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Abstract
The neutron spectrum unfolding by Bonner sphere spectrometer (BSS) is considered a complex multidimensional model, 
which requires complex mathematical methods to solve the first kind of Fredholm integral equation. In order to solve the 
problem of the maximum likelihood expectation maximization (MLEM) algorithm which is easy to suffer the pitfalls of 
local optima and the particle swarm optimization (PSO) algorithm which is easy to get unreasonable flight direction and 
step length of particles, which leads to the invalid iteration and affect efficiency and accuracy, an improved PSO-MLEM 
algorithm, combined of PSO and MLEM algorithm, is proposed for neutron spectrum unfolding. The dynamic acceleration 
factor is used to balance the ability of global and local search, and improves the convergence speed and accuracy of the 
algorithm. Firstly, the Monte Carlo method was used to simulated the BSS to obtain the response function and count rates 
of BSS. In the simulation of count rate, four reference spectra from the IAEA Technical Report Series No. 403 were used 
as input parameters of the Monte Carlo method. The PSO-MLEM algorithm was used to unfold the neutron spectrum of 
the simulated data and was verified by the difference of the unfolded spectrum to the reference spectrum. Finally, the 252Cf 
neutron source was measured by BSS, and the PSO-MLEM algorithm was used to unfold the experimental neutron spectrum. 
Compared with maximum entropy deconvolution (MAXED), PSO and MLEM algorithm, the PSO-MLEM algorithm has 
fewer parameters and automatically adjusts the dynamic acceleration factor to solve the problem of local optima. The con-
vergence speed of the PSO-MLEM algorithm is 1.4 times and 3.1 times that of the MLEM and PSO algorithms. Compared 
with PSO, MLEM and MAXED, the correlation coefficients of PSO-MLEM algorithm are increased by 33.1%, 33.5% and 
1.9%, and the relative mean errors are decreased by 98.2%, 97.8% and 67.4%.

Keywords  Particle swarm optimization · Maximum likelihood expectation maximization · Neutron spectrum unfolding · 
Bonner spheres spectrometer · Monte Carlo method

1  Introduction

The precise measurement of the neutron spectrum distri-
bution in the radiation field is a basic process in nuclear 
physics research, radiation protection and monitoring, reac-
tor safety and control, particle accelerator and other nuclear 
technology fields. During the process of neutron spectrum 
measurement, it is necessary to unfold the neutron spec-
trum. Because the neutron spectrum unfolding procedure 
is an underdetermined problem with numerous viable solu-
tions, a specialized optimization algorithm must be used to 
find the optimal solution [1–4].
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The neutron spectrum unfolding is a process of solving 
underdetermined equations, and at the earliest, the least 
square method is used to unfold the neutron spectrum. 
However, the unfolded spectrum obtained through multi-
ple iterations is quite different from the reference spectrum. 
However, by adding the prior information, the results could 
be improved to a certain extent [5]. Engl et al. used a regu-
larization method to unfold the neutron spectrum, which 
constrained the solution by adding the prior information to 
improve the stability and continuity of the unfolded spec-
trum [6]. Reginatto et al. used the NE213 scintillation detec-
tor to measure the neutron spectrum. Moreover, the authors 
combined the Bayesian analysis method with the maximum 
entropy principle to unfold the neutron spectrum and to 
achieving relatively high accuracy [7, 8]. Artificial intel-
ligence algorithms were frequently utilized in the neutron 
spectrum unfolding [9]. Freeman et al. based on BSS used 
a genetic algorithm to unfold the neutron spectrum. This 
method used a computer-simulated "chromosome" to encode 
the neutron spectrum, and then, the individuals with the best 
fitness was chosen as the final result. Compared with other 
neutron spectrum unfolding methods, the extracted results 
show that the genetic algorithm can obtain more accurate 
unfolded spectrum in the absence of prior information [10]. 
Subsequently, Sharghi Ido et al. developed two different arti-
ficial neural network methods to unfold the neutron spectrum 
(multilayer and single-layer). With this method, the human 
nervous system was simulated and the neural network model 
was trained with known inputs and outputs to adjust its 
internal parameters to appropriate values. Finally, Am-Be 
and 252Cf neutron sources were measured, and the unfolded 
spectrum have a good agreement [11]. M. Shahmohammadi 
Beni et al. proposed the maximum likelihood expectation 
maximization algorithm to unfold the neutron spectrum 
and unfolded the Am–Be neutron spectrum in the absence 
of prior information and got good results [3]. The MLEM 
algorithm has strong convergence ability and high stability 
in the early stage of iteration, but the later iteration is easy 
to suffer the pitfalls of local optima.

The PSO algorithm was developed by Eberhart and Ken-
nedy in 1995 and is based on bird foraging behavior [12]. 
More specifically, the PSO begins with a randomly generated 
initial population (known as a particle swarm) that is ran-
domly distributed as a candidate solution in the search space. 
The PSO contains the velocity and position for each particle 
(solution vector). The speed of each particle must be dynam-
ically modified based on its own flight experience, as well as 
the flight experiences of the surrounding particles. On top of 
that, the position of each particle must be updated by using 
the cost function [13]. PSO algorithm has the advantage 
of global convergence, strong randomness of search, and 
adjustable local search ability and global search ability in the 
whole iteration process. H. Shahabinejad et al. developed a 

novel neutron spectrum unfolding code (SDPSO) based on 
particle swarm optimization algorithm and performed neu-
tron spectrum unfolding for Am–Be neutron sources [14]. 
The disadvantage is that the highly random search process 
is easy to get unreasonable flight direction and step length 
of particles, which leads to the invalid iteration and affect 
efficiency and accuracy. In this regard, many scholars have 
studied traditional PSO from the perspective of parameter 
setting, convergence and combining with other algorithms 
to improve algorithms. Some authors use the inertia weights 
to balance the global search capability and the local search 
capability [15–17]. Some authors propose combination algo-
rithms, which are based on the global search advantage of 
PSO algorithm, such as the combination of PSO and genetic 
algorithm [18], PSO and k-clustering algorithm [19].

In this paper, an improved PSO-MLEM algorithm, com-
bined of PSO algorithm and MLEM algorithm, is proposed 
for neutron spectrum unfolding. The PSO-MLEM algorithm 
has the advantages of PSO and MLEM, which can avoid the 
pitfalls of local optima through the adjustment of dynamic 
acceleration factors, and improve the convergence speed and 
accuracy.

2 � Method and materials

2.1 � Theoretical model of Bonner spheres 
spectrometer

The Bonner sphere spectrometer (BSS) is considered a typi-
cal neutron spectrum measurement instrument that offers 
a wide energy range, high sensitivity, isotropic response, 
consistent neutron flux and ambient dose equivalent. The 
neutron is moderated by a polyethylene shell in the BSS. The 
center uses a thermal neutron detector, which can be one of 
the following three types: 3He, 10B and 6Li. The 3He neutron 
proportional detector with the highest thermal neutron cross 
section is selected as the detector. For unfolding the neutron 
spectrum, the response function for each sphere of BSS is 
required and is commonly calculated by the Monte Carlo 
method. The measurement principle can be expressed as the 
first kind of Fredholm integral equation [20–22]:

where Ni is the count rate of the ith Bonner sphere; �i is the 
measurement error of ith Bonner sphere; Emax and Emin are 
the highest and lowest energy of the neutron; Ri

(
Ej

)
 is the 

Bonner sphere response function corresponding to the jth 
energy interval; Φ

(
Ej

)
 is the fluence rate of neutrons in the 

(1)
Ni + �i =

Emax
∫
Emin

Ri
(

Ej
)

Φ
(

Ej
)

dE,

i = 1, 2,⋯ , n; j = 1, 2,⋯ ,m
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jth energy interval; n is the number of Bonner spheres; and 
m is the number of energy intervals.

Since the Ri

(
Ej

)
 and Ni are discretely distributed, Eq. (1) 

can be expressed in the discrete form of Eq. (2):

Equation (2) can also be expressed in matrix form as 
follows:

where N = (N1,N2,… ,Nn)
T , � = (�1,�2,… ,�m)

T and R is 
the response matrix of n × m.

Usually, N and R are known quantities, and the number 
of Bonner spheres n is often less than the number of the 
energy interval m. Equation (3) belongs to the underdeter-
mined equations. In this work, the PSO-MLEM algorithm 
was used to solve the underdetermined problem in neutron 
spectrum unfolding.

2.2 � Principle of PSO‑MLEM algorithm

This paper combines the PSO algorithm with the MLEM 
algorithm, and the dynamic acceleration factor is used to 
balance the global and local search ability, which improves 
the convergence speed and calculation accuracy of the PSO-
MLEM algorithm. The MLEM algorithm is used to limit 
the search direction of particles during each iteration of the 
PSO-MLEM algorithm. Figure 1a depicts the particle opti-
mization process in the PSO-MLEM algorithm. The MLEM 
algorithm guides the flight direction of the particle swarm 
to ensure that the particles always fly to the solution space 
of the MLEM algorithm. The theoretical position calculated 
by the MLEM algorithm replaces the position determined by 
the particle inertia, which effectively reduces the possibility 
of search stagnation and missing the optimal solution. At the 
same time, the displacement of the particles is determined 
by both the PSO and MLEM algorithms during each itera-
tion of the PSO-MLEM algorithm. As shown in the dynamic 
acceleration factor transformation Eq. (8), the PSO-MLEM 
algorithm adopts a smaller c1 and a larger c2 in the early 
stage, so that the particles can quickly narrow the range of 
the solution space with the help the MLEM algorithm. With 
the number of iterations increases, MLEM algorithm is easy 
to suffer the pitfalls of local optima. Therefore, the PSO-
MLEM algorithm gradually increases c1 and decreases c2 
in the iterative process, which strengthens the local search 
ability of the algorithm and helps MLEM algorithm to jump 
out of the pitfalls of local optima.

(2)Ni + �i =
∑

j

Rij�j i = 1, 2,⋯ , n; j = 1, 2,⋯ ,m

(3)N + � = R�,

The following 6 steps further explain the general pro-
cedure of the PSO-MLEM method for neutron spectrum 
unfolding:

1.	 Initialization of the particle swarm

 In the PSO-MLEM algorithm, the initial step is to define 
the number of particles, the number of particles is set to 
600, and each particle is defined as a solution vector that 
must be optimized � = [�1,�2,… ,�m] . The solution vec-
tor � is the neutron spectrum to be optimized in the pro-
cess of neutron spectrum unfolding, while the initial posi-
tion and velocity of the particle are initialized by random 
numbers between 0 and 1.

2.	 Calculation of the cost function

 The following cost function is specified to limit the search 
range of the PSO-MLEM algorithm:

where Nobs is the count rate of Bonner spheres; � is the solu-
tion of each particle in each iteration; �ref is the reference 
spectrum that contains the a priori information; and Ncal is 
calculated by using Eq. (5) as follows:

Through the reference spectrum �ref and the count rate 
Nobs , the above cost function limits the search direction 
of the particle. The first term of the cost function is the 
distance between Ncal and Nobs , and the second term is the 
distance between the updated spectrum � and the refer-
ence spectrum �ref . When the minimum of Cost function 
is obtained, the � is the result of the neutron spectrum 
unfolding.

3.	 Update the local optima solution of a single particle 
(pbest)

 The solution of each particle is calculated in the current 
iteration process. Then the cost value of the current solu-
tion is compared with the cost value of the historical local 
optima solution(pbest). If the current cost value is smaller 
than the historical cost value, the local optima solution is 
updated to the solution of the current particle.

4.	 Update the global optima solution of all particles (gbest)

 The cost value of the local optima solution (pbest) is com-
pared with the cost value of the global optima solution 

(4)Cost =
||||Ncal − Nobs

||||
2

||||Nobs
||||
2

+
||||� − �ref

||||
2

||||�ref
||||
2

,

(5)Ncal = R�.
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(gbest). If the cost value of the local optima solution is 
smaller than the cost value of the global optima solution, 
the global optima solution is updated to the local optima 
solution of the particle.

5.	 Update the velocity and solution vector of the particles

 According to Eq. (6) and (7), the velocity vij and solution �ij 
of the jth dimension of the ith particle are updated:

where vi is the velocity vector of the ith particle, �i is the 
solution vector of the ith particle, the pbesti is the histori-
cal local optima solution of the ith particle, gbest is the 
global optima solution of all particles, r is a random num-
ber between [0, 1], t is the number of iterations, and c is the 
acceleration factor between [0, 1], as shown in Eq. (8):

(6)
vij(t + 1) = r1 ⋅

(
pbesti(t) − �ij(t)

)
+ r2 ⋅

(
gbest(t) − �ij(t)

)
,

(7)�ij(t + 1) = c1 ⋅ vij(t + 1) + c2 ⋅ �MLEM
ij

(t + 1),

Fig. 1   Graphical depiction of PSO-MLEM algorithm. a Schematic diagram of PSO-MLEM particle flight; b flowchart of PSO-MLEM algo-
rithm
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where t  is the current number of iterations and Tmax is the 
maximum number of iterations. �MLEM

ij
 is calculated accord-

ing to the MLEM algorithm using Eq. (9):

6.	 Judging convergence

The search is terminated when the cost value of the global 
optima solution achieves the predefined iterative conver-
gence condition or when the current number of iterations 
reaches the maximum number of iterations. If the above 
conditions are not met, steps 2)-6) are repeated.

The algorithm flowchart summarizes the preceding 6 
steps in Fig. 1b.

2.3 � Verification by Monte Carlo simulation

In order to verify the accuracy and convergence of the PSO-
MLEM algorithm, the Monte Carlo method was used to 
simulate the response function of the Bonner spheres spec-
trometer. And the count rates of Bonner spheres were simu-
lated while four reference spectra from the IAEA Technical 
Report Series No. 403 [23] were used as the input spectra of 
the Monte Carlo method. The MXD_FC33 program in the 
UMG unfolding software package V3.3, which was based on 
the method of maximum entropy deconvolution (MAXED), 
was used to unfold the neutron spectrum [24]. The refer-
ence spectrum, adding a random error, was set as the prior 
information of the PSO-MLEM algorithm and MAXED. 
Combined with the response function and the count rates of 
Bonner spheres obtained by simulation, the neutron spec-
trum was unfolded using PSO-MLEM, PSO, MLEM and 
MAXED, respectively.

2.3.1 � Bonner spheres spectrometer response function 
simulation

The Bonner spheres model refers to the parameters used 
by the Physikalisch Technische Bundesanstalt (PTB). The 
Bonner spheres spectrometer consists of 15 polyethylene 
moderated spheres of various diameters, with diameters of 
0, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 9.5, 10, 12, 15, 18 inches. The 
response function has an energy range of 1 × 10–9 ~ 398 MeV, 
which is divided into 60 energy groups [25]. Each sphere has 
a thermal neutron detector in the center. The center detector 

(8)

{
c1 =

t

Tmax

c2 = 1 −
(

t

Tmax

)

(9)�
MLEM
ij

(t + 1) = �ij(t) ⋅

∑n

i=1
Rij

Ni∑m

j=1
Rij�j(t)

∑n

i=1
Rij

.

chooses the SP90 3He proportional counter manufactured by 
Centronics of the UK. The Bonner sphere model is shown 
in Fig. 2a.

The response functions of Bonner sphere spectrometer 
refer to the counts caused by unit incident neutrons emitted 
from parallel source terms. The number of reactions between 
the neutrons entering the detector and 3He must be recorded 
when the Monte Carlo method was used to simulate the 
response function. The response functions of Bonner spheres 
spectrometer to a single-energy parallel neutron beam with 
a diameter of d and incident energy of E is defined as fol-
lows [26]:

where Rd(E) is the energy response (cm2) when the inci-
dent neutron energy is E, Md represents the count rate of 
the Bonner sphere with diameter d and Φ(E) is the neutron 
fluence (cm–2) when the incident neutron energy is E. Fig-
ure 2b depicts the response functions of 15 Bonner spheres 
as simulated by the Monte Carlo method.

As shown in Fig. 2b, the Bonner sphere with a small 
diameter has a high response in the low energy range, and 
the Bonner sphere with a large diameter has a high response 
in the high energy range. In addition, as the diameter of the 
Bonner sphere increases, the maximum response gets nar-
rower and moves toward higher energies.

2.3.2 � Validation of the unfolded spectrum

As shown in Fig. 3a1, the Input-Spec1 is from the CERN-
CEC high energy reference field facility, 40-cm-thick Fe 
shield in the IAEA Technical Report Series No. 403, the 
Input-Spec2 is from Booster-Synchrotron of the Stanford 
Synchrotron Radiation Laboratory (SSRL) SPEAR in the 
IAEA Technical Report Series No. 403, the Input-Spec3 is 
from CERN Pu-Be calibration spectra in the IAEA Tech-
nical Report Series No. 403 and the Input-Spec4 is from 
Final Focus Test Beam Facility (FFTB) in the IAEA Tech-
nical Report Series No. 403. In Fig. 3a1, the Ref-Spec1, 
Ref-Spec2, Ref-Spec3 and Ref-Spec4, which are the spectra 
from Input-Spec1 to Input-Spec2 adding the ± 10% random 
error, are the prior information for the PSO-MLEM algo-
rithm and MAXED. Figure 3(a2) shows the count rates of 
Bonner spheres spectrometer obtained when the Input-Spec1 
to Input-Spec4 were used for the input spectrum of simula-
tion. With the response function and the count rates of Bon-
ner spheres spectrometer obtained by simulation, the PSO-
MLEM, PSO, MLEM and MAXED were used to unfold the 
neutron spectrum.

(10)Rd

(
En

)
=

Md

Φ
(
En

) ,
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Figure 3(b1)—(e1) depicts the results of the unfolded 
spectra by the PSO-MLEM, PSO, MLEM and MAXED 
with the prior information (Ref-Spec1 to Ref-Spec4). 

Figure  3(b2)—(e2) presents the ratio relation between 
Ndef∕Nobs ,  NPSO_MLEM∕Nobs ,  NPSO∕Nobs ,  NMLEM∕Nobs 
and NMAXED∕Nobs . Nobs are the count rates of 15 Bonner 

Fig. 2   (Color online) Bonner sphere model and response functions. a Bonner spheres model and 3He proportional counter; b response functions 
of Bonner spheres spectrometer simulated by Monte Carlo method
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spheres, and Ndef (Ndef = R�input ) is the result of the response function times the input spectrum. Besides, NPSO_MLEM

Fig. 3   (Color online) Unfolded spectra of Monte Carlo simula-
tion data. a Input spectrum and count rates of Bonner spheres (a1: 
the solid line is the input spectrum of Monte Carlo method, and 
the dashed line is the prior information with a random error; a2: 
the count rates of 15 Bonner spheres); b unfolded spectrum of the 
Spec1 (b1: comparison of PSO-MLEM, PSO, MLEM and MAXED 
unfolded spectra with the input spectrum; b2: ratio of N

PSO_MLEM
 , 

N
PSO

 , N
MLEM

 , N
MAXED

 and N
def

 to N
obs

 ); c unfolded spectrum of the 
Spec2 (c1: Comparison of PSO-MLEM, PSO, MLEM and MAXED 

unfolded spectra with the input spectrum; c2: ratio of N
PSO_MLEM

 , 
N
PSO

 , N
MLEM

 , N
MAXED

 and N
def

 to N
obs

 ); d unfolded spectrum of the 
Spec3 (d1: comparison of PSO-MLEM, PSO, MLEM and MAXED 
unfolded spectra with the input spectrum; d2: ratio of N

PSO_MLEM
 , 

N
PSO

 , N
MLEM

 , N
MAXED

 and N
def

 to N
obs

 ); e unfolded spectrum of the 
Spec4 (e1: Comparison of PSO-MLEM, PSO, MLEM and MAXED 
unfolded spectra with the input spectrum; e2: ratio of N

PSO_MLEM
 , 

N
PSO

 , N
MLEM

 , N
MAXED

 and N
def

 to N
obs

)
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(NPSO_MLEM = R�PSO_MLEM ) is the result of the response 
function times the unfolded spectrum of the PSO-MLEM 
algorithm, NPSO(NPSO = R�PSO ) is the result of the response 
function times the unfolded spectrum of the PSO algorithm, 
NMLEM(NMLEM = R�MLEM ) is the result of the response 
function times the unfolded spectrum of the MLEM algo-
rithm, and NMAXED(NMAXED = R�MAXED ) is the result 

of the response function times the unfolded spectrum of 
the MAXED. The closer the ratio is to 1, the smaller the 

difference between the unfolded spectrum and the input 
spectrum is proved.

The Pearson correlation coefficient was utilized for the 
evaluation of the correlation between the unfolded neutron 
spectrum �cal and the input spectrum �input , and its value 
ranges from + 1 to –1. The r can be calculated using the 
following equation:

The relative mean error (RME) was also used to calcu-
late the difference of the unfolded spectrum from the input 
spectrum. The RME can be calculated using the following 
equation:

(11)
r
�cal�input =

m
∑

�
cal
i
�
input

i
−
∑

�
cal
i

∑
�
input

i

�
m
∑�

�
cal
i

�2
−
�∑

�
cal
i

�2
�

m
∑�

�
input

i

�2

−
�∑

�
input

i

�2

.

Fig. 3   (continued)
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where m is the sample size, represents the number of energy 
intervals i, and �cal

i
 and �input

i
 , respectively, represent the 

normalized value of the ith channel corresponding to the 
unfolded spectra and the input spectrum. For Eq. (11), when 
r=0, the two variables are uncorrelated, when r>0, there is 
a positive correlation, when r<0, there is a negative correla-
tion, and the degree of correlation is as follows: very strong 
correlation (0.8–1.0), strong correlation (0.6–0.8), moder-
ate correlation (0.4–0.6), weak correlation (0.2–0.4), very 
weak correlation or no correlation (0.0–0.2). For equation 
Eq. (12), under ideal conditions ( �cal = �

input ), RME is 0.
As given in Table 1, even if the prior information with 

a random error from the input spectra of the Monte Carlo 
method is used in the PSO-MLEM algorithm, the correla-
tion coefficients of the PSO-MLEM unfolded spectrum of 
the four neutron sources are all above the value of 0.99 
and the relative mean error RME is all less than 0.07%, 
indicating that the unfolded spectrum by the PSO-MLEM 
has a strong correlation with the input spectrum of the 
Monte Carlo method. The correlation coefficient of the 
PSO and MLEM algorithm is significantly lower than the 
PSO-MLEM algorithm. The Input-Spec3 fluctuates more 
strongly, and the results of PSO and MLEM algorithms 
are lower accuracy. The correlation coefficient of Spec3 is 
only 0.74 in PSO and MLEM algorithms, which is lower 
than the PSO-MLEM algorithm (0.99), and the relative 
mean error is also more than the PSO-MLEM algorithm. 
The result shows that the PSO-MLEM algorithm has bet-
ter robustness when the neutron spectrum is complex. At 
the same time, compared with the unfolded spectrum by 
MAXED, the correlation coefficient of PSO-MLEM is 
increased by 1.9%, and the relative mean error is decreased 
by 67.4%.

The time complexity of the algorithm is represented 
by Big O notation, and the time complexity of the PSO-
MLEM algorithm is O(T*N), which is linearly related to 

(12)RME
�cal�input =

1

m

m∑

i=1

|
||
|
|
|

�
cal
i

− �
input

i

�
input

i

||
|
||
|

,

the number of iterations T and population N of the algo-
rithm. Figure 4 shows a plot between the minimum cost of 
Eq. (5) and the number of iterations of the PSO-MLEM, 
PSO and MLEM algorithms, which indicate the conver-
gence of algorithm. From Fig. 4, the minimum cost of 
the PSO-MLEM algorithm is less than that of the PSO 
and MLEM algorithms when the convergence condi-
tion is achieved. And when the convergence condition is 
achieved, the iterations number of the PSO-MLEM algo-
rithm is 500, the iteration number of the MLEM algorithm 
is 700, and the iterations number of the PSO algorithm is 
1550. The convergence speed of the PSO-MLEM algo-
rithm is 1.4 times and 3.1 times higher than that of MLEM 
and PSO algorithms.

Table 1   Correlation coefficient 
(r) and relative mean error 
(RME) of PSO-MLEM, PSO, 
MLEM and MAXED unfolded 
spectra

Unfolding method r and RME Input spectrum

Input-Spec1 Input-Spec2 Input-Spec3 Input-Spec4

PSO-MLEM r
�cal�input 1.0000 0.9989 0.9940 0.9991
RME

�cal�input 0.0132 0.0203 0.0664 0.0195
PSO r

�cal�input 0.9862 0.8123 0.7467 0.8815
RME

�cal�input 1.6720 2.1514 3.7010 0.2062
MLEM r

�cal�input 0.9877 0.9481 0.7447 0.8655
RME

�cal�input 0.6627 1.0882 3.0150 0.1978
MAXED r

���������� 0.9917 0.9037 0.9753 0.9914
RME

�cal�input 0.1305 0.3528 0.2035 0.0719

Fig. 4   (Color online) A plot of the algorithm convergence between 
the minimum cost and the number of iterations of the PSO-MLEM, 
PSO and MLEM algorithms
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3 � Experiment

The Bonner spheres spectrometer designed by the China 
Institute of Atomic Energy was used for experiment to fur-
ther evaluate the viability of the algorithm [27]. As shown 
in Fig. 5a, the Bonner spheres spectrometer consists of one 
SP9 3He proportional counter and ten polyethylene spheres 
with diameters of 1, 2.5, 3, 3.5, 4, 5, 6, 8, 10, 12 inches. The 
3He neutron proportional counter as the central detector is 
wrapped in 10 polyethylene spheres. The neutron energy 
range of the response function is between 9.441 × 10–10 and 
18.84 MeV, which is divided into 207 energy groups. The 
response function of BSS is shown in Fig. 5b.

The BSS of the China Institute of Atomic Energy is used 
to measure the reference 252Cf neutron source, and the count 
rates of BSS N = (N1,N2,… ,N11)

T are obtained and used to 
unfold the neutron spectrum by the PSO-MLEM algorithm. 
The reference spectrum and unfolded spectrum by the PSO-
MLEM algorithm are shown in in Fig. 6.

Table 2 presents the correlation coefficient (r) and rela-
tive mean error (RME) of unfolded spectrum by PSO-MLEM 
algorithm to the reference spectrum. The error analysis of the 
unfolded spectrum shows that the correlation coefficient of 
the unfolded spectrum �cal is more than the 0.99. The relative 
mean error of the unfolded spectrum is 0.1718%.

4 � Conclusion

In this work, to solve the problem of the MLEM algorithm 
which is easy to suffer the pitfalls of local optima and the 
problem of the PSO algorithm which is easy to get unreason-
able flight direction and step length of particles, which leads 
to the invalid iteration and affect efficiency and accuracy, an 

Fig. 5   Experimental Bonner sphere model and response functions. a 
Photograph of Bonner spheres spectrometer; b response functions of 
Bonner spheres spectrometer

Fig. 6   (Color online).252Cf neutron source unfolded spectrum (a: Comparison of PSO-MLEM unfolded spectrum with reference spectrum; b: 
Ratio of N

cal
、N

def
 and N

obs
 of each detector)
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improved PSO-MLEM algorithm was proposed for neutron 
spectrum unfolding. Based on the traditional PSO algo-
rithm, PSO and MLEM algorithm are mixed, and the con-
vergence speed and accuracy of the algorithm are improved 
by dynamic acceleration factor, and the algorithm will not 
suffer the pitfalls of the local optima.

The Monte Carlo method was employed to simulate the 
response functions of the BBS, and four reference spectra 
from the IAEA Technical Report Series No. 403 were used 
as the input spectra. The effects caused by prior information 
with random error and fluctuated more strongly of spectrum 
on the unfolded spectrum were investigated. The results 
show that the PSO-MLEM algorithm is not sensitive to the 
fluctuation of prior information, and the unfolded spectrum 
has a strong correlation with the input spectrum of Monte 
Carlo method. In addition, the PSO-MLEM algorithm has 
strong robustness to the neutron spectrum with large fluc-
tuations. Besides, PSO-MLEM algorithm is used to unfold 
the experimental data of 252Cf neutron source, and the result 
shows that the PSO-MLEM algorithm is competent for neu-
tron spectrum unfolding.
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