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Abstract In this paper, we present a nonrecursive residual

Monte Carlo method for estimating discretization errors

associated with the SN transport solution to radiation

transport problems. Although this technique is general, we

applied it to the mono-energetic 1-D SN equation with

linear-discontinuous finite element method spatial dis-

cretization as a demonstration of the theory for the purpose

of this study. Two angular flux representations: conforming

and simplified representations were considered in this

analysis, and the results were compared. It is shown that

the simplified representation dramatically reduces the

memory footprint and computational complexity of resid-

ual source generation and sampling while accurately cap-

turing the error associated with certain types of responses.

Keywords Residual Monte Carlo � Discretization error �
Angular flux representation

List of symbols

w Angular flux

/ Scalar flux

l Directional cosine

x x-coordinate

Rt Total cross section

Rs Scattering cross section

‘ Legendre expansion/moment order

P‘ l-th order Legendre moment

m Discrete direction index

M Total number of directions

q Distributed source
~w SN angular flux solution

L Transport operator

R Residual

w Angular quadrature weight

i Cell index

B Finite element basis function

W Finite element coefficient for angular flux

dþ=�ðxÞ Positive/negative one-sided Dirac delta

function
�w Simplified representation of angular flux

h�i Cell-integrated quantity

dw Angular flux error

dh/i Cell-integrated scalar flux error

Pr Residual source probability distribution

R Cell-angle integrated absolute residual

I Total number of cells

wt Weight of sampled particle

g Angular flux boundary condition

r Standard deviation

Np Number of particles

LD-FEM Linear-discontinuous finite element

C-FEM Continuous finite element

1 Introduction

Efficient and accurate solutions to the radiation transport

equation are of fundamental importance in the simulation

of fission reactor cores, nuclear fusion, and radiation

shielding. The Monte Carlo method [1] and deterministic
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methods (such as SN[2, 3], PN[4], and SPN[5–9]) are two

different approaches to the solution of the transport equa-

tion. The Monte Carlo method is capable of producing

fairly accurate results at the cost of an enormous amount of

CPU hours, whereas deterministic methods can be per-

formed at a fraction of the cost but often suffer from model

errors and discretization errors. Several efforts have been

made to combine these two methods to achieve better

efficiency and accuracy. One of them falls in the residual

Monte Carlo category [10, 11], where the deterministic

method is invoked recursively to accelerate the conver-

gence of the Monte Carlo calculation [12–14]. On the other

hand, one can also start with a deterministic solution and

use Monte Carlo to perform error correction. This new idea

is a nonrecursive approach and is expected to exhibit

superior performance in problems for which coarse-mesh

deterministic calculations are capable of capturing the

fundamental structure of the solution.

Consider the mono-energetic 1-D neutron transport

equation with the Legendre scattering cross-sectional

expansion truncated at order L. For simplicity, we assume

an isotropic distributed source:

l
dwðx; lÞ

dx
þ RtðxÞw ¼

XL

‘¼0

2‘þ 1

2
R‘
sðxÞ/‘ðxÞP‘ðlÞ þ qðxÞ ;

ð1Þ

where l is the neutron direction cosine, w is the neutron

angular flux, Rt is the macroscopic total cross section, R‘
s is

the ‘-th Legendre moment of the macroscopic scattering

cross section, /‘ is the angular flux moment of order ‘, P‘

is the Legendre polynomial of order ‘, and q is the dis-

tributed source. Equation (1) can be solved with the 1-D SN
method, which is a deterministic method that collocates the

transport equation along a set of discrete ordinates:

lm
d ~wm

dx
þ Rt

~wm ¼
XL

‘¼0

2‘þ 1

2
R‘
sðxÞ ~/‘ðxÞP‘ðlmÞ þ qðxÞ;

m ¼1 � � �M ;

ð2Þ

where m is the discrete direction index running from 1 to

M and M is the total number of directions. Along each

direction, a first-order ordinary differential equation is

solved using a spatial discretization technique such as

discontinuous finite element method [15, 16]. The equa-

tions along different directions are coupled through the

scattering term. The ~ in Eq. (2) indicates that the SN
solution is an approximation of the true transport solution,

in the sense that the SN solution is subject to angular and

spatial discretization errors. In the pursuit of a high-fidelity

simulation, it is often desirable to estimate the discretiza-

tion error, given an approximate solution. This process can

be computationally costly because it generally entails mesh

refinements in a high-dimensional phase space (in this case,

space and angle). The required computation can become

prohibitively expensive when the dimensionality is high

and/or the solution does not exhibit adequate regularity,

which can lead to convergence degradation.

We propose a novel approach to tackle this challenge

using the Monte Carlo method to evaluate the deterministic

numerical error. Let us first rewrite the transport equation

in operator form as

Lw ¼ q ; ð3Þ

where L denotes the neutron transport operator, w denotes

the angular flux, and q denotes the distributed source.

Given an approximate solution ~w, the associated residual is

given by

R ¼ q� L ~w : ð4Þ

Subsequently, the error d ~w � w� ~w satisfies the following

transport equation:

Ld ~w ¼ R : ð5Þ

We emphasize that L needs to be the true transport operator

for Eq. (5) to hold. To numerically solve for d ~w, it might

be tempting to substitute L with a high-order deterministic

transport operator, such as SN , projected onto a highly

refined space-angle mesh. However, as stated earlier in this

section, this is computationally expensive. The key to this

approach is to use the Monte Carlo method to invert L,

which is inherently exempt from discretization errors. The

residual Monte Carlo method presented here is signifi-

cantly more efficient than the standard Monte Carlo

method, where the full solution is first calculated, and then,

the error is computed by subtracting the deterministic

solution from the Monte Carlo solution. This is because the

residual Monte Carlo method directly computes the error

itself and concentrates computational resources toward

phase-space regions where the residual is large by sam-

pling source particles from a probability distribution

function that is proportional to the absolute value of the

residual. We refer to this procedure as a nonrecursive

residual Monte Carlo method to differentiate it from the

standard version of the residual Monte Carlo method. The

standard residual Monte Carlo method involves a recursive

set of calculations combined with phase-space adaptive

mesh refinement to achieve exponential convergence with

the number of particle histories [17–19].

Because the residual function can change sign, a source

particle sampled from its absolute value (jRj) carries a

weight bearing the sign of the original residual function at

its sampled phase-space coordinate. Another difficulty

caused by changing the sign is associated with the
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integration of the probability distribution function over the

phase space, which is an indispensable step in source

sampling. More specifically, nonsmoothness across the

sign-changing boundary (see Fig. 1) is problematic for

numerical integration. In the case of 1-D transport calcu-

lation with linear finite element spatial representation, one

can determine the sign boundary analytically and compute

the integral using a divide-and-conquer approach. In multi-

D, however, computing the boundary is difficult . To this

end, we propose a simplified angular flux representation

that is isotopic in angle and piecewise constant in space. As

will be shown later in this paper, as long as the simplified

representation preserves the original SN scalar flux, the

resulting error estimation is exact for angle-space inte-

grated responses such as cell-averaged scalar flux and

reaction rate.

Note that, although the discussion presented in this

paper revolves around mono-energetic 1-D transport cal-

culation, the basic principle can be equally applied to

multigroup multi-D transport problems. A flowchart for the

entire scheme of the residual Monte Carlo method is pre-

sented in Fig. 2

The remainder of this paper is organized as follows.

First, we consider the SN equation with standard linear-

discontinuous (LD) finite element spatial discretization and

generate the associated residual. We then introduce a

simplified spatial representation for the angular flux and

explain the residual generation using this simplified rep-

resentation. Next, we discuss some technical details for

sampling source particles from the residual function as well

as the boundary conditions and current cell interface

preservation techniques. Next, we present numerical test

results to demonstrate the efficacy of the method . Finally,

we summarize our findings and provide recommendations

for future work.

2 Standard linear discontinuous finite element
and residual generation

The prerequisite for the residual Monte Carlo method is

a functional representation of the SN angular flux, which is

defined at every space-angle point. This construction is not

unique. The representation presented below is relatively

straightforward and conformal to the discretization scheme.

2.1 Piecewise constant angular representation

We assume that the angular flux is constant within the

angle interval associated with each discrete SN direction.

That is,

~wmðlÞ ¼ ~wm ; for � 1� lm�1
2
� l� lmþ1

2
� 1 ; ð6Þ

where

lm�1
2
¼ �1þ

Xm�1

n¼1

wn ; ð7aÞ

lmþ1
2
¼ �1þ

Xm

n¼1

wn ; ð7bÞ

and wm is the SN quadrature weight associated with dis-

crete direction lm. Equation (7) ensures that the scalar flux

computed based on the piecewise constant representation is

consistent with the SN quadrature rule:

~/ ¼
XM

m¼1

~wmDlm ¼
XM

m¼1

~wmwm ; ð8Þ

where

Dlm ¼ lmþ1
2
� lm�1

2
: ð9Þ

|R|

R

Fig. 1 Nonsmoothness in the absolute value of R

Fig. 2 Residual Monte Carlo flow chart
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2.2 Linear-discontinuous finite element method

spatial discretization

Linear-discontinuous finite element method (LD-FEM)

is a standard spatial discretization scheme for the first-order

SN transport equation. In this method, the spatial solution is

projected onto a set of basis functions that are linearly

continuous within each cell but discontinuous across cell

interfaces. In particular, a pair of basis functions ðBL;BRÞ
for cell i is defined as

Bi;LðxÞ ¼
xiþ1

2
� x

Dxi
; ð10Þ

Bi;RðxÞ ¼
x� xi�1

2

Dxi
; ð11Þ

Dxi ¼xiþ1
2
� xi�1

2
: ð12Þ

Figure 3 shows the basis functions for cell i. The angular

flux solution is then given by a linear combination of these

two basis functions:

~wm
i ðxÞ ¼ ~Wm

i;LBi;LðxÞ þ ~Wm
i;RBi;RðxÞ ; ð13Þ

where i is the cell-center index, ~Wm
i;L is the solution degree

of freedom (DoF) on the left in cell i, and ~Wm
i;R is the

solution DoF on the right in cell i.

The solution at the cell interface is determined by the

standard upwinding. For example,

~wm
iþ1

2
¼

~Wm
i;R; for lm � 0

~Wm
iþ1;L; for lm\0

(
; ð14Þ

where iþ 1
2
is the cell surface index. An illustration of the

LD spatial representation for l[ 0 is shown in Fig. 4

As illustrated above, one of the major advantages of the

finite element method is that the solution is defined

everywhere in space.

2.3 Residual generation with LD-FEM

In the case of LD-FEM spatial representation, the

residual generation can be conveniently divided into two

parts: cell-interior residual and cell-interface residual. To

simplify the discussion, let us assume isotropic scattering.

By substituting Eqs. (13) and (8) into Eq. (4), we obtain

the cell-interior residual. In particular, for cell i and angle

bin m,

~Rm
i ðx; lÞ ¼

Rs;i

2
~/iðxÞ þ qi � l

~Wm
i;R � ~Wm

i;L

Dxi
� Rt;i

~Wm
i ðxÞ;

for
xi�1

2
\x\xiþ1

2

�1� lm�1
2
� l� lmþ1

2
� 1

:

ð15Þ

The cell-interface residual measures discontinuities in the

angular flux across the interfaces. The derivative operation

on a discontinuity yields a Dirac delta function. A dis-

continuity at an interface is approached from either side of

the interface depending on the upwind direction, which is

determined by lm. In particular, on cell-interface iþ 1
2
,

~Rm
iþ1

2
ðlÞ

¼
�ldþðx� xiþ1

2
Þð ~Wm

iþ1;L � ~Wm
i;RÞ; for 0� lm�1

2
� l� lmþ1

2
� þ 1

�ld�ðx� xiþ1
2
Þð ~Wm

iþ1;L � ~Wm
i;RÞ; for � 1�lm�1

2
� l� lmþ1

2
\0

(
;

ð16Þ

where dþ is the positive one-sided delta that approaches the

discontinuity from the right (x[ xiþ1
2
), and d� is the neg-

ative one-sided delta that approaches the discontinuity

from the left (x\xiþ1
2
). An illustration of dþ is provided in

Fig. 5

i−1 i
i−1/2 i+1/2

i+1

x

Bi,L Bi,R

Fig. 3 Linear-discontinuous basis functions for cell i

i+1i i+1/2

Ψ̃i,R

x

Ψ̃i,L

Ψ̃i+1,R

Ψ̃i+1,L

μ > 0

Fig. 4 Linear-discontinuous spatial representations with upwinding
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3 Simplified angular flux representation
and residual generation

Equation (15) indicates that ~R can change sign within a

phase-space cell. As will be shown in Sect. 4, the inte-

gration of the residual over each phase-space cell needs to

be computed as part of the source sampling procedure. As

explained in Sect. 1, the sign change within the phase-

space cell poses a challenge to numerical integration

schemes. Moreover, the standard conformal angular flux

representation requires a solution at each spatial DoF and

for each discrete direction. This requires additional mem-

ory costs, as typical SN codes only store moment values.

3.1 Isotropic and piecewise constant angular flux

representation

To simplify the structure of the residual and thereby

simplify the source sampling procedure, we propose a

simplified angular flux representation that is isotropic in

angle and piece(cell)-wise constant in space. Despite the

dramatic reduction in complexity, it can be shown that, as

long as the simplified representation preserves the original

cell-integrated scalar flux, the error estimation for the cell-

integrated responses, such as cell-averaged scalar flux and

reaction rate, is rigorous. The simplified angular flux rep-

resentation is as follows:

�wiðl; xÞ �
h ~/ii
2 � Dxi

; ð17Þ

where

�h ii�
Z

Dxi

ð�Þ dx : ð18Þ

As a sanity check on the preservation of the cell-integrated

scalar flux,

h �/ii ¼
Z

Dxi

Z 1

�1

�widl dx ¼ h ~/ii : ð19Þ

To show that d ~w ¼ d �w, we present the following proof.

We begin with the following error equations:

~wþ d ~w ¼w ; ð20Þ
�wþ d �w ¼w : ð21Þ

By subtracting Eq. (21) from Eq. (20),

d ~w� d �w ¼ �w� ~w : ð22Þ

Integrating Eq. (22) over angle and space, we obtain

dh ~/i � dh �/i ¼ h �/i � h ~/i ¼ 0 :

�

As in the LD case, the angular flux at the cell interface is

also determined by upwinding:

�wiþ1
2
ðlÞ ¼

�wi; for l� 0

�wiþ1; for l\0

(
: ð23Þ

An illustration of the simplified angular flux representation

for l[ 0 is provided in Fig. 6.

3.2 Residual generation with the simplified

representation

The residual generation is significantly simplified owing

to the reduced-order angular flux representation. In the

i+1i i+1/2

ε → 0

x

μ > 0

δ+(x − xi+1/2)

Fig. 5 Positive one-sided delta function

i+1i i+1/2

ψ̄i+1

μ

x

Ψ̃i,R

Ψ̃i+1,L

Ψ̃i,L

Ψ̃i+1,R

ψ̄i

Fig. 6 Isotropic and piecewise constant angular flux representations

with upwinding
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interior of the cell, the residual is piecewise constant and

isotropic:

�Ri ¼
Rs;i

2
�/i þ qi � Rt;i

�wi ; for
xi�1

2
\x\xiþ1

2

�1� l� þ 1
:

ð24Þ

On the cell interfaces, we obtain

�Rþ
iþ1

2

ðlÞ ¼ �ldþðx� xiþ1
2
Þð �wiþ1 � �wiÞ;

for 0� l� þ 1
ð25Þ

�R�
iþ1

2
ðlÞ ¼ �ld�ðx� xiþ1

2
Þð �wiþ1 � �wiÞ;

for � 1� l\0
ð26Þ

In this case, the cell interior residual does not change sign

within a phase-space cell; therefore, the residual integra-

tion is straightforward. From the memory saving perspec-

tive, in 1-D, the simplified representation requires storing

only one DoF per cell for all directions, whereas LD rep-

resentation stores two DoFs per cell and for each M dis-

crete direction. Hence, 2�M memory savings are

achieved. In the case of 2-D and 3-D, the saving factor is

4�MðM þ 2Þ and 8�MðM þ 2Þ, respectively.

4 Source sampling for residual Monte Carlo

From the perspective of implementation, the only major

difference between the residual Monte Carlo and standard

Monte Carlo methods resides in the source sampling, after

which the standard Monte Carlo algorithm can be equally

applied to the residual Monte Carlo method for tracking the

history of the sampled particles. Unlike the standard Monte

Carlo method that samples source particles from a given

source probability distribution, the residual Monte Carlo

method samples particles from a distribution that is pro-

portional to the absolute value of the residual, jRj. More

specifically, the residual source probability distribution is

jRj re-normalized as follows:

Prðl; xÞ ¼ jRj
R 1

�1

R
Dx jRjdxdl

: ð27Þ

In practice, a hierarchical approach is adopted. First, the

angle-space cell index (m, i) or cell index (i) is sampled

depending on the angular flux representation. Subse-

quently, the actual position and direction of the source

particle are sampled from within that cell.

4.1 Discrete sampling for angle-space cell index

The angle-space cell index is sampled from a probability

mass function, which is the discrete version of Eq. (27). In

the case of the standard LD representation,

Prm;i ¼
Rm;iP
m;i Rm;i

; ð28Þ

where

Rm;i ¼
Z

Dlm

Z

Dxi

jRm
i jdxdl ¼

Z

Dlþm

Z

Dxþi

Rm
i dxdl

þ
Z

Dl�m

Z

Dx�i

ð�Rm
i Þdxdl ;

ð29Þ

m ¼ 1; 2; � � � ;M ; ð30Þ

i ¼ 1

2
; 1;

3

2
; 2; � � � ; I þ 1

2
; ð31Þ

and ðDlþm ;Dxþi Þ denotes the portion of the angle-space

domain in which R is positive, ðDl�m ;Dx�i Þ denotes the

portion of the angle-space domain in whichR is negative, I

is the total number of cells, and half-integer indices (e.g., 3
2
)

are the cell interfaces the widths of which are taken to be

� ! 0.

In the case of the simplified representation, angle index

m is no longer needed, as no angular dependency is present:

Pri ¼
RiP
i Ri

; ð32Þ

where

Ri ¼
Z 1

�1

Z

Dxi

jRijdxdl ; ð33Þ

i ¼ 1

2
; 1;

3

2

�
;
3

2

þ
; 2; � � � ; I þ 1

2
; ð34Þ

and the þ=� sign on the interface indices indicates the

right/left side of the interface.

4.2 Sampling angle-space coordinates

from within a cell

Once the angle-space cell index is determined, the actual

spatial position and flight direction of the source particle

can be sampled. The sampling procedure is divided

between the cell interiors and the cell interfaces.

4.2.1 Sampling from cell interiors

In the case of the standard LD representation with iso-

tropic scattering, Rm
i is linear in both l and x according to

Eq. (15). As shown in Fig. 7, the maximum value of jRm
i j

occurs on one of the four phase-space corners.
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maxðRm
i Þ ¼max Rm

i ðlm�1
2
; xi�1

2
Þ;Rm

i ðlm�1
2
; xiþ1

2
Þ;

�

Rm
i ðlmþ1

2
; xi�1

2
Þ;Rm

i ðlmþ1
2
; xiþ1

2
Þ
� ð35Þ

By using maxðRm
i Þ as the ceiling, we can sample l and x

from jRm
i j using the rejection sampling technique. Note

that, higher-order finite elements or higher-order scattering

results in a higher-order jRj surface, which is significantly

more complex to sample from. Fortunately, none of these

matters when we use the simplified representation, of

which sampling is simply uniform from the angle and

space intervals. This is only possible because jRm
i j is

constant in angle and space, regardless of the actual shape

of jRj within a given cell.

4.2.2 Sampling from cell interfaces

On interfaces, only l needs to be sampled because x is

dictated by the interface index (in 1-D). For the LD rep-

resentation, l is sampled from a linear PDF defined within

ðlm�1
2
; lmþ1

2
Þ. For the simplified representation, l is sam-

pled from a similar distribution, either from the right or left

side of the interface.

4.2.3 Determining particle weights

Once the coordinates are sampled, the weight of the

sampled particle is determined by

wt ¼ Rm
i ðl; xÞ

jRm
i ðl; xÞj

; ð36Þ

for a standard LD representation or

wt ¼ Riðl; xÞ
jRiðl; xÞj

; ð37Þ

for the simplified representation.

5 Preserving the boundary flux and interface
partial current

The residual Monte Carlo algorithm should respect the

true transport boundary condition to yield accurate error

estimates. In our implementation, this is ensured by setting

the upstream angular flux as the incoming boundary flux on

the left and right ends, denoted by gLðlÞ and gRðlÞ,
respectively. In particular, we specify

~wm
1
2
¼ gLðlÞ for lm � 0 ; ð38Þ

~wm
Iþ1

2
¼ gRðlÞ for lm\0 ; ð39Þ

or

�w1
2
¼ gLðlÞ for l� 0 ; ð40Þ

�wIþ1
2
¼ gRðlÞ for l\0 ; ð41Þ

depending on the used angular flux representation.

The partial current across cell interfaces is another

aspect that may concern some nuclear engineering appli-

cations. Similarly to the aforementioned discussion on cell-

averaged scalar flux, in order for the simplified represen-

tation to yield an accurate error estimate for the SN partial

current, it must preserve the original SN partial current

across cell interfaces. This can be achieved by introducing

a double discontinuity at the interface. Specifically, instead

of upwinding, one restricts the domain of the cell interior

angular flux to be strictly within the cell and defines the

single-point half-range isotropic angular flux at the inter-

face by another DoF that preserves the SN partial current.

That is, we enforce

Z 1

0

l �wiþ1
2
dl ¼

�wiþ1
2

2
�

Z 1

0

l ~wiþ1
2
ðlÞdl

¼ 1

2

X

mjlm � 0

~Wm
i;R l2mþ1

2
� l2m�1

2

� �
;

ð42Þ

Z 0

�1

l �wiþ1
2
dl ¼

�wiþ1
2

2
�

Z 0

�1

l ~wiþ1
2
ðlÞdl

¼ 1

2

X

mjlm\0

~Wm
iþ1;L l2mþ1

2
� l2m�1

2

� �
:

ð43Þ

Therefore:

�wiþ1
2
¼

P
mjlm � 0

~Wm
i;R l2

mþ1
2

� l2
m�1

2

� �
; for l� 0

P
mjlm\0

~Wm
iþ1;L l2

mþ1
2

� l2
m�1

2

� �
; for l\0

8
><

>:
:

ð44Þ

A double discontinuity for the case of l� 0 is illustrated in

Fig. 8

R̃mi
=

0

xi−1/2 xi+1/2

μm−1/2

μm+1/2

R̃m
i (μ, x)

Fig. 7 LD residual and its absolute value in an angle-space cell
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The double-discontinuity scheme is only presented here

for completeness and was not tested in our numerical

experiments because we were only concerned with the

error in the cell-averaged scalar flux.

6 Numerical experiment

6.1 Manufactured solution test

6.1.1 Problem setting

We verified the efficacy of the proposed residual Monte

Carlo method in a test problem defined over a domain of

x 2 ½0; 10� cm. A uniform mesh size was set to 0.5cm. The

material properties were chosen as Rt ¼ 1:0 cm�1 and

Rs ¼ 0:5 cm�1 with isotropic scattering. To construct a

distributed source together with accompanying boundary

conditions from a target isotropic angular flux solution, the

manufactured solution technique was used. In the used

target solution, constant values of 3.0 n/cm2s in the interval

[0, 5] cm and 1.0 n/cm2s in the interval [6, 10] cm, with a

linear transition region in-between, were taken. We then

assumed an S4 solution that is linear-discontinuous and

contains discontinuities at x = 0.5, 2.0, and 2.5 cm. The

angular distribution was assumed to be linearly anisotropic:

~wm
i ðxÞ ¼ ~/iðxÞ

1

2
þ lmðx� �xiÞ

Dxi

� �
;

for xi�1
2
\x\xiþ1

2
;

ð45Þ

where

�xi ¼
xi�1

2
þ xiþ1

2

2
: ð46Þ

Equation (45) shows that anisotropy is modulated by a

spatial dependency such that the angular flux gets more

inward-pointed as it approaches the boundaries. In partic-

ular, leakage through the boundaries is zero.

6.1.2 Numerical results and remarks

The objective was to compute the error in the cell-in-

tegrated scalar flux h ~/i. We first computed the error by

using the full LD SN angular flux. The results are shown in

Fig. 9.

This is a dual-y-axis plot. On the left axis, /MMS is the

manufactured solution, ~/SN is the LD SN solution, h ~/i is

the cell-integrated SN scalar flux, dh ~/iMC is the error

computed by the residual Monte Carlo method, and r :

dh ~/iMC is the standard deviation associated with the error

estimation. On the right axis, Rcell is the cell-interior

residual, Rinterface is the cell-interface residual, and Q is the

forward source. For this particular test, 106 particles were

run in ten batches, with 105 particles per batch. It can be

seen that the residual Monte Carlo method is capable of

quantifying the cell-integrated scalar flux error fairly

accurately. With 106 particles, the standard deviation is so

small that it is difficult to distinguish between the upper

and lower bounds of the error bar.

The same error was then computed using the isotropic

cell-wise constant representation for the angular flux �w.
The results are shown in Fig. 10, where the quantities

plotted are analogous to those shown in Fig. 9.

The errors shown in Fig. 10 are statistically identical to

those found in Fig. 9 in the sense that the difference is

within 1-r. This implies that the error in the cell-integrated

scalar flux can be computed precisely when the simplified
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Fig. 8 Simplified angular flux representation with double disconti-

nuity for preserving partial current
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Fig. 9 (Color online) Error estimation for cell-averaged scalar flux

using the full SN angular flux
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angular flux representation is substituted for the full SN
angular flux.

In both Figs. 9 and 10, the cell-interior residual (Rcell)

is large when the error is large, and the cell-interface

residual (Rinterface) is nonzero only if a discontinuity is

present in the SN solution. It should be pointed out that for

simplicity of illustration, we only show the interface

residuals on the xþ side, whereas in reality, interface

residuals exist on both xþ and x� sides. The forward

source (Q) may look unphysical between 4cm and 8cm, as

it takes on negative values, which is not unexpected con-

sidering that it is a hypothetical source generated from the

manufactured solution.

To illustrate the efficiency of the residual Monte Carlo

method compared to the standard Monte Carlo method, the

standard deviations are analyzed. Figure 11 plots the

standard deviation associated with the residual Monte

Carlo calculation against those associated with the standard

Monte Carlo calculations. From Fig. 11, we can see that

when running with 1� 106 particles, rMC is generally

significantly higher than rRMC. If we focus on a particular

cell, for example, Cell 5 ([2, 2.5] cm), the difference is

about a factor of 5. To match the performance of the

residual Monte Carlo calculation in Cell 5, the standard

Monte Carlo calculation should be performed with 25

times the number of particles, which translates to 25 times

the CPU time.

6.2 Boundary source test

For a more realistic test, we examined the incident flux

problem. The problem domain was still [0, 10]cm, whereas

the background material was set up to mimic graphite, with

neutron cross sections Rt ¼ 4:9435 cm�1 and Rs ¼ 4:9400

cm�1. The isotropic incident neutron angular flux entered

through the left boundary, wðl[ 0; x ¼ 0Þ ¼ 20 n/cm2s.

Vacuum boundary conditions were assumed for the right

boundary. There was no distributed source throughout the

entire problem domain. The results are presented in

Fig. 12. A zoomed-in plot on [0, 2]cm is shown in Fig. 13.

In these plots, /SN is the piecewise linear scalar flux

solution given by an S2 calculation, h/iSN is the cell-inte-

grated scalar flux, h/iMC is the same scalar flux computed

by the standard Monte Carlo method, and dh/iRMC is the

error computed by the residual Monte Carlo method. It can

be seen in these figures, especially in the zoomed-in figure,

that the residual Monte Carlo method is capable of esti-

mating the additive error associated with the S2 solution.
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Fig. 10 (Color online) Error estimation for cell-averaged scalar flux

using the simplified angular flux
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Fig. 11 (Color online) Standard deviations for various calculations
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Fig. 12 (Color online) Scalar flux error estimation in graphite with an

incoming neutron source
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7 Conclusion and future work

In this paper, we present a nonrecursive residual Monte

Carlo method for estimating discretization error associated

with the SN transport calculation. For cases in which the

quantity of interest is an angle-space integrated response,

we propose a simplified angular flux representation that

greatly simplifies the sampling process while still yielding

the exact SN error. We demonstrated the efficacy of our

method with a 1-D S4 test problem. The results show that

our methods are effective at estimating the SN errors, and

for the case of the angle-space integrated response, the

simplified method yields exactly the same results as the full

SN method. Moreover, we propose a modified simplified

angular flux representation with double discontinuity,

which can be employed to preserve the SN error in partial

currents across cell interfaces.

It should be noted that, although the discussion pre-

sented herein is based on LD-FEM spatial discretization,

the general methodology can be equally applied to other

spatial discretization schemes. In the case of continuous

finite element method, which is generally used for the

solution of second-order transport equations [20], discon-

tinuities of the angular flux at the cell interfaces disappear,

which is the same for the interface residuals. However, the

simplified representation is always recommended because

of its simplicity when handling residual integral and source

sampling. The angular flux discontinuity is inherent to the

simplified representation, and we believe that the hassle is

worth the benefit.

In future work, we plan to extend the 1-D demonstration

to multi-D. The advantage of the residual Monte Carlo

method can become more profound as the dimen-

sionality increases. This is partly because the fine-mesh SN

calculation in multi-D is extremely expensive. Full con-

vergence to an SN solution is unrealistic. Therefore, a

viable way of estimating the discretization or iteration error

at a fraction of the SN computational cost can be valuable.

In addition, we would like to integrate the residual Monte

Carlo method into a parallel SN solver framework to

determine whether effective parallelization within the

existing infrastructure can be achieved.
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