning was a normal-dose CT

image with partial noise, making it impossible to process

the simulated LDCT image properly. The results of BM3D

denoising were clear, but the image details were somewhat

distorted, which differed significantly from the reference

images. The REDCNN image post-processing method

removed noise and artifacts better. However, image details

were blurred compared with NCS-Unet. The imaging tra-

ces of the contrast agent in the blood vessels and other

details of the brain were not as pronounced as the results of

the NCS-Unet network. The differences between the ima-

ges of the normal dose and those processed by the com-

parison method in this study are shown in Fig. 5.

To further compare the restoration results of different

methods, we used singular value decomposition using the

PMA software to calculate the perfusion parameter maps,

including CBF, CBV, and MTT for different methods in

this study. The perfusion parameters maps calculated using

different methods are shown in Fig. 6. The first, second,

and third rows of maps are the CBF, CBV, and MTT,

respectively, calculated using different methods. These

three perfusion parameters are commonly used in clinical

diagnosis. The influence of noise on the perfusion param-

eters was apparent. As shown in Fig. 6, most of the details

of CBF, CBV, and MTT maps calculated from the simu-

lated low-dose images outside the vessels were covered by

noise. Dictionary learning DFR does not separate the image

from noise and artifacts during post-processing; therefore,

the perfusion parameter map was masked by noise. As

indicated by the white arrows in the white rectangle in

Fig. 6 show, although BM3D and REDCNN had better

post-processing performance and reduced most of the

noise, they erased part of the original image information.

The perfusion parameter maps calculated from the NCS-

Table 4 Average perfusion parameters of different algorithms in the

comparison experiments

Algorithms CBF CBV MTT

NDCT 64.40 3.11 170.26

DFR 85.28 3.34 165.86

LDCT 91.54 4.28 162.00

BM3D 59.17 2.99 183.24

REDCNN 77.57 3.84 180.56

NCS-Unet 60.30 3.13 189.92

The values closest to this standard in the other methods are given in

bold

Table 5 RMSE of perfusion parameters of different algorithms in the

comparison experiments

Algorithms CBF CBV MTT

DFR 38.24 30.10 28.63

LDCT 33.14 33.80 31.37

BM3D 27.13 30.03 28.32

REDCNN 26.32 29.01 27.84

NCS-Unet 24.08 27.32 27.96

The minimum values of perfusion parameters CBF, CBV, and MTT

obtained by each method are given in bold to highlight

Table 6 MAPE of perfusion parameters of different algorithms (%)

in the comparison experiments

Algorithms CBF CBV MTT

DFR 18.26 26.41 15.73

LDCT 22.73 30.10 16.49

BM3D 18.13 27.68 18.03

REDCNN 17.62 27.26 17.05

NCS-Unet 15.34 23.78 16.78

The minimum values of perfusion parameters CBF, CBV, and MTT

obtained by each method are given in bold to highlight
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Unet-processed images were closer to the image charac-

teristics of the normal-dose perfusion images.

In addition to the subjective evaluation of the results of

different algorithms, we also analyzed the PSNR and SSIM

of the restoration results using dictionary learning, BM3D

algorithm, REDCNN image post-processing algorithm, and

NCS-Unet on the data provided by United Image. The

mean and standard deviation of the PSNR and SSIM of the

test set were analyzed and calculated. The results are listed

in Table 3. For low-dose reconstructed images, noise and

artifacts resulted in a low PSNR and SSIM. After pro-

cessing using different algorithms, both the PSNR and

SSIM were improved to some degree. A higher PSNR was

obtained for the BM3D and REDCNN image post-pro-

cessing algorithms, but some image details were blurred

while removing noise and artifacts. This resulted in a low

SSIM for the BM3D and REDCNN image postprocessing

algorithms. NCS-Unet improved the SSIM and PSNR,

which demonstrated that the proposed NCS-Unet retained

more edge and trace information of the contrast agent

during training to improve imaging quality.

In addition to the direct subjective evaluation of the

image results restored by each algorithm and the compar-

ison of objective indicators, this paper also provides

statistics and analysis of the perfusion parameters calcu-

lated by each algorithm. We compared the mean perfusion

parameter values, root mean square error (RMSE), and

mean absolute percentage error (MAPE) of the perfusion

parameters for different methods. As shown in Table 4,

under the interference of noise and artifacts, the CBF and

CBV were considerably improved. The MTT was reduced,

which was significantly different from the mean perfusion

parameter values of normal-dose CT (NDCT) images. The

CBF and CBV of the LDCT images after the DFR dic-

tionary learning process significantly improved. Corre-

spondingly, the BM3D algorithm resulted in a decrease in

CBF and CBV parameters. From the statistical results of

the different methods, the CBF and CBV of NCS-Unet-

processed images were closer to the results of NDCT

images, except for the MTT. When calculating the perfu-

sion parameters of an image processed using NCS-Unet,

the algorithm considered it to be closer to a normal-dose

CT image and therefore used a closer color fill.

Tables 5 and 6 compare the RMSE and MAPE of the

perfusion parameters of different methods. The comparison

between the RMSE and MAPE demonstrated that the

results restored by NCS-Unet were closer to the normal-

dose CT images. The reason for the high RMSE and MAPE

of DFR dictionary learning was its poor processing power,

Fig. 7 Denoising results of different algorithms in ablation experi-

ments. (a1)–(a2) normal-dose CT images, (b1)–(b2) LDCT images,

(c1)–(c2) images processed using NCS-Unet while simultaneously

removing the NSCT and Sobel filter, (d1)–(d2) images processed

using NCS-Unet after removal of NSCT, (e1)–(e2) are images

processed by NCS-Unet after removal of the Sobel filter, and (f1)–(f2)
images processed using NCS-Unet

Table 7 Statistical properties (mean ± standard deviation) of dif-

ferent algorithms in the ablation experiments

Algorithms PSNR (dB) SSIM

LDCT 30.08 ± 0.22 0.5031 ± 0.1022

Remove both 35.75 ± 0.57 0.5483 ± 0.0236

Remove NSCT 37.49 ± 1.05 0.6097 ± 0.0215

Remove Sobel 38.08 ± 0.72 0.7032 ± 0.0325

NCS-Unet 40.20 ± 0.68 0.8212 ± 0.0282

The maximum values of PSNR and SSIM for the denoised images of

each method in the ablation experiment. The larger the PSNR and

SSIM, the higher the image quality

123

30 Page 10 of 15 K. Chen et al.



which does not adequately reduce noise or eliminate arti-

facts. The BM3D algorithm blurred the image, resulting in

perfusion parameters that differed dramatically from those

calculated from the original reference image.

3.3 Ablation experiment results

Because NCS-Unet introduces the NSCT and Sobel

filters, this section compares the restoration performance of

the network after removing the NSCT and Sobel filters one

at a time with the complete NCS-Unet restoration perfor-

mance. After the NSCT filter was removed, NCS-Unet

retained only the edge extraction of the Sobel filter. Cor-

respondingly, NCS-Unet separated only high- and low-

frequency feature images after removing the Sobel filter.

The ablation experiment used the same training and test

sets with the same loss function. The dataset contained the

normal-dose CT images of 23 patients, and data from 22

patients were used as the training set, and data from one

patient were used as the test set. The Adam algorithm was

used to optimize the loss function for 20 training epochs.

The results of the ablation experiment are shown in Fig. 7.

NCS-Unet with the NSCT filter removed restored the

image with noise in the brain background region. The red

arrow in the orange rectangle of Fig. 7 indicates that the

details of the image were blurred compared with the

restoration results of NCS-Unet. Several noise and contrast

traces were missed, and the image details were not fully

recovered. To demonstrate the contribution of the NSCT

and Sobel filter, we calculated objective metrics to evaluate

the results of the different methods. The results are listed in

Table 7. From the calculation results of PSNR and SSIM,

we concluded that the restoration results of adding only

Fig. 8 Differences between normal-dose images and images pro-

cessed using the method in the ablation experiment. Columns 1–5

show the difference between the normal- and low-dose images, the

image processed using NCS-Unet simultaneously removing the

NSCT and Sobel filter, the image processed usisng NCS-Unet after

removal of NSCT, image processed using NCS-Unet after removal of

the Sobel filter, and images processed using NCS-Unet

Table 8 RMSE of perfusion parameters processed using different

methods in the ablation experiments

Algorithms CBF CBV MTT

LDCT 33.14 33.80 31.37

Remove both 30.04 30.13 29.72

Remove NSCT 25.16 28.49 27.76

Remove Sobel 25.59 28.33 27.54

NCS-Unet 24.08 27.32 27.96

The minimum values of perfusion parameters CBF, CBV, and MTT

obtained by each method are given in bold to highlight

Table 9 MAPE of perfusion parameters calculated by different

methods in the ablation experiments (%)

Algorithms CBF CBV MTT

LDCT 22.73 30.10 16.49

Remove both 18.89 26.56 16.60

Remove NSCT 16.13 24.98 16.93

Remove Sobel 17.11 25.45 15.82

NCS-Unet 15.34 23.78 16.78

The minimum values of perfusion parameters CBF, CBV, and MTT

obtained by each method are given in bold to highlight
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NSCT decomposition are higher than those obtained using

only the Sobel filter alone, but the difference is not sig-

nificant. Compared with using both simultaneously, the

restoration results of the NCS-Unet decrease significantly

reduced after removing the NSCT or Sobel filter. This

strongly indicates that both the NSCT decomposition and

Sobel filter contribute to the post-processing of the image.

The perfusion parameter maps calculated from the

images processed using different algorithms in the ablation

experiment are shown in Fig. 8. AS the red arrow in the

yellow rectangle of Fig. 8 indicates, the NCS-Unet-pro-

cessed perfusion parameter maps and the normal-dose

perfusion maps had more similar image characteristics in

terms of the details of some contrast agent traces. To better

visualize the performance of NCS-Unet, we also compared

the RMSE and MAPE of the perfusion parameters of dif-

ferent methods. As listed in Tables 8 and 9, we can con-

clude that the RMSE and MAPE of the CBF and CBV

calculated from the NCS-Unet-processed maps were sig-

nificantly lower, except for the insignificant improvement

in MTT. This implied that the perfusion parameter maps of

the NCS-Unet image were closer to those calculated from

the normal-dose CT image (Fig. 9).

4 Discussion and summary

In this paper, a perfusion CT image post-processing

method based on deep learning, NCS-Unet, to restore low-

dose perfusion CT images is proposed. The unique char-

acteristics of the Sobel filter and NSCT were introduced

into the proposed NCS-Unet. It extracted the high- and

low-frequency information of the features by decomposing

convolutionally processed features using the introduced

NSCT. Sobel gradient information of the original image

was added to better preserve the image edge and contrast

agent traces. Denoising and ablation experiments were

conducted to validate the performance of NCS-Unet. The

results of the denoising experiment indicated that NCS-

Unet had better image contour recovery ability than other

methods in terms of subjective visual discrimination and

could more clearly distinguish the contrast agent traces

from noise. In the denoising experiments, the PSNR and

SSIM values of NCS-Unet on the test set were

39.20 ± 0.68 and 0.8212 ± 0.02822, respectively, which

were better than those of the four methods compared in this

study. The qualitative and quantitative analyses of the

restoration and estimation of perfusion parameters indi-

cated that the performance of the proposed NCS-Unet was

superior to the other methods referenced in this paper. To

verify the importance of the introduced NSCT and Sobel

Fig. 9 (Color online) Single-value decomposition of the PMA

software was used to calculate the perfusion parameters for the

results of different algorithms. Columns 1–6 show the perfusion

parameter maps of CBF, CBV, and MTT calculated from the normal-

dose image, low-dose image, and image processed using NCS-Unet

simultaneously removing the NSCT and Sobel filter, image processed

using NCS-Unet after removal of NSCT, image processed using NCS-

Unet after removal of the Sobel filter, and images processed using

NCS-Unet
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filters for NCS-Unet, we conducted ablation experiments.

Compared with the restoration performances of the meth-

ods in the ablation experiments, the PSNR and SSIM val-

ues of the complete NCS-Unet were the highest. The

RMSE and MAPE of the perfusion parameters demon-

strated the irreplaceable role of both the Sobel filter and

NSCT for NCS-Unet.

There are several limitations in the current work which

warrant further investigation. First, this paper only provides

a simple and condensed description of perfusion imaging.

We ignored its complex principles and many other ele-

ments and focused only on this part of imaging. Second,

owing to the lack of equipment, all the data used in this

study were simulation data based on perfusion CT data

provided by United Imaging. Although the scanning pro-

tocol of C-arm CBCT was referenced, we hope to collect

actual data and conduct further research in the future.

Third, the architecture of the NCS-Unet used in this study

is primarily based on the Unet architecture, which is rela-

tively simple. Many novel technologies, such as the

attention mechanism and deep adversarial networks, are

likely to improve the performance of neural networks to a

certain extent. In the future, the network architecture can

be further modified to improve the performance of neural

networks.

In conclusion, a low-dose perfusion CT image post-

processing method, NCS-Unet, is proposed and compared

with the restoration results of the BM3D denoising algo-

rithm, DFR sparse dictionary learning method, and

REDCNN post-processing. The results of the comparison

experiments demonstrated that perfusion CT images pro-

cessed using the NCS-Unet proposed in this paper had

higher imaging quality, and the restored perfusion maps

were closer to the characteristics of normal-dose perfusion

images. The results of the ablation experiments demon-

strated that the NCST and Sobel filter collectively

improved the processing performance of the NCS-Unet.
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12. P.B. Noël, A.A. Fingerle, B. Renger, et al., A clinical comparison

study of a novel statistical iterative and filtered backprojection

reconstruction. In Medical Imaging 2011: Physics of Medical
Imaging, vol. 7961, p. 79612L (International Society for Optics

and Photonics, 2011). https://doi.org/10.1117/12.877971

13. Y. Funama, K. Taguchi, D. Utsunomiya et al., Combination of a

low tube voltage technique with the hybrid iterative reconstruc-

tion (idose) algorithm at coronary CT angiography. J. Comput.

Assist. Tomogr. 35, 480 (2011). https://doi.org/10.1097/RCT.

0b013e31821fee94

14. R. Fang, T. Chen, P.C. Sanelli, Towards robust deconvolution of

low-dose perfusion CT: Sparse perfusion deconvolution using

online dictionary learning. Med. Image Anal. 17, 417–428

(2013). https://doi.org/10.1016/j.media.2013.02.005

15. X. Tian, D. Zeng, S. Zhang et al., Robust low-dose dynamic

cerebral perfusion CT image restoration via coupled dictionary

learning scheme. J. Xray Sci. Technol. 24, 837–853 (2016).

https://doi.org/10.3233/XST-160593

16. H. Ji, S. Huang, Z. Shen et al., Robust video restoration by joint

sparse and low rank matrix approximation. SIAM J. Imag. Sci. 4,
1122–1142 (2011). https://doi.org/10.1137/100817206

17. J. Suo, Y. Deng, L. Bian et al., Joint non-Gaussian denoising and

superresolving of raw high frame rate videos. IEEE Trans. Image

Process. 23, 1154–1168 (2014). https://doi.org/10.1109/TIP.2014.
2298976

18. H. Gao, J.F. Cai, Z. Shen et al., Robust principal component

analysis-based four-dimensional computed tomography. Phys.

Med. Biol. 56, 3181 (2011). https://doi.org/10.1088/0031-9155/

56/11/002

123

Robust restoration of low-dose cerebral perfusion CT images using NCS-Unet Page 13 of 15 30

https://doi.org/10.1016/j.neurad.2008.03.005
https://doi.org/10.1148/radiol.2513081073
https://doi.org/10.1148/radiol.2513081073
https://doi.org/10.1007/s00234-009-0543-6
https://doi.org/10.1148/radiol.2532082010
https://doi.org/10.1148/radiol.2532082010
https://doi.org/10.1016/j.acra.2008.09.003
https://doi.org/10.3174/ajnr.A1967
https://doi.org/10.3174/ajnr.A1967
https://doi.org/10.1007/s00330-008-1083-x
https://doi.org/10.1007/s00330-008-1083-x
https://doi.org/10.1137/040616024
https://doi.org/10.1016/j.neurad.2014.11.003
https://doi.org/10.1016/j.neurad.2014.11.003
https://doi.org/10.1148/radiol.2015132766
https://doi.org/10.1117/12.877971
https://doi.org/10.1097/RCT.0b013e31821fee94
https://doi.org/10.1097/RCT.0b013e31821fee94
https://doi.org/10.1016/j.media.2013.02.005
https://doi.org/10.3233/XST-160593
https://doi.org/10.1137/100817206
https://doi.org/10.1109/TIP.2014.2298976
https://doi.org/10.1109/TIP.2014.2298976
https://doi.org/10.1088/0031-9155/56/11/002
https://doi.org/10.1088/0031-9155/56/11/002


19. H. Gao, H. Yu, S. Osher et al., Multi-energy CT based on a prior

rank, intensity and sparsity model (prism). Inverse Prob. 27,
115012 (2011). https://doi.org/10.1088/0266-5611/27/11/115012

20. S.G. Lingala, Y. Hu, E. DiBella et al., Accelerated dynamic MRI

exploiting sparsity and low-rank structure: KT SLR. IEEE Trans.

Med. Imaging 30, 1042–1054 (2011). https://doi.org/10.1109/

TMI.2010.2100850

21. Z. Tian, X. Jia, K. Yuan et al., Low-dose CT reconstruction via

edge-preserving total variation regularization. Phys. Med. Biol.

56, 5949 (2011). https://doi.org/10.1088/0031-9155/56/18/011

22. R. Fang, P.C. Sanelli, S. Zhang, et al., Tensor total-variation

regularized deconvolution for efficient low-dose CT perfusion. In

International Conference on Medical Image Computing and
Computer-Assisted Intervention (Springer, 2014), pp. 154–161.

https://doi.org/10.1007/978-3-319-10404-1_20

23. R. Fang, S. Zhang, T. Chen et al., Robust low-dose CT perfusion

deconvolution via tensor total-variation regularization. IEEE

Trans. Med. Imaging 34, 1533–1548 (2015). https://doi.org/10.

1109/TMI.2015.2405015

24. C.A. Mistretta, Undersampled radial MR acquisition and highly

constrained back projection (HYPR) reconstruction: potential

medical imaging applications in the post-Nyquist era. J. Magn.

Resonan. Imaging 29, 501–516 (2009). https://doi.org/10.1002/

jmri.21683

25. H.K. Song, L. Dougherty, k-space weighted image contrast

(KWIC) for contrast manipulation in projection reconstruction

MRI. Magn. Resonan. Med. 44, 825–832 (2000). https://doi.org/

10.1002/1522-2594(200012)44:6\825::AID-MRM2[3.0.CO;2-

D

26. L. Feng, L. Axel, H. Chandarana et al., Xd-grasp: golden-angle

radial MRI with reconstruction of extra motion-state dimensions

using compressed sensing. Magn. Reson. Med. 75, 775–788

(2016). https://doi.org/10.1002/mrm.25665

27. T. Martin, J. Hoffman, J.R. Alger et al., Low-dose CT perfusion

with projection view sharing. Med. Phys. 45, 101–113 (2018).

https://doi.org/10.1002/mp.12640

28. J.S. Liu, Y.K. Zhang, H. Tang et al., Rollback reconstruction for

TDC enhanced perfusion imaging. Nucl. Sci. Tech. 32, 80 (2021).
https://doi.org/10.1007/s41365-021-00918-7

29. J. Ma, H. Zhang, Y. Gao et al., Iterative image reconstruction for

cerebral perfusion CT using a pre-contrast scan induced edge-

preserving prior. Phys. Med. Biol. 57, 7519 (2012). https://doi.

org/10.1088/0031-9155/57/22/7519

30. A.M. Mendrik, E.J. Vonken, B. van Ginneken et al., Tips bilateral

noise reduction in 4d CT perfusion scans produces high-quality

cerebral blood flow maps. Phys. Med. Biol. 56, 3857 (2011).

https://doi.org/10.1088/0031-9155/56/13/008

31. J. Ma, J. Huang, Q. Feng et al., Low-dose computed tomography

image restoration using previous normal-dose scan. Med. Phys.

38, 5713–5731 (2011). https://doi.org/10.1118/1.3638125

32. M. Supanich, Y. Tao, B. Nett et al., Radiation dose reduction in

time-resolved CT angiography using highly constrained back

projection reconstruction. Phys. Med. Biol. 54, 4575 (2009).

https://doi.org/10.1088/0031-9155/54/14/013

33. K.X. Huang, Z. Deng, X.F. Xu et al., Optimized energy thresh-

olds in a spectral computed tomography scan for contrast agent

imaging. Nucl. Sci. Tech. 30, 38 (2019). https://doi.org/10.1007/

s41365-019-0563-9

34. T. Boutelier, K. Kudo, F. Pautot et al., Bayesian hemodynamic

parameter estimation by bolus tracking perfusion weighted

imaging. IEEE Trans. Med. Imaging 31, 1381–1395 (2012).

https://doi.org/10.1109/TMI.2012.2189890

35. L. He, B. Orten, S. Do et al., A spatio-temporal deconvolution

method to improve perfusion CT quantification. IEEE Trans.

Med. Imaging 29, 1182–1191 (2010). https://doi.org/10.1109/

TMI.2010.2043536

36. B. Sun, S.S. Hou, S. Zeng et al., 3D characterization of porosity

and minerals of low-permeability uranium-bearing sandstone

based on multi-resolution image fusion. Nucl. Sci. Tech. 31, 105
(2020). https://doi.org/10.1007/s41365-020-00810-w

37. Y. Zhang, D. Hu, Q. Zhao et al., Clear: comprehensive learning

enabled adversarial reconstruction for subtle structure enhanced

low-dose CT imaging. IEEE Trans. Med. Imaging 40,
3089–3101 (2021). https://doi.org/10.1109/TMI.2021.3097808

38. H. Chen, Y. Zhang, Y. Chen et al., Learn: learned experts’

assessment-based reconstruction network for sparse-data CT.

IEEE Trans. Med. Imaging 37, 1333–1347 (2018). https://doi.org/
10.1109/TMI.2018.2805692

39. H. Chen, Y. Zhang, M.K. Kalra et al., Low-dose CT with a

residual encoder–decoder convolutional neural network. IEEE

Trans. Med. Imaging 36, 2524–2535 (2017). https://doi.org/10.

1109/TMI.2017.2715284

40. W. Xia, Z. Lu, Y. Huang et al., Magic: manifold and graph

integrative convolutional network for low-dose ct reconstruction.

IEEE Trans. Med. Imaging 40, 3459–3472 (2021). https://doi.

org/10.1109/TMI.2021.3088344

41. W. Xia, Z. Lu, Y. Huang et al., CT reconstruction with PDF:

parameter-dependent framework for data from multiple geome-

tries and dose levels. IEEE Trans. Med. Imaging 40, 3065–

3076 (2021). https://doi.org/10.1109/TMI.2021.3085839

42. Y. Zhang, T. Lv, R. Ge et al., Cd-net: comprehensive domain

network with spectral complementary for DECT sparse-view

reconstruction. IEEE Trans. Comput. Imaging 7, 436–447 (2021).
https://doi.org/10.1109/TCI.2021.3070184

43. D. Hu, Y. Zhang, J. Liu et al., Special: single-shot projection

error correction integrated adversarial learning for limited-angle

CT. IEEE Trans. Comput. Imaging 7, 734–746 (2021). https://

doi.org/10.1109/TCI.2021.3098922

44. D. Hu, W. Wu, M. Xu et al., Sister: spectral-image similarity-

based tensor with enhanced-sparsity reconstruction for sparse-

view multi-energy CT. IEEE Trans. Comput. Imaging 6, 477–490
(2019). https://doi.org/10.1109/TCI.2019.2956886

45. H. Chen, Y. Zhang, W. Zhang et al., Low-dose CT via convo-

lutional neural network. Biomed. Opt. Express 8, 679–694

(2017). https://doi.org/10.1364/BOE.8.000679

46. E. Kang, J. Min, J.C. Ye, A deep convolutional neural network

using directional wavelets for low-dose x-ray CT reconstruction.

Med. Phys. 44, e360–e375 (2017). https://doi.org/10.1002/mp.

12344

47. K. Zhang, W. Zuo, Y. Chen et al., Beyond a Gaussian denoiser:

residual learning of deep CNN for image denoising. IEEE Trans.

Image Process. 26, 3142–3155 (2017). https://doi.org/10.1109/

TIP.2017.2662206

48. Y.J. Ma, Y. Ren, P. Feng et al., Sinogram denoising via attention

residual dense convolutional neural network for low-dose com-

puted tomography. Nucl. Sci. Tech. 32, 41 (2021). https://doi.org/
10.1007/s41365-021-00874-2

49. H.K. Yang, K.C. Liang, K.J. Kang et al., Slice-wise reconstruc-

tion for low-dose cone-beam CT using a deep residual convolu-

tional neural network. Nucl. Sci. Tech. 30, 59 (2019). https://doi.

org/10.1007/s41365-019-0581-7

50. V.S. Kadimesetty, S. Gutta, S. Ganapathy et al., Convolutional

neural network-based robust denoising of low-dose computed

tomography perfusion maps. IEEE Trans. Radiat. Plasma Medi-

cal Sci. 3, 137–152 (2018). https://doi.org/10.1109/TRPMS.2018.

2860788

51. K. Dabov, A. Foi, V. Katkovnik et al., Image denoising by sparse

3-d transform-domain collaborative filtering. IEEE Trans. Image

Process. 16, 2080–2095 (2007). https://doi.org/10.1109/TIP.2007.
901238

123

30 Page 14 of 15 K. Chen et al.

https://doi.org/10.1088/0266-5611/27/11/115012
https://doi.org/10.1109/TMI.2010.2100850
https://doi.org/10.1109/TMI.2010.2100850
https://doi.org/10.1088/0031-9155/56/18/011
https://doi.org/10.1007/978-3-319-10404-1_20
https://doi.org/10.1109/TMI.2015.2405015
https://doi.org/10.1109/TMI.2015.2405015
https://doi.org/10.1002/jmri.21683
https://doi.org/10.1002/jmri.21683
https://doi.org/10.1002/1522-2594(200012)44:6&lt;825::AID-MRM2&gt;3.0.CO;2-D
https://doi.org/10.1002/1522-2594(200012)44:6&lt;825::AID-MRM2&gt;3.0.CO;2-D
https://doi.org/10.1002/1522-2594(200012)44:6&lt;825::AID-MRM2&gt;3.0.CO;2-D
https://doi.org/10.1002/mrm.25665
https://doi.org/10.1002/mp.12640
https://doi.org/10.1007/s41365-021-00918-7
https://doi.org/10.1088/0031-9155/57/22/7519
https://doi.org/10.1088/0031-9155/57/22/7519
https://doi.org/10.1088/0031-9155/56/13/008
https://doi.org/10.1118/1.3638125
https://doi.org/10.1088/0031-9155/54/14/013
https://doi.org/10.1007/s41365-019-0563-9
https://doi.org/10.1007/s41365-019-0563-9
https://doi.org/10.1109/TMI.2012.2189890
https://doi.org/10.1109/TMI.2010.2043536
https://doi.org/10.1109/TMI.2010.2043536
https://doi.org/10.1007/s41365-020-00810-w
https://doi.org/10.1109/TMI.2021.3097808
https://doi.org/10.1109/TMI.2018.2805692
https://doi.org/10.1109/TMI.2018.2805692
https://doi.org/10.1109/TMI.2017.2715284
https://doi.org/10.1109/TMI.2017.2715284
https://doi.org/10.1109/TMI.2021.3088344
https://doi.org/10.1109/TMI.2021.3088344
https://doi.org/10.1109/TMI.2021.3085839
https://doi.org/10.1109/TCI.2021.3070184
https://doi.org/10.1109/TCI.2021.3098922
https://doi.org/10.1109/TCI.2021.3098922
https://doi.org/10.1109/TCI.2019.2956886
https://doi.org/10.1364/BOE.8.000679
https://doi.org/10.1002/mp.12344
https://doi.org/10.1002/mp.12344
https://doi.org/10.1109/TIP.2017.2662206
https://doi.org/10.1109/TIP.2017.2662206
https://doi.org/10.1007/s41365-021-00874-2
https://doi.org/10.1007/s41365-021-00874-2
https://doi.org/10.1007/s41365-019-0581-7
https://doi.org/10.1007/s41365-019-0581-7
https://doi.org/10.1109/TRPMS.2018.2860788
https://doi.org/10.1109/TRPMS.2018.2860788
https://doi.org/10.1109/TIP.2007.901238
https://doi.org/10.1109/TIP.2007.901238


52. K. Kreutz-Delgado, J.F. Murray, B.D. Rao et al., Dictionary

learning algorithms for sparse representation. Neural Comput. 15,
349–396 (2003). https://doi.org/10.1162/089976603762552951

53. R.S. Pathak, The Wavelet Transform, vol. 4 (Springer, Berlin,

2009)

54. D. Zhang, Wavelet transform. In Fundamentals of Image Data
Mining (Springer, 2019), pp. 35–44. https://doi.org/10.1007/978-

3-030-17989-2_3

55. C.-L. Liu, A tutorial of the wavelet transform. NTUEE,

Taiwan(2010)

56. H.J. Nussbaumer, The fast Fourier transform. In Fast Fourier
Transform and Convolution Algorithms (Springer, 1981),

pp. 80–111

57. T. Sumanaweera, D. Liu, Medical image reconstruction with the

FFT. GPU Gems 2, 765–784 (2005)

58. X. Zhang, Y. Shen, S. Li et al., Medical image registration in

fractional Fourier transform domain. Optik 124, 1239–1242

(2013). https://doi.org/10.1016/j.ijleo.2012.03.031

59. M.N. Do, M. Vetterli, The contourlet transform: an efficient

directional multiresolution image representation. IEEE Trans.

Image Process. 14, 2091–2106 (2005). https://doi.org/10.1109/

TIP.2005.859376

60. Y. Xu, J.B. Weaver, D.M. Healy et al., Wavelet transform

domain filters: a spatially selective noise filtration technique.

IEEE Trans. Image Process. 3, 747–758 (1994). https://doi.org/

10.1109/83.336245

61. M. Unser, A. Aldroubi, A review of wavelets in biomedical

applications. Proc. IEEE 84, 626–638 (1996). https://doi.org/10.

1109/5.488704

62. S. Li, B. Yang, J. Hu, Performance comparison of different multi-

resolution transforms for image fusion. Inf. Fus. 12, 74–84

(2011). https://doi.org/10.1016/j.inffus.2010.03.002

63. R.D. Nowak, Wavelet-based Rician noise removal for magnetic

resonance imaging. IEEE Trans. Image Process. 8, 1408–1419
(1999). https://doi.org/10.1109/83.791966

64. A. Pizurica, W. Philips, I. Lemahieu et al., A versatile wavelet

domain noise filtration technique for medical imaging. IEEE

Trans. Med. Imaging 22, 323–331 (2003). https://doi.org/10.

1109/TMI.2003.809588

65. A.L. Da Cunha, J. Zhou, M.N. Do, The nonsubsampled con-

tourlet transform: theory, design, and applications. IEEE Trans.

Image Process. 15, 3089–3101 (2006). https://doi.org/10.1109/

TIP.2006.877507

123

Robust restoration of low-dose cerebral perfusion CT images using NCS-Unet Page 15 of 15 30

https://doi.org/10.1162/089976603762552951
https://doi.org/10.1007/978-3-030-17989-2_3
https://doi.org/10.1007/978-3-030-17989-2_3
https://doi.org/10.1016/j.ijleo.2012.03.031
https://doi.org/10.1109/TIP.2005.859376
https://doi.org/10.1109/TIP.2005.859376
https://doi.org/10.1109/83.336245
https://doi.org/10.1109/83.336245
https://doi.org/10.1109/5.488704
https://doi.org/10.1109/5.488704
https://doi.org/10.1016/j.inffus.2010.03.002
https://doi.org/10.1109/83.791966
https://doi.org/10.1109/TMI.2003.809588
https://doi.org/10.1109/TMI.2003.809588
https://doi.org/10.1109/TIP.2006.877507
https://doi.org/10.1109/TIP.2006.877507

	Robust restoration of low-dose cerebral perfusion CT images using NCS-Unet
	Abstract
	Introduction
	Method
	Non-subsampled contourlet transform (NSCT) and Sobel filter
	Multiscale feature extraction blocks

	Experiments and results
	Experimental data and hyperparameters
	Comparison of restoration results
	Ablation experiment results

	Discussion and summary
	Authors’ contribution
	References




