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Abstract
In this paper, we propose Hformer, a novel supervised learning model for low-dose computer tomography (LDCT) denois-
ing. Hformer combines the strengths of convolutional neural networks for local feature extraction and transformer models 
for global feature capture. The performance of Hformer was verified and evaluated based on the AAPM-Mayo Clinic LDCT 
Grand Challenge Dataset. Compared with the former representative state-of-the-art (SOTA) model designs under different 
architectures, Hformer achieved optimal metrics without requiring a large number of learning parameters, with metrics of 
33.4405 PSNR, 8.6956 RMSE, and 0.9163 SSIM. The experiments demonstrated designed Hformer is a SOTA model for 
noise suppression, structure preservation, and lesion detection.

Keywords  Low-dose CT · Deep learning · Medical image · Image denoising · Convolutional neural networks · Self-
attention · Residual network · Auto-encoder

1  Introduction

Computed tomography (CT) is a diagnostic imaging method 
that uses precisely aligned X-rays, gamma-rays, ultrasound, 
and ion beams [1] to create cross-sectional images of the 
human body. It uses a highly sensitive detector and focuses 
X-rays to create 3D images. CT is known for its fast scan 
time and clear images and is used to examine a variety of 
diseases. However, it exposes patients to harmful radiation, 
which may adversely affect their health if the dose is too 
high.

Low-dose CT (LDCT) has been developed as an alterna-
tive to reduce the X-ray dose. LDCT uses less radiation than 
traditional CT (approximately 1/4 of that of the normal-dose 
CT) and causes less radioactive damage to the human body. 
It is particularly suitable for physical examination screening 
and patients who require multiple examinations. However, 
unlike NDCT images, LDCT images can also be affected by 
noise and artifacts in clinical use [2]. Therefore, the suppres-
sion of noise and artifacts in LDCT images is an important 
issue that must be addressed before applying LDCT to clini-
cal diagnosis.

In traditional approaches, researchers use iterative meth-
ods to suppress artifacts and noise by relying on physical 
models and priori information. Unfortunately, these algo-
rithms are difficult to implement in commercial CT scanners 
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because of hardware limitations and high computational 
costs. With the growing popularity of next-generation arti-
ficial intelligence techniques and deep neural networks 
(DNNs), DNNs have become a mainstream approach to 
LDCT image denoising, which includes both supervised 
and unsupervised learning [3]. Recently, most methods have 
focused on using convolutional neural networks (CNNs) [4, 
5] to suppress image noise and have achieved promising 
results. Although CNNs can learn from large-scale training 
data and obtain superior solutions, they have limitations in 
capturing global features in images [6–9] because the pool-
ing layer loses a significant amount of valuable informa-
tion and ignores the correlation between local and global 
features. Additionally, typical CNN models lack generic 
interpretation modules [10]. These deficiencies negatively 
affect the ability to retrieve richer structural informa-
tion from denoised images. This also renders the model 
uninterpretable.

Recently, a transformer model [7] has shown excellent 
performance in computer vision [11–13] and has been uti-
lized to enhance the quality of LDCT images. Compared 
with CNNs, transformer models are better at capturing 
global features and interactions between remote features, 
thus acquiring richer features in images. In addition, trans-
former models have a higher visual interpretability owing to 
their inherent self-attentive block [14, 15]. However, there 
are two primary limitations to transformer models. First, 
the complexity of the self-attention mechanism computation 
is O(n2d) , and excessive computation can cause problems 
in clinical applications. Second, the transformer is not as 
adept at extracting local features as CNNs. To address these 
limitations and better combine the advantages of both CNNs 
and transformers, this study proposes the Hformer module, 
which combines the advantages of vision transformers to 
achieve a lighter structure and improved results. Specifically, 
Hformer comprises the following two aspects:

A more lightweight convolution encoder. The convolu-
tion module consists of multiple 3 × 3 depthwise separable 
convolution (DSC) blocks. Depthwise convolution has a rel-
atively low number of computational parameters. It applies 
one convolution kernel to each channel of the input feature 
map and then combines the outputs of all convolution ker-
nels to obtain its final output. The number of output chan-
nels for the convolution operation is equal to the number of 
convolution kernels, and only one convolution kernel is used 
per channel in depthwise convolution. Therefore, the number 
of output channels for a single channel after the convolution 
operation is also one. In this study, two depth-separable con-
volution layers were used to enrich the local representation, 
whereas standard layer normalization (LN) and the Gaussian 
error linear unit (GELU) were used to activate nonlinear fea-
ture mapping. Finally, a skip connection was added to allow 
information to flow through the network hierarchy. This 

block is similar to the ConvNeXt block but with a smaller 
kernel size to promote a more lightweight model.

More efficient patch-based global interactions encod-
ing module. The self-attention module was suitable for 
learning global representations. Understanding the intrin-
sic features of visual tasks is crucial. To take advantage of 
this, while minimizing the model overhead, we use cross-
covariance attention to integrate attention operations on the 
channel features instead of using attention operations on 
the global features in the feature map. This approach effec-
tively reduces the complexity of the self-attention opera-
tion, thereby reducing the computational time from (HW)2C 
to HWC2 , which is about the linear relationship of image 
resolution. This method not only reduces the computational 
effort from quadratic with respect to the image resolution 
but also effectively and implicitly encodes local contextual 
information.

2 � Related works

2.1 � Traditional

LDCT image denoising is a research area with important 
clinical applications in medical image denoising. In the 
early years, researchers mainly used preprocessing meth-
ods such as iterative reconstruction (IR)-based algorithms 
for denoising LDCT images. This method combines the 
statistical properties of the data in the sinogram domain, 
prior information in the image domain, and parameters of 
the imaging system into a unified objective function. Using 
compressive sensing (CS) [16], some image priors are rep-
resented as sparse transforms to deal with low-dose, few-
view, finite-angle, and internal CT problems, such as full 
variational (TV) and its variants [17], non-local averaging 
(NLM) [18], dictionary learning [19], and low-ranking [20]. 
Although IR methods have achieved promising results, they 
have two limitations. First, the IR techniques are less scal-
able and migratory. Because this technique needs to be pre-
configured for a specified device, users and other vendors 
do not have access to detailed information about the specific 
scanner geometries and calibration steps. Second, the com-
putational overhead associated with the information retrieval 
techniques is significant. This poses a significant challenge 
in clinical applications.

Another option is to post-process the reconstructed LDCT 
image, which does not depend on the original image and can 
be applied directly to LDCT images without the need for pre-
set modules in any CT system. Li et al. [21] used the NLM to 
reconstruct feature similarities within large neighborhoods 
in images. Inspired by sparse representation theory, Aha-
ron et al. applied dictionary learning [22] to denoise LDCT 
images and significantly improved the denoising quality in 
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the reconstruction of abdominal images [23]. Feruglio et al. 
demonstrated that block-matching 3D (BM3D) is effective 
for various X-ray imaging tasks [24]. However, unlike the 
other two methods, this method does not accurately deter-
mine the noise distribution in the image domain, which hin-
ders the user from achieving the best compromise between 
structure preservation and noise substitution. In general, the 
accuracy of these traditional methods remains low, owing to 
data volume limitations [25].

2.2 � Deep learning based methods

Efficient data-driven deep learning methods have great 
potential in intelligent medicine owing to the limitations of 
data volume and the consequent low accuracy of traditional 
methods. It has achieved promising results in various appli-
cations such as lesion classification, image quality improve-
ment, and organ segmentation. Deep learning can mimic 
human information processing by efficiently learning high-
level features from pixel data through a hierarchical network 
framework. Thus, it has been widely used for LDCT image 
reconstruction. In general, deep-learning-based LDCT 
image denoising methods can be divided into three catego-
ries: convolutional neural network (CNNs)-based methods, 
transformer-based methods, and their combination.

2.2.1 � CNN in LDCT

Researchers have used CNN network-based methods to 
denoise LDCT images. For example, Chen et  al. [26] 
applied lightweight CNNs to an LDCT imaging framework 
and obtained preliminary results. Wurlf et al. [27] mapped 
the filtered back projection (FBP) workflow to a deep CNN 
architecture to reduce the reconstruction error to 1/2 of its 
original value in the case of limited-angle laminar imaging. 
Chen et al. [28] proposed the REDCNN model, which uti-
lizes convolution, deconvolution, and shortcut connections 
to construct residual coding and decoding convolutional 
neural networks that have been well evaluated for noise 
suppression, structure preservation, and lesion detection. 
Chen et al. [29] proposed the NCS-Unet model, in which 
the exceptional characteristics of the non-subsampled con-
tourlet transform (NSCT) and Sobel filter are introduced into 
NCS-Unet. NSCT effectively separates convolved features 
into high- and low-frequency components, which allows the 
strengths of both types of information to be merged. Liu 
et al. [30] proposed a 3D residual convolutional network to 
iteratively estimate the reconstructed images from the LDCT 
resolution. Their method avoids time-consuming itera-
tive reconstructions. Ma et al. [31] implemented an atten-
tion-residual dense convolutional neural network (CNN) 
approach, referred to as AttRDN. The AttRDN approach 
employs an attention mechanism that combines feature 

fusion and global residual learning to remove noise from 
contaminated LDCT sinograms effectively. The denoising 
process was achieved by first extracting noise from the noisy 
sinogram using the attention mechanism and then subtract-
ing the noise obtained from the input sinogram to restore the 
denoised sinogram. Finally, the CT image was reconstructed 
using filtered back projection. Xia et al. [32] proposed a 
framework called the parameter-dependent framework 
(PDF), which facilitates the simultaneous training of data 
with various scanning geometries and dose levels. In the 
proposed framework, the scanning geometry and dose level 
are parameterized and input into two multilayer perceptrons 
(MLPs). These MLPs are utilized to regulate the feature 
maps of a CT reconstruction network, thereby conditioning 
the network outputs on different scanning geometries and 
dose levels. Lu et al. [33] presented a pioneering investi-
gation into the application of a neural architecture search 
(NAS) to LDCT, which culminated in the development of 
a memory-efficient multiscale and multilevel NAS solution 
named M3NAS. M3NAS synthesizes features from various 
scale cells to detect multiscale structural details in the image 
while searching for a hybrid cell and network-level struc-
ture to optimize the performance. M3NAS also substantially 
reduces model parameters and enhances inference speeds. 
Huang et al. [34] proposed a two-stage residual CNN, where 
the first stage uses a smooth wavelet transform for texture 
denoising and the second stage combines the mean wavelet 
transform to enhance image structure. Tan et al. [35] pro-
posed a new method for reducing noise in LDCT images 
using a selective feature network and the unsupervised learn-
ing model, CycleGAN. This approach adaptively selects 
features to enhance image quality. Despite the interesting 
results of CNNs for LDCT, CNN-based models typically 
lack the ability to capture global contextual information 
owing to the characteristics of the limited sensory field of 
CNNs and, thus, are less efficient in modeling the structural 
similarity of the entire image [36].

2.2.2 � Transformer in LDCT

In recent years, the transformer-based architectures pio-
neered by Dosovitskiy et  al. [37], which successfully 
exploited transformers for image classification tasks, have 
achieved great success in the field of computer vision. Since 
then, several transformer-based models have been used 
to solve downstream vision tasks with excellent results, 
including image super-resolution [11], denoising [38], and 
colorization [39]. In LDCT image denoising, Wang et al. 
[40] designed a Uformer with the ability to capture useful 
dependencies for image restoration using non-overlapping 
window-based self-attentiveness to reduce computational 
effort while employing deep convolution in the forward 
network to further improve its ability to capture the local 
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context. They achieved excellent results in multiple image 
restoration tasks (e.g., image noise reduction, image rain 
removal, and image deblurring). Luthra et al. [41] combined 
the learnable Sobel-Feldman operator for edge enhancement 
and built a transformer architecture-based codec network, 
Eformer, for medical image denoising, based on the self-
attentive mechanism of non-overlapping windows. Wang 
et al. [42] used a more powerful token-rearranged replace-
ment convolutional neural networks to include local contex-
tual information and proposed a convolution-free Token2To-
ken dilated vision transformer (CTformer) for LDCT image 
denoising.

2.2.3 � Combination of transformer and CNN

Self-attention is widely used in CNNs for visual tasks. The 
primary research direction is to combine VIT and CNNs to 
design new backbones. Graham et al. [43] mixed convnet 
and transformer in their LeVit model, and LeVit signifi-
cantly outperformed the previous convnet and ViT models 
in terms of the speed and accuracy tradeoff. Zhang et al. 
[44] combined the local modeling capability of the residual 
convolution layer with the non-local modeling capability 
of the Swin transformer block and then inserted them into 
the UNet architecture as the main building block to achieve 
outstanding results in image noise reduction. CoatNet [45] 
combines convolution and self-attention to design a novel 
transformer module that allows the model to focus on more 
local and global information simultaneously. Another idea 
is to modify the transformer block using convolution, such 
as replacing the multiheaded attention with a convolutional 
layer [46], adding additional convolutional layers in parallel 
[47] or serially [48] to capture local relations. In addition, 
some researchers have used local transformer modules in 
convolution-based network architectures to enhance access 
to global information. For example, Srinivas [49] proposed 
a simple but powerful backbone architecture, BoTNet, which 
simply replaces spatial convolution with global self-attention 
in the last three bottleneck blocks of ResNet and achieves 
strong performance in image recognition. ConViT [50] inte-
grates soft convolutional induction bias through gated posi-
tional self-attention. The CMT [51] block comprises a deep 
convolution-based local perceptual unit and a lightweight 
transformer module.

We found that these hybrid network structures combin-
ing convnet and transformer are similar in terms of design 
ideas. They use convnet to extract local feature information 
and self-attention to extract local contextual information. 
Inspired by these works, we integrated the advantages of 
both CNN and transformer architectures efficiently, and 
our work helped us achieve SOTA results on LDCT image 
denoising.

3 � Methods

3.1 � Denoising model

Our study started from CT images obtained from low-dose 
scan data reconstructed by filtered back projection (FBP). 
The noise distribution in CT images typically includes a 
combination of quantum Poisson and electron Gaussian 
noises. However, the reconstructed images always have a 
complex and uneven noise distribution. Furthermore, there 
is no accurate mathematical model that can describe the rela-
tionship between NDCT and LDCT. This makes obtaining 
high-quality denoising results for LDCT images using tra-
ditional methods challenging.

Therefore, the noise distribution can be more accurately 
modeled using deep learning methods because deep learning 
is independent of the statistical distribution of image noise. 
LDCT image denoising can be simplified to address the fol-
lowing problems. Assuming x ∈ RN×N represents the LDCT 
image and y ∈ RN×N represents the corresponding NDCT, 
our goal is to identify a function F that maps from x to y:

where F ∶ RN×N
→ RN×N indicates a process involving the 

elimination of image noise and artifacts.

3.2 � Network architecture

As shown in Fig. 1, our network uses a self-encoder struc-
ture for residual learning that includes two convolutional 
layers, three Hformer blocks, and four scale layers. The 
scale layer has a residual connection between 2 × 2-strided 
convolution-based down-sampling and 2 × 2-transposed 
convolution-based up-sampling. Within the encoder, the 
down-sampling module employs convolution to reduce the 
patch size while simultaneously increasing the number of 
channels between each level. In contrast, the up-sampling 
module within the decoder utilizes transposed convolution 
to increase the patch size while concurrently reducing the 
number of channels between each level. This structure is not 
only suitable for supervised learning of noise distribution 
but also for image reconstruction and denoising tasks. Next, 
we present the details of our study.

3.2.1 � Autoencoder

An autoencoder (AE) was originally developed for super-
vised feature learning based on noisy inputs and is also 
applicable to image reconstruction. Both CNNs and trans-
formers have shown excellent performance in image denois-
ing. However, because CNNs use local perceptual fields for 

(1)y = F(x),
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feature capture, they cannot directly model global environ-
ments. The transformer compensates for this deficiency. 
Therefore, for LDCT, we propose a residual network com-
bining three novel technologies, namely AE, CNNs, and 
transformers, which originated from the work [52]. Instead 
of using fully connected layers for encoding and decoding, 
we performed feature extraction and image reconstruction 
symmetrically. Moreover, unlike typical encoding structures, 
it includes residual learning with shortcuts [4] to facilitate 
the operation of a shallow information-focused convolu-
tional layer and the corresponding deconvolutional layer. In 
addition, this approach solves the gradient disappearance 
problem, such that deep models can be stably trained [53].

3.2.2 � Patch extraction

The training process of deep-learning models requires a 
large number of samples. However, this requirement is often 
not easily satisfied in practice with adequate samples, espe-
cially for medical imaging. In this study, we used overlap-
ping slices in the CT images. This strategy has been shown 
to be effective in previous studies, where more slices allow 
the model to detect perceived differences in local areas and 
significantly increase the number of samples [54]. In our 
experiments, we extracted fixed-size patches from LDCT 
images and the corresponding NDCT images.

3.2.3 � Residual learning

The convolution operation gradually extracts information 
from the underlying features to the highly abstract features. 

The deeper the network, the more abstract (semantic) fea-
tures that can be extracted. For traditional convolutional neu-
ral networks, simply increasing the depth of the network 
can easily result in gradient disappearance and explosion. 
Common solutions to this issue include normalized initiali-
zation and intermediate normalization layers. However, this 
leads to the problem of network degradation, which means 
that as the number of layers in the network increases, the 
accuracy of the training dataset saturates or even decreases 
as the number of layers increases. This phenomenon is dif-
ferent from and overfitting does not show a decrease in the 
accuracy of the training set.

It is common sense that the solution space of the deeper 
network structure contains the solution space of the shal-
low network structure, which means that the deeper network 
structure can obtain better solutions and  perform better than 
the shallow network. However, this is not the case because 
deeper networks may have worse training and testing errors 
than shallow networks. This proves that it is not due to over-
fitting. This phenomenon is probably caused by the stochas-
tic gradient descent strategy and the complex structure of the 
deep network, which does not result in a globally optimal 
solution but rather a locally optimal solution.

Therefore, residual learning provides a new way of 
thinking: since deep networks have degeneracy problems 
compared to shallow networks, is it possible to retain 
the depth of deep networks and have the advantage of 
shallow networks to avoid degeneracy problems? If the 
later layers of the deep network are learned as a constant 
mapping h(x) = x , the model degenerates into a shallow 
network. However, it is often difficult to directly learn 

Fig. 1   Overall architecture of Hformer
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this constant mapping. Therefore, we require a differ-
ent approach: we redesign the network into a new form: 
H(x) = F(x) + x → F(x) = H(x) − x . As long as F(x) = 0 , 
this constitutes a constant mapping H(x) = x , where F(x) 
is the residual.

Residual learning provides two methods for solving the 
degradation problem: identity and residual mapping. The 
residual learning structure is implemented using a forward 
neural network and shortcut linkage, where the shortcut link-
age is equivalent to simply performing the same mapping 
without generating additional parameters or increasing the 
computational complexity. The entire network can be trained 
using end-to-end backpropagation.

Therefore, residual learning is used to avoid the problem 
of gradient disappearance. This allows the deep model to be 
trained stably.

3.2.4 � Convolution block

Considering that shallow information contains more detailed 
information (contour, edge, color, texture, and shape fea-
tures), using CNNs to extract features by sharing convo-
lutional kernels ensures a reduced number of network 

parameters and improves model efficiency. CNNs exhibit 
two inherent inductive biases: translational invariance and 
local correlation. This feature allows CNNs to capture addi-
tional local information. Inspired by this, we designed a 
shallow feature extraction (reconstruction) module consist-
ing primarily of depth-separable convolutions [55]. The fea-
ture layer is normalized after a depth-separable convolution 
and combined with the normalization of the standard layer 
[56]. Then, two projection convolutions are used to enhance 
the local representation and channel dimension transforma-
tion: A Gaussian error linear unit [57] (GELU) is connected 
after the first projection convolution to activate it for non-
linear feature mapping. Finally, a residual join is used to 
smooth the back-and-forth propagation of the information. 
This process can be formulated as Eq. (2), and its architec-
ture is shown in Fig. 2.

3.2.5 � Hformer block

The Hformer block proposed in this study consists of a 
depth-wise convolution (DWConv)-based perceptual module 
and a transformer module with a lightweight self-attentive 
(LSA) module, as shown in Fig. 3. These two modules are 
described in detail below.

DWConv based perceptual module. To compensate for 
the loss in the image domain, we used DWConv with a ker-
nel size of 7 × 7 in the convolutional perception module to 

(2)
xi+1 = xi + Linear(GeLU(Linear(LN(DWConv7×7(xi)))))

Fig. 2   (Color online) Architecture of convolution block

Fig. 3   (Color online) The structure of Hformer block
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process the input features and extract features from the local 
perceptual field in the same manner as a conventional convo-
lution. This approach was inspired by the fact that there are 
many similarities between local self-attention and DWConv. 
First, the latter also has sparse connectivity; that is, the com-
putation exists only within the kernel size, and there is no 
connection between individual channels. DWConv also 
exhibited weight-sharing properties. However, convolution 
kernels are shared across all spatial locations and different 
channels use different convolution kernels, which signifi-
cantly reduces the number of parameters. In addition, the 
DWConv kernel is a scientific training parameter that is 
fixed once training is completed, whereas the computation of 
attention is a dynamic process. Local self-attention requires 
positional coding to compensate for the lost positional infor-
mation, whereas DWConv does not.

Light-weight self-attention. The transformer’s origi-
nal self-attention has a huge overhead, which is a huge 
burden on computational power. To address this difficulty 
and obtain valid local contextual information, we reduced 
the dimensionality of the feature map in our Hformer mod-
ule and attempted to compute the attention in the channel 
dimension. Given an input X ∈ RH×W×C , the original self-
attentive mechanism first generates the corresponding query 
(Q), key (K), and value (V) (of the same size as the origi-
nal input) and then generates a weight matrix of size RN×N 
through the dot product of Q and K.

where WQ,WK and WV are the linear operations. Previous 
self-attention calculations were performed along the spatial 
dimension between Q and K, and the results are as follows:

where the scaling factor 1√
dk

 is based on network depth. How-
ever, this process usually requires large computational 
capacity (video memory) owing to the large size of the input 
features, which makes it difficult to train and deploy the net-
work. Therefore, we used the maximum pooling method to 
downsample the generation of K and Q separately to obtain 
two relatively small features, K′ and Q′:

(3)

⎧⎪⎨⎪⎩

Q = WQX

K = WKX

V = WVX

(4)Attn(Q,K,V) = softmax

�
QKT

√
dk

�
V ,

(5)K� = Maxpool(K) ∈ R
HW

K2
×C
,

(6)Q� = Maxpool(Q) ∈ R
HW

K2
×C
.

To further reduce the overhead of the model and the algo-
rithm complexity to a linear relationship with the image 
resolution, we used the attention computed on the chan-
nel dimension to implicitly encode patch-based global 
interactions.

We transpose K′ and apply the dot product to K′T and Q′ 
in the channel dimension, and the computed results are sup-
plemented with Softmax to obtain the attention score matrix 
Attnchannels with dimension C × C , which is applied to V and 
obtain the final attention map. The computational effort of 
this step is C2(HW) , which is linear in image resolution and 
substantially reduces complexity. The attention operation for 
channel dimensions can be expressed as follows:

4 � Experiment

Dataset. We used the publicly released clinical dataset from 
the 2016 NIH-AAPM Mayo Clinic LDCT Grand Challenge 
[58] for model training and testing. The dataset consisted of 
2378 low-dose (quarter) images and 2378 normal-dose (full) 
CT images from 10 anonymous patients with 3.0-mm whole-
layer slices. We selected patient L506 data for testing, which 
contained 211 slice images numbered from 000 to 210. We 
used the data from the remaining nine patients for model 
training.

Model training and optimization. Our network is an end-
to-end mapping M from LDCT images to NDCT images. For 
the given training data P = {(X1, Y1), (X2, Y2),… , (Xn, Yn)} 
where Xi and Yi denote LDCT and NDCT image patches, 
respectively, n is the total number of training samples. The 
model performance can be improved by minimizing the loss 
L(X, �) between the output CT image and the reference NDCT 
image, where � refers to learnable parameters. This process can 
be achieved by optimizing the mean square error (MSE) loss 
function, as shown in Eq. (8).

Experiment setup. The experiments were run on CentOS 
7.5 with an Intel Xeon Scalable Gold 6240 CPU@2.6 GHz, 
using PyTorch 1.11.0, and CUDA 11.2.0. The model was 
trained using eight NVIDIA Tesla V100 32GB GPU HBM2. 
For each image, four blocks randomly extracted from all 
available slices were used for training. The batch size is 16 
through 4000 epochs. The ADAM-W optimizer was used to 
minimize the mean squared error loss, and the learning rate 
was 1.0 × 10−5.

(7)Attnchannels(Q
�,K�,V �) = softmax

�
K�TQ�

√
dk

�
V

(8)L(�) =
1

N
||Yi −M(Xi)||
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4.1 � Denoising performance

The performance of our net was compared with other SOTA 
models, such as RED-CNN [28], SCUNet [44] Uformer [40], 
DU-GAN [59], and CTformer [42]. The selected models 
were popular LDCT or natural image denoising models pub-
lished in top journals and conferences. SCUNet and Uformer 
are mainstream deep learning-based image-noise reduction 
algorithms. Red-CNN is the masterpiece of the convolu-
tional neural network-based CT noise reduction algorithm, 
and CTformer is the most advanced noise reduction algo-
rithm based on the LDCT dataset, which has excellent 
results in image noise reduction tasks. We retrained all the 
models based on their officially disclosed codes.

For quantitative evaluation, we selected the root mean 
square error (RMSE), peak signal-to-noise ratio (PSNR), 
and structural similarity index (SSIM) as the quantitative 
evaluation metrics for image quality. RMSE is a measure of 
accuracy that can be used to compare the predictive perfor-
mance of different models on the same dataset and can mag-
nify the error magnitude between the reconstructed image 
and the ground truth image (the larger the error the larger the 
RMSE). This representation is shown in Eq. (9):

PSNR provides an objective criterion for describing the level 
of image distortion and noise (shown in Eq. 10). The larger 
the value, the smaller the difference between the recon-
structed and reference images.

SSIM evaluates the similarity of two images in three ways, 
and SSIM is defined as Eq. (11).

where �im and �2
im

 are the mean and variance of the recon-
structed image, respectively; �gt and �2

gt
 are the mean and 

variance of the ground truth image, respectively; Σim, gt is the 
covariance between the reconstructed and ground truth 

(9)RMSE =
1

m

m∑
i=1

(im − gt)2.

(10)

PSNR = 10 × log10

(
(2n − 1)2

MSE

)

MSE =
1

m

m∑
i=1

(im − gt)2

(11)

SSIM(im, gt) = L(im, gt)C(im, gt)S(im, gt)

L(im, gt) =
2�im�gt + c1

�2
im

+ �2
gt
+ c1

C(im, gt) =
2ΣimΣgt + c2

Σ2
im

+ Σ2
gt
+ c2

S(im, gt) =
Σim, gt + c3

ΣimΣgt + c3

images; c1 , c2 , and c3 are constants. The structural similarity 
index measures the degree of image distortion and the 
degree of similarity between two images. Unlike MSE and 
PSNR, which measure the absolute error, SSIM is a percep-
tual model, that is, it is more in line with the intuition of 
human eyes. Its value ranges from zero to one. The higher 
the value of SSIM, the higher the similarity between the 
reconstructed and ground truth images. The number of train-
able parameters (Param) was used to evaluate model com-
plexity. Table 1 lists the average metrics of all models for 
L506 patients. Our model has the lowest average RMSE 
among the SOTA methods. This indicates that our model 
effectively suppresses noise and artifacts and maintains a 
high degree of spatial smoothing. In terms of information 
reconstruction, our model has the best SSIM compared to its 
competitors, preserving the structural details of the recon-
structed images. Meanwhile, CTformer had fewer trainable 
parameters than ours. Therefore, we conclude that our net-
work is the best noise eliminator compared to its 
competitors.

4.2 � Visual evaluation

To evaluate the denoising ability of the Hformer proposed 
in this study with the above comparison method, we pro-
vided slices 034 and 057, two representative results from 
a test set consisting of L506 patient data and their corre-
sponding ROI images. The results are shown in Figs. 4, 5, 
6 and 7. The corresponding metrics are listed in Tables 2 
and 3. Figures 4 and 6 show the results of the abdominal CT 
images. The noise shown in Fig. 4a is primarily distributed 
within the abdomen. The outline of the organs and details 
of the tissue structure were significantly by noise. Obvious 
streaking artifacts can be observed in the spine and liver, 
which greatly affect the clinical diagnosis of lesion areas. It 
is easy to see that convolutional network-based RED-CNN 
effectively eliminates most of the noise and artifacts and is 
better at retaining the details.

However, RED-CNN is less effective in the structural 
recovery of images because it has computational charac-
teristics that can extract high-frequency information more 
effectively, such as image texture details. Moreover, RED-
CNN is limited by the size of the perceptual field and cannot 
effectively extract more global information. From the results, 
we can observe that there is over-smoothing of the detailed 
textures in Uformer and CTformer. This is due to the lack 
of a convolution layer, which results in blurred CT images.

For noise reduction and the ability to retain detailed struc-
tures, the Hformer proposed in this paper also outperforms 
SCUNet. The denoising performance in the liver and lesion 
regions in Fig. 4f is significantly better than that in Fig. 4c. 
Compared with SCUNet based on a parallel structure com-
bined with convolution and self-attention, Hformer based on 
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a multiscale convolution module and lightweight self-atten-
tion exhibits stronger generalization ability and is superior 
in reconstructing LDCT.

To further demonstrate the performance of Hformer, 
we provide a magnified image of the ROI marked with a 
rectangular dashed line in Fig. 4, as shown in Fig. 5. The 

Fig. 4   Results of abdominal slice L506-034 from the testing set using different methods. The display window ranges from – 160 to 240 HU

Fig. 5   The corresponding ROI of Fig. 4
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arrow-marked region is a piece of tissue with a uniform 
density distribution. However, almost none of the other 

methods, except Hformer and CTformer correctly recon-
structed the internal details of the lesion region. SCUNet, 
Uformer, RED-CNN, and CTformer introduced more noise 
into the image, making it difficult to distinguish the density 
distribution of this tissue. In our study, DU-GAN and the 
proposed Hformer were effective in recovering the details 
and overall structure, and Hformer performed better than 
DU-GAN in suppressing artifacts.

Another result for the test set is shown in Fig. 6, and its 
ROI is shown in Fig. 7. Owing to the reduced radiation dose, 
the structures of many soft tissues are more affected by noise 
during reconstruction. The internal details of organs are dif-
ficult to distinguish accurately. Although Uformer and SCU-
Net reconstructed the organ contours well, and the organ 
boundaries were clearly visible, a large amount of noise was 
generated inside the organ. As shown in Fig. 7, only Hformer 

Table 1   Quantitative evaluation results of different methods on L506 
using the number of learnable parameters (#param.), RMSE, SSIM, 
and PSNR. Our results are the bold-faced numbers

#param. (M) RMSE SSIM PSNR

LDCT – 14.2416 0.8759 29.2489
SCUNet 13 9.4381 0.9066 32.6993
Uformer 12 9.3102 0.9106 33.0623
RED-CNN 1.85 9.0664 0.9109 33.0695
CTformer 1.45 9.0233 0.9121 33.0952
DU-GAN 114.61 8.9464 0.9118 33.1859
Hformer 1.65 8.6956 0.9163 33.4405

Table 2   Quantitative results of patient L506’s abdominal section 034

Network RMSE SSIM PSNR

LDCT 12.1360 0.8804 30.3597
SCUNet 8.4252 0.9126 33.5296
Uformer 8.0657 0.9193 33.9083
RED-CNN 8.0850 0.9172 33.8876
CTformer 7.9236 0.9190 34.0627
DU-GAN 7.9519 0.9181 34.0318
Hformer 7.6457 0.9235 34.3729

Table 3   Quantitative results of patient L506’s abdominal section 057

Network RMSE SSIM PSNR

LDCT 16.2190 0.8424 27.8407
SCUNet 10.3276 0.8821 31.7612
Uformer 10.3909 0.8842 31.7081
RED-CNN 10.0407 0.8859 32.0059
CTformer 10.1807 0.8835 31.8857
DU-GAN 9.9153 0.8866 32.1151
Hformer 9.7170 0.8915 32.2906

Fig. 6   Results of abdominal slice L506-057 from the testing set using different methods. a low dose. The display window ranges from – 160 to 
240 HU
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and CTformer completely reconstructed the internal ves-
sels of the liver, and the details of Hformer are more clearly 
depicted. The other networks caused different degrees of 
smoothing of the textural details of the soft tissues. Although 
CTformer can also obtain a better tissue structure, it is sig-
nificantly inferior to Hformer in terms of noise suppression 
performance. In summary, Hformer can effectively use the 
advantages of convolution and self-attention to effectively 
reconstruct the tissue structure while reducing noise and 
preserving more clinically useful information.

4.3 � Ablation study

Impact of Hformer blocks. Hformer blocks are used in our 
network to enhance feature integration during the feature 
extraction phase. Compared with VIT, which uses only the 
self-attention mechanism, the Hformer block integrates the 
inherent advantages of convolution and self-attentiveness 
in the feature extraction process. To verify the effectiveness 
of this component, a single ViT model without the Hformer 
block was designed. We use convolution only in the down-
sampling stage, with a convolution kernel size of 3 × 3 and 
a step size of 2. We subsequently employ a five-layer trans-
form for feature extraction and denoising purposes, utilizing 
an identical embedding size. The results of the visual com-
parison are illustrated in Fig. 9a–d. Finally, we can clearly 
see that Sole-ViT brings additional speckle organization by 
examining the connected area within the marked region in 
Fig. 9e–h. In addition, Fig. 8 and Table 4 show that Hformer 

Fig. 7   The corresponding ROI of Fig. 6

Fig. 8   LOSS visualization of Hformer and Sole-ViT on case L506 
after different iterations

Table 4   Quantitative evaluation results of the Sole-ViT, the Hformer, 
and the Hformer with different numbers of blocks

NET Block #param. (M) RMSE SSIM PSNR

Hformer 1 1.65 8.6956 0.9163 33.4405
Sole-ViT 1 1.99 9.2224 0.9089 32.9161
Hformer 2 1.68 8.7677 0.9154 33.3664
Hformer 4 1.75 8.8271 0.9148 33.3046
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converges faster than Sole-Vit with a difference of 0.5244 for 
PSNR, 0.0074 for SSIM, and 0.5268 for RMSE.

Impact of Hformer numbers. We investigated the 
impact on the network performance by adjusting the num-
ber of Hformer modules in Fig. 1. The number of modules 
was set to 1, 2, and 4 blocks. As the number of data blocks 
increases, the depth of the network increases and the com-
putational cost also increases slightly. Table 4 shows that 
only one Hformer module yields better performance than 
the Hformer with more blocks.

5 � Conclusion

In this study, we designed a novel fast LDCT denoising 
model. The core of the model is referred to as the Hformer, 
which combines the advantages of both CNN and local 
self-attention. We used the well-known dataset AAPM-
Mayo Clinic Low-Dose CT Grand Challenge Dataset to 
evaluate and validate the performance of our proposed 
Hformer and compare it with the latest SOTA method. 
The simulation results show that our model achieves excel-
lent results in terms of noise suppression and structural 
protection, with an effective reduction in the number of 
training parameters.
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