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Abstract The theory of tune feedback correction and the

principle of a feedback algorithm based on machine

learning are introduced, with a focus on the application of

lasso regression for tune feedback correction. Simulation

verification and online feedback correction results are

presented. The results show that, after applying machine

learning, the feedback accuracy of the tune feedback sys-

tem was higher, and the betatron tune stability was further

improved.

Keywords Storage ring � Tune feedback � Machine

learning � Lasso regression

1 Introduction

For synchrotron light sources, high stability of the beam

is a tremendous advantage. Synchrotron light sources with

electron storage rings can continuously supply light for

several hours without interruption. Moreover, synchrotron

light sources with a top-off operation offer a longer con-

tinuous light supply time, facilitating highly stable optical

properties and various spatial geometrical properties of the

generated synchrotron light. This means that the syn-

chrotron light on the sample is more stable in synchrotron

radiation experimental research and is more conducive to

improving the resolution of experimental data.

At present, beam stability is an important long-term

concern for foreign and domestic laboratories, regardless of

whether the synchrotron light source is under design or

operation. To meet the design specifications or further

improve beam stability, appropriate measures must be

proposed for the machine. Although existing technologies

are being used to improve beam stability, new technologies

are being sought to improve beam stability [1–4].

Recently, in the field of accelerators, operators of the

Large Hadron Collider in Europe have developed a

machine-learning method for optical correction. According

to the relationship between the Beam Position Monitor

position and the quadrupole, the effect of optical correction

is better than that of the traditional response matrix

approach, and the application of local and global correc-

tions was completed in a later study. In addition, self-en-

coder neural networks and linear regression measurement

data denoising and reconstruction techniques have been

proposed [5, 6]. At the Stanford Positron Electron Asym-

metric Ring, an adaptive feedback method to rapidly

optimize and continuously optimize the magnet, even for

an unknown magnet that changes rapidly, can continuously

adjust all other magnets to minimize mismatches and the

resulting betatron oscillations [7]. In this work, for the

Hefei Light Source II (HLS-II) storage ring, we focus on

tune correction using machine learning and a feedback

method for correction.

In the storage rings, the betatron tune is the number of

transverse oscillation periods in one turn. Betatron tune

should avoid critical resonance lines and remain stable for

user operation [8]. In the synchrotron light source storage

ring, the tune reflects the number of transverse oscillations

of the beam in each gyration cycle, and the stability of the
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tune directly affects beam stability. The tune is affected by

various factors that may be static or dynamic [9]. Static

factors, such as manufacturing errors in the magnet and

installation errors, can be compensated for during machine

commissioning. However, dynamic factors can lead to tune

shifts. They are usually caused by changes in insertion

devices (IDs).

The Hefei Light Source (HLS) is a second-generation

dedicated synchrotron light source built in 1989. The HLS

underwent a significant upgrade beginning in 2010 and

completed by the end of 2014. This new light source was

renamed as HLS-II. The HLS-II storage ring operated at

800 MeV with a tune (4.4448, 2.3598) [10], and five IDs

were installed on the storage ring to produce high-quality

synchrotron light with different characteristics. The ID

variation causes the tune to shift and changes the beam

quality, affecting the user experiment. Although the HLS-II

employs lattice compensation for the IDs, owing to the

small size of the HLS-II storage ring, the tune of the

storage ring will still fluctuate when multiple IDs change

simultaneously; therefore, a tune feedback correction sys-

tem is needed to stabilize the tune.

Tune stability is important for the performance of

transverse bunch-by-bunch feedback systems, which plays

an important role in suppressing collective beam instabil-

ities for modern and next-generation synchrotron light

sources [11].

The remainder of this paper is organized as follows:

Sect. 2 presents the beam tune correction theory. Section 3

describes tune correction of the storage ring based on

machine learning. Section 4 discusses model training.

Section 5 presents the experiments and results. Finally,

conclusions are summarized in Sect. 6.

2 Beam tune correction theory

A variety of approaches may be used to rectify the

storage-ring tune distortion, but the main idea is to change

the quadrupole strength to achieve the desired result.

When no quadrupole error exists, the one-turn transfer

matrix at si is given by

MC sið Þ ¼ cos 2pvuð Þ
1 0

0 1

� �
þ sin 2pvuð Þ

aui bui
�cui � aui

� �
;

ð1Þ

where aui, bui, and cui are betatron amplitude functions of

the unperturbed machine.

Next, we consider a gradient perturbation DK 6¼0 at si.

Except for si, the quadrupole of the entire ring is perfect,

and the transfer matrix of this infinitesimal localized per-

turbing quadrupole error MA is as follows:

MA ¼
1 0

�DðKÞi 1

� �
: ð2Þ

The one-turn transfer matrix of point si then becomes

M�
C sið Þ ¼ MAMC sið Þ: ð3Þ

From formulas (1), (2), and (3), the change in value of each

matrix element of matrix MC can be obtained as follows:

Dm11 ¼ 0;

Dm12 ¼ 0;

Dm21 ¼ �DðKÞim11

�DðKÞim11 ¼ �DðKÞi cos 2pvuð Þ þ aui sin 2pvuð Þð Þ;
Dm22 ¼ �DðKÞim12 ¼ �bui sin 2pvuð ÞDðKÞi:

8>>>>>><
>>>>>>:

ð4Þ

If only the linear effect is considered, the increase resulting

from the quadrupole error can be obtained from

Dvu ¼ � Dm22

4p sin 2pvuð Þ ¼
1

4p
buiDðKÞi: ð5Þ

If the storage ring has more than one quadrupole error, one

can ignore their mutual influence and superimpose all lin-

ear results that are similar to perturbations on the ring to

obtain the lateral oscillation number shift of the entire

storage ring [12] as

Dvu ¼
1

4p

X
i

buiDðKÞi; ð6Þ

where DK is the quadrupole strength, bui refers to the beta

function at location s, and Dvu denotes the tune change.

From Eq. (6), it can be seen that, as long as the quadrupole

strength is changed, the tune can be corrected.

3 Tune correction of the storage ring based
on machine learning

Although the relationship between the tune and the

quadrupole can be obtained by using formula (6), beta is

not easy to obtain online; therefore, we want to directly

obtain the relationship between the tune and the quadrupole

through machine learning.

To establish a machine-learning-based feedback cor-

rection for the tune, we need a storage ring beam tune

model and a tune correction study based on this model.

3.1 Establishing the storage ring beam tune model

A substantial amount of training data is required for

machine learning, and the quality of the data is critical to

the effectiveness of the storage ring beam tune model
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(STM). To develop an accurate STM, accurate training

data that accurately represent real beam dynamics must be

collected.

To create a virtual storage ring with the HLS-II lattice as

the object with MATLAB toolbox AT [13], we used a

virtual storage ring to add a random set of errors to the

quadrupole to calculate the storage ring tune, thereby

generating numerous data pairs corresponding to the tune

and quadrupole value to form a simulated training dataset

(simulated data). Simultaneously, the strength of the

quadrupole was randomly changed on the HLS-II at tuning

and machine study time, and the storage ring tune was

measured to obtain the online training dataset composed of

the tune and the value of the quadrupole (real machine

data). Together, these two parts served as the model

training data.

After obtaining the training dataset, including simula-

tion and real data, machine-learning methods were used to

analyze the data pair to create an STM.

Presently, there are many accessible machine-learning

algorithms, each with advantages and disadvantages. The

lasso regression technique is a highly effective tool for

predictive modeling. This machine-learning method can fit

our tune correction problem well. The basic lasso regres-

sion is used to build the STM, which starts with the reality

of beam tune feedback correction and works its way up.

It is necessary to enter the training data into the model

after it has been constructed, and the STM should be

trained according to the loss function of the lasso regres-

sion, as previously described. It is feasible to develop an

STM that accurately represents the relationship between

the tune error and quadrupole value error after training and

testing to accumulate a large amount of data.

3.2 Tune feedback based on the model

The feedback correction of the tune was performed

based on the generated STM. Figure 1 shows a diagram of

HLS-II tune feedback correction.

The following are the exact steps involved in tune

feedback correction:

• The tune of the storage ring was measured.

• The tune error was calculated.

• The tune error was input into the STM to predict the

quadrupole error (output).

• A modification was made to the storage ring quadru-

pole strength in response to the predicted value of the

change in the quadrupole strength.

The above procedure was repeated until the tune of the

storage ring was adjusted, and, after several iterations, the

tune of the storage ring beam was rectified.

4 Storage ring beam tune model training

The regression problem is a function-fitting process.

Regularization was added to avoid overfitting during the

fitting process. The ‘1-norm was added to the regression in

lasso, and the loss function expression for the lasso

regression is

JðwÞ ¼ min
w

1

2nsamples

kXw� yk22 þ akwk1; ð7Þ

where Xw� y is the predicted value minus the true value,

nsamples is the number of samples, a is a constant that must

be tuned, and jjwjj1 is the L1 regularization term [14].

Lasso regression was solved using the coordinate descent

method [15, 16], and it performs constant iterations to

solve the parameters.

Lasso regression can make the coefficients of some

features smaller, and even coefficients with smaller abso-

lute values directly become zero, which enhances the

generalization ability of the model.

Because we built an STM using the lasso regression

model, the training optimization algorithm of the tune

learning model has two parts: the loss term, which is used

to measure the model’s fit to the data, and the regulariza-

tion, which is used to describe the complexity of the model.

The convergence properties of the lasso method are

highly sensitive to the regularization coefficient a, which
must be carefully chosen when training the STM. We find

our a parameter by following a procedure that we refer to

as a ‘‘regularization path,’’ which is described in more

detail below.

It follows that, if the tune matrix has only two features,

there will be two feature vectors, vx and vy. For each a
value taken, we can derive a set of parameter vectors

corresponding to this feature vector w, including three

parameters denoted by w0, w1, and w2, with w0 as a sep-

arate intercept. These parameters can be considered a point

in three-dimensional space, and, for different a values, we

obtain many points in the three-dimensional space, and the

tune 
error

The theore�cal tune 
value The current tune value

 
         
quadrupole value 

error

The current 
quadrupole

value

SR

STM

Fig. 1 Schematic of the tune feedback system using a machine-

learning method. SR is the storage ring, and STM is the storage ring

beam tune model. The input is the tune error, and the output is the

quadrupole value error
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sequence formed by all these points is called a regularized

path. Simply put, a regularization path is a plot of all

coefficient values against the a values.

The path length is calculated by dividing the minimum

value of a by the maximum value of a. We call this the

amount amin=amax (path length). We can calculate the value

of a by specifying the length of the regularized path and the
number of a values in the path, using the coordinate des-

cent method to optimize the loss function, using cross-

validation to determine the best value of a, and finally

evaluating according to the model under this regularization

coefficient indicators are modeled.

A dataset of 60,000 samples (50,000 simulated data and

10,000 real machine data) was divided into training and

testing datasets. (70% and 30% respectively), with each

sample pair consisting of 2 inputs (tune errors) and 32

outputs (quadrupole errors). We chose the length of the

regularization path to be 0.0000001, the number of a values
in the regularization path to be 600, and the number of

cross-validations to be five each time when training the

STM. The dataset was randomly partitioned into k � 1

subsamples of equal size for this approach. While k � 1

subsamples were used to develop a prediction, the

remaining subsample was used to validate this model [17].

We obtained the best STM through model training and

evaluation, with a regularization parameter of 1:458�
10�7 (see Fig. 2) and a loss item mean squared error value

of 7:419� 10�5 (see Fig. 3).

5 Storage ring tune feedback calibration
verification

Python was used to develop a simulation application of

the tune feedback correction to verify the feasibility of this

storage-ring feedback correction method based on machine

learning.

5.1 Simulation verification of tune feedback

correction

The HLS-II physical model was built using PyAT [18]

and the accelerator toolbox (AT), and a random error was

added to the HLS-II physical model to simulate the storage

ring tune shift and obtain the tune error.

The tune error value must be entered into the STM to

obtain the change in the storage ring quadrupole strength

that removes the tune error and then enters the virtual

storage ring to obtain the tune. In addition, the tune cor-

rection simulation program employs a step-by-step cor-

rection to realistically model the operation of the light

source and minimize severe changes in the setting of the

quadrupole power supply that could compromise beam

stability, as described previously. After numerous iterations

of simulation correction, the resultant tune simulation

value was compared with the theoretical value, and the

machine-learning-based storage ring tune feedback cor-

rection method was evaluated based on the comparison

result.

Four representative datasets were extracted from this

larger dataset. We chose to have as large an error as pos-

sible for each direction. They cover all possible situations

in actual operation.

(A) The horizontal tune is greater than the theoretical

value, and the vertical tune is less than the theoret-

ical value. Before feedback correction, the tune was

(0.4675, 0.3267), and, after turning on the feedback

and after several iterations, the tune was stable at

(0:4448� 0:0006, 0:3598� 0:00008) (see Fig. 4).

(B) The horizontal tune is less than the theoretical value,

the vertical one is greater than the theoretical value.

The tune before the iteration was (0.4202, 0.3926);Fig. 2 Selecting the best value for the regularization parameter after

600 iterations

0 100 200 300 400 500 600
Iteration

7.3

7.4

7.5
7.6
7.7
7.8
7.9

8
8.1

J(
w

)

Loss

Average Loss

1e-5

Fig. 3 (Color online) Mean squared error values for 600 iterations,

each of which has been cross-validated five times, giving a range as

shown in the figure. The blue line represents the average of five cross-

validations for each iteration
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that after correction was (0:4448� 0:0005,

0:3598� 0:00008) (see Fig. 5).

(C) The horizontal tune is less than the theoretical value,

and the vertical one is less than the theoretical value.

The tune before iteration was (0.4310, 0.3475); that

after correction was (0:4448� 0:0005,

0:3598� 0:00009) (see Fig. 6).

(D) The horizontal tune is greater than the theoretical

value and the vertical one is greater than the

theoretical value. The tune before the iteration was

(0.4643, 0.3639); that after correction was

(0:4448� 0:0005, 0:359� 0:00009) (see Fig. 7).

The above simulation measurement results show that the

tune feedback correction realizes the correction of the

storage ring tune and that the test range is systematic and

comprehensive. The feedback accuracy satisfied the design

requirements, confirming the feasibility of tune the feed-

back correction based on machine learning (see Table 1).

5.2 Online verification of tune feedback correction

The feasibility of the tune feedback correction technique

based on machine learning has been demonstrated through

simulation testing, and the effect of the tune feedback

correction method based on machine learning must be

validated and evaluated in real-world conditions. The steps

to follow precisely are as follows:

• Perform online feedback correction of the tune code

program.

• Periodically read the tune of the HLS-II through

PyEpics to calculate the tune error.

• Input the tune error value into the STM to obtain the

HLS-II quadrupole strength change.

• Set the change in the HLS-II quadrupole strength.

• Set the program operation interval to 2 s.

Because the HLS-II employs a physical-quantity-based

control mechanism, it can directly influence the physical

0 5 10 15 20 25 30 35
simulation step

−0.04

−0.02

0

0.02

0.04

ΔV
x,

y

Vx

Vy

Fig. 4 Extracted dataset showing the horizontal tune being greater

than that of theory and the vertical tune being smaller than that of

theory

0 5 10 15 20 25 30 35
simulation step

−0.04

−0.02

0

0.02

0.04

ΔV
x,

y

Vx

Vy

Fig. 5 Extracted dataset showing the horizontal tune being smaller

than that of theory and the vertical tune being greater than that of

theory

0 5 10 15 20 25 30 35
simulation step

−0.04

−0.02

0

0.02

0.04

ΔV
x,

y

Vx

Vy

Fig. 6 Extracted dataset showing the horizontal tune being smaller

than that of theory and the vertical tune being smaller than that of

theory

0 5 10 15 20 25 30 35
simulation step

−0.04

−0.02

0

0.02

0.04

ΔV
x,

y

Vx

Vy

Fig. 7 Extracted dataset showing the horizontal tune being greater

than that of theory and the vertical tune being greater than that of

theory
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quantity being measured or controlled [19]. The physical-

quantity-based control system provides an effective

mechanism for sharing the same hardware with different

physical functions. For example, a quadrupole must be

used in addition to the basic operating parameters of the

accelerator to adjust the operating parameters of the

machine and compensate for the additional focusing force

generated by other components in the system (such as IDs).

As a result, we divided the function of the quadrupole

strength into several corresponding functional blocks to

realize that different physical functions share the same

quadrupole.

In developing the HLS-II physical-quantity-based con-

trol system, we designed the corresponding EPICS [20–22]

records for the quadrupole for the physical functions to be

implemented in the future. For example, record QUD:K1

indicates the quadrupole theoretical design value, record

QUD:ADJ indicates the quadrupole temporary adjustment

value, record QUD:TUNE indicates the quadrupole change

amount during tune correction, and record QUD:CMPA–

CMPC indicates the compensation value. The compensa-

tion value is used to compensate for the additional focusing

force generated by the components other than the quadru-

pole. QUD:TOTAL(= QUD:K1?QUD:ADJ ? QUD:-

TUNE ? QUD:CMPA–CMPC) indicates the total value of

the quadrupole strength.

The quadrupole magnet EPICS record QUAD:TUNE is

a dedicated record for storing the quadrupole strength

change Dk during the storage-ring tune correction. There-

fore, each time the tune is corrected, the change in the

quadrupole strength needed to eliminate the tune error, as

predicted by STM, is sent to the quadrupole magnet

QUAD:TUNE record via PyEpics so that the total quad-

rupole magnet strength K is corrected and the corre-

sponding magnet supply current is changed accordingly.

The above procedure is repeated to achieve machine-

learning-based feedback adjustment of the beam tune of the

storage ring.

There are four more undulators on the HLS-II storage

ring: a linear undulator (U92), an elliptically polarized

undulator (EPU), a quasi-periodic undulator (QPU), and an

in-vacuum undulator (IVU). Users control these undulators

by sweeping the energy and polarization of the photon

beam from synchrotron radiation for various user experi-

ments. Some undulators are compensated, but not suffi-

ciently, to maintain the tune stability. Furthermore,

compensation quadrupoles have hysteresis effects, which

can cause additional tune shifts. Other undulators lack a

compensation scheme. Changes in the status of these IDs

can result in tune variations. The gaps of the four undu-

lators were randomly adjusted to imitate the user operation

mode to demonstrate the performance of the tune feedback

system for user operation (Fig. 8).

We conducted the following experiments to determine

whether the tune feedback correction had any effect:

(1) Begin the tune feedback correction program without

changing the IDs and monitoring the tune for

� 20 min. The range of the horizontal tune is

(0.4444–0.4464), while that of the vertical tune is

(0.3577–0.3617) under this feedback procedure, and

the stability is excellent.

(2) Begin the tune feedback correction procedure and

change IDs as much as possible. In reality, IDs do

not change more significantly than they do. This

experiment was equivalent to a load test. Then, for

� 20 min, keep monitoring the trajectory of the

tune. The results show that the tune changes as the

combination of ID changes. This value quickly

dropped to near the theoretical value. The range of

Table 1 Tune before and after STM correction

Situation Before correction (%) After correction (%)

Tune shift (A) 5.1, 9.1 0.1, 0.025

Tune shift (B) 5.5, 9.1 0.1, 0.022

Tune shift (C) 3.1, 3.4 0.1, 0.025

Tune shift (D) 4.3, 1.1 0.1, 0.027

0 500 1000 1500 2000
0.3

0.35

0.4

0.45

0.5

0.55

Vx

Vx

Feedback on
gap unchanging

Feedback on
gap changing

Feedback off
gap changing

0 500 1000 1500 2000
time(2s)

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Vy

Vy

Feedback on
gap unchanging

Feedback on
gap changing

Feedback off
gap changing

Fig. 8 Measured tune with feedback off and on. The red curve is for

horizontal tune, and the blue curve is for vertical tune. These are

divided into three parts: feedback on and ID gap changing off,

feedback on and ID gap changing on, and feedback off and ID gap

changing on. The changes in the ID gap are very complicated. This is

equivalent to the load test
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the horizontal tune was (0.4450–0.4530) and that of

the vertical tune was (0.3471–0.3702).

(3) Do not start the tune feedback correction program.

Instead, continue to change the combination of IDs.

The drift of the tune was relatively large when the

feedback correction program was not used; the range

of the horizontal tune was (0.3934–0.5) and that of

the vertical tune was (0.3048–0.4159).

The above online measurement results show that the

tune feedback correction realizes the correction of the

storage ring tune and that the test range is systematic and

comprehensive. The feedback accuracy satisfied the design

requirements and further verified the feasibility of tune the

feedback correction based on machine learning. The per-

formance of tune feedback is presented in Table 2.

In conclusion, the HLS-II tune feedback correction

significantly improves tune stability. This experiment

demonstrates that, when our feedback program is activated

but the IDs remain unchanged, it can maintain the same

stability as the theoretical value. Even if there is a slight

drift during the combined debugging of the IDs, the feed-

back system quickly eliminates it. However, the tune still

drifts very sharply when feedback correction is not used.

6 Conclusion

Machine-learning-based feedback correction of the

storage ring beam tune was tested on the HLS-II through

simulation correction and online experiments with IDs.

This method has been proven well. The tune has been

effectively corrected; this feedback system can be a valu-

able tool for the stable operation of storage-ring-based light

sources. This method can also be used for the optimization

of other beam optical parameters, providing a new method

for the correction of storage-ring beam optical parameters.
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