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Abstract
Compton camera-based prompt gamma (PG) imaging has been proposed for range verification during proton therapy. How-
ever, a deviation between the PG and dose distributions, as well as the difference between the reconstructed PG and exact 
values, limit the effectiveness of the approach in accurate range monitoring during clinical applications. The aim of the study 
was to realize a PG-based dose reconstruction with a Compton camera, thereby further improving the prediction accuracy 
of in vivo range verification and providing a novel method for beam monitoring during proton therapy. In this paper, we 
present an approach based on a subset-driven origin ensemble with resolution recovery and a double evolutionary algorithm 
to reconstruct the dose depth profile (DDP) from the gamma events obtained by a cadmium-zinc-telluride Compton camera 
with limited position and energy resolution. Simulations of proton pencil beams with clinical particle rate irradiating phan-
toms made of different materials and the CT-based thoracic phantom were used to evaluate the feasibility of the proposed 
method. The results show that for the monoenergetic proton pencil beam irradiating homogeneous-material box phantom, 
the accuracy of the reconstructed DDP was within 0.3 mm for range prediction and within 5.2% for dose prediction. In par-
ticular, for 1.6-Gy irradiation in the therapy simulation of thoracic tumors, the range deviation of the reconstructed spread-
out Bragg peak was within 0.8 mm, and the relative dose deviation in the peak area was less than 7% compared to the exact 
values. The results demonstrate the potential and feasibility of the proposed method in future Compton-based accurate dose 
reconstruction and range verification during proton therapy.

Keywords  Prompt gamma imaging · Dose reconstruction · Range verification · Origin ensemble · Compton camera · 
Evolutionary algorithm

1  Introduction

Proton therapy has been rapidly developed and widely used 
in clinical cancer treatment over the past decades [1–3]. 
The Bragg peak of the proton beam makes it possible to 
accurately deliver enough dose to the target tumors and 
reduce the radiation damage to healthy tissues. However, the 

uncertainties of the in vivo range and dose, which are caused 
by the treatment plan, patient positioning, tumor movement, 
etc., restrict the full clinical potential of proton therapy [4, 
5]. Range verification is key for further improving the clini-
cal effectiveness of proton therapy. The gamma rays derived 
from proton-induced excited nuclei (e.g., 12C∗ and 16O∗ ) are 
almost prompt emission (less than 10−11 s); they are called 
prompt gamma (PG), whose distribution is highly correlated 
with in vivo dose distribution [6]. Using PG for range verifi-
cation is a feasible approach that has been proven in clinical 
applications [6].

A Compton camera (CC) exploits the electronic colli-
mation principle to realize imaging of radioactive sources. 
It has a higher detection efficiency and abilities of multi-
energy reconstruction and three-dimensional imaging 
compared to gamma detectors with a mechanical collima-
tor such as single-photon emission computed tomography 
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(SPECT). Because of its unique advantages, CCs have 
been proposed for PG imaging during proton therapy. Sev-
eral studies on CCs for PG imaging have been conducted, 
including on Compton system design [7–10] and optimiza-
tion [11–13], as well as reconstruction algorithm optimiza-
tion [14–18] and novel algorithms [19–22]. Besides, range 
verification based on CC imaging has been experimentally 
verified [23, 24]. However, the current range verification 
based on CCs can only predict the peak value and distal 
falling-off of the PG distribution; the prediction accuracy 
of the actual dose coverage area and its relative value is 
low. If dose reconstruction can be realized directly, it will 
boost the effect of this technology in practical clinical 
applications. However, there are few studies on Compton-
based dose prediction for proton therapy. The difficulty of 
this problem mainly involves two aspects: (1) the accuracy 
of PG reconstruction is limited by the resolution metrics 
of the detectors and reconstruction algorithm; (2) calcu-
lating the dose distribution from the PG distribution is a 
challenging problem.

Parodi and Bortfeld proposed a filtering approach to 
obtain the positron emission computed tomography (PET) 
images from dose distribution, assuming that the distribution 
of the positron emitter is the convolution of a pre-defined 
filter function and the dose distribution [25]. The convolu-
tion formalism based on functions was introduced to deduce 
the dose distribution from the secondary radiation distri-
bution. Besides, several modified deconvolution methods 
have been investigated and evaluated [26–28]. Schumann 
et al. proposed a novel deconvolution method based on the 
evolutionary algorithm (EA) to deduce the dose depth dis-
tribution from the PG depth profile [29]. Both deconvolu-
tion approaches require a pre-defined filter function, which 
depends on the projectile and target. Another approach is 
deep learning [30–32]. Given that deep learning requires a 
large number of training samples, the results could be unpre-
dictable for unknown patients , bodies and different organiza-
tions. By contrast, the deconvolution approaches could be 
more portable.

The goal of the study was to realize a PG-based dose 
reconstruction with a non-ideal CC, thereby further 

improving the prediction accuracy of in vivo range veri-
fication and providing a novel method for beam monitor-
ing during proton therapy. A modified subset-driven origin 
ensemble with resolution recovery (SD-OE-RR) is proposed 
to realize the PG reconstruction. We also propose a double 
evolutionary algorithm (DEA) to reconstruct the dose depth 
profile (DDP) from the reconstructed PG. We simulated pro-
ton pencil beams irradiating into the phantoms made of dif-
ferent materials and the CT-based thoracic phantom, respec-
tively. A non-ideal two-layer cadmium-zinc-telluride (CZT) 
CC was used to detect the proton-induced PG. Finally, the 
proposed approach was evaluated by comparing the recon-
structed dose distribution with the exact values obtained by 
the treatment planning system (TPS).

2 � Methods

2.1 � Monte Carlo simulation

Geant4 version 10.03.p01 and GATE version 9.0 with the 
QGSP_BERT_HP_EMY physics list were used for proton-
induced PG emission and CC detection simulation. Besides, 
the G4EMLivermorePhysics list was used to simulate the 
physics processes in the production and interaction effect of 
PG, including the Doppler broadening effect [33]. The beam 
time structure was referred to the IBA cyclotron C230 used 
in the clinical proton therapy process [34]. The intensity 
of C230 clinical treatment was approximately 2 × 1010 s −1 , 
in which the current was approximately 3.2 nA. The beam 
pulse duration was 3.2 ns with a period of 9.4 ns. In this 
case, the number of protons contained in a single pulse was 
217. The approximate relationship between the number of 
protons transported Np and the delivered dose is given by 
Eq. (1) [23].

where D is the delivered dose expressed in Gy(J⋅ kg−1) and 
Ar is the beam area expressed in cm2 . For a 145-MeV proton 

(1)Np = 6.24 × 109
D

S∕�
Ar,

Table 1   Relationship between the particle rate of protons and true 
coincidence yield of the simulated two-layer CZT CC

Particle rate of protons Particles/Bunch True coin-
cidence 
yield

2 × 1010 s −1 217 < 0.1%
2 × 109 s −1 22 28%
2 × 108 s −1 2 89.5%
6.7 × 107 s −1 1 98%

Table 2   Relationship between the total number of delivered protons, 
dose, and irradiation time with the beam time structure used in the 
simulations

Number of protons Dose Irradiation time

1 × 107 5.3 cGy 50 ms
5 × 107 26.5 cGy 250 ms
1 × 108 53 cGy 500 ms
3 × 108 1.6 Gy 1.5 s
1 × 109 5.3 Gy 5 s
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pencil beam with a 2D Gaussian broadening of �=5 mm, 
Ar was approximately 1.08 cm2 . Note also that S∕� is the 
mass proton stopping power expressed in MeV⋅ cm2

⋅ g −1 . 
The average energy of the proton beam at the depth of the 
Bragg peak was approximately 14 MeV, corresponding to 
a residual range of approximately 2 mm. According to the 
Report 90 of the International Commission on Radiation 
Units and Measurements (ICRU) [35], S∕� was approxi-
mately 35.2 MeV⋅ g −1⋅ cm−2 . When the delivered dose at 
the Bragg peak was 2 Gy, the number of protons transported 
calculated by Eq. (1) was 3.8 × 108.

A non-ideal two-stage CZT CC (i.e., presenting limited 
position and energy resolution) with a coincidence time 
window of 1.5 μ s was used to detect PGs. Each stage of the 
CZT detectors comprised 44 × 44 crystals, each with a size 
of 2 mm × 2 mm × 15 mm. The spatial resolutions of the 
detectors were both 1 mm in the lateral and depth directions. 
The energy resolution was set as 1.5% at 662 keV. The time 
resolution of the CC was set as 25 ns, and the dead time 
of each event was approximately 250 ns. The CC recorded 
the deposited energies and positions of the pixel where the 
photons interacted in the two layers and output the time-
series projection that contained a timestamp and the corre-
sponding interaction pixel label and deposited energy. The 
list-mode data were obtained by selecting the time-series 
events in a coincidence time window in which the follow-
ing requirements were met: (i) the total deposited energy 
was the characteristic energy of PGs; (ii) the interactions of 
the events were once with the scatterer first and once with 
the absorber. The ideal detection efficiency of the simulated 
CC was approximately 1 × 10−3 PG coincidence events for 
one irradiated proton. However, the true coincidence yield, 
which would determine the detection efficiency of effective 
events in practice, was affected by the limited coincidence 

time window of the CC and dose rate of the proton beam. 
The dose rate could be calculated by the particle rate of 
protons using Eq. (1). After considering the incorrect coin-
cidence caused by multiple protons in a bunch and different 
secondary particles in a coincidence time window, the true 
coincidence yield of the CC for different particle rates of 
protons was evaluated by simulation; the results are provided 
in Table 1.

Given that the proton beam in a bunch was too large in the 
case of the delivered current in the range of several nA, the 
probability of incorrect coincidence events when using the 
simulated CC detection was greater than 99.9%. Therefore, 
it is almost impossible to obtain correct coincidence events 
that can be used for reconstruction. One feasible method is 
to reduce the current when delivering the beam and prolong 
the irradiation time. When the current intensity was reduced 
by a factor of 10, the number of protons in a single reactor 
would be reduced to approximately 22 by using a delivered 
current of approximately 0.32 nA. For the two-layer CZT 
CC, the true coincidence yield was approximately 28%. 
After reducing the current intensity by two orders of mag-
nitude to 0.03 nA, the number of protons in a single bunch 
was 2, and the true coincidence yield was approximately 
90%. The particle rate delivered was 2 × 108 s −1 , and the 
time required to deliver a 2-Gy dose was 1.9 s. With this 
particle rate, the relationship between the delivered dose, 
number of protons, and irradiation time used in simulations 
is listed in Table 2.

Figure 1 shows the diagrams resulting from the Monte 
Carlo simulations. To evaluate the performance of the SD-
OE-RR algorithm for PG distribution reconstructions, a 
120-MeV proton beam irradiated the water box phantom 
three times independently. Then, a proton pencil beam with 
different energies irradiated the box phantom composed of 
different body-like materials to evaluate the proposed dose 

Fig. 1   (Color online) Diagrams resulting from the Monte Carlo simulations; a CC-based beam range and dose monitoring in the multi-layer box 
phantom; b non-ideal CC with limited position and energy resolution; c proton therapy simulation of the thoracic cavity based on the CT slice
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reconstruction approach. The materials (e.g., muscle, corti-
cal bone, soft tissue) used in the simulations were referred to 
the ICRT-46A. To evaluate the performance of the proposed 
method in a situation close to the clinical proton therapy, 
we simulated the proton therapy in the thoracic cavity and 
used the proposed method to reconstruct the dose depth 
profiles with the convolution vectors obtained by the above 
box phantom simulations. The thoracic cavity phantom was 
referred to the Geant4 extended example DICOM [36]. 
Three different proton pencil beams of 2D Gaussian shape 
in the transversal plane irradiated the esophagus or medi-
astinum in different directions to simulate cancer treatment 
in diverse situations. For the thoracic tumor proton therapy 
simulation, two treatment modalities were considered. One 
was a single spot scan of the pencil beam with approximately 
0.8 MeV energy broadening and spatial broadening param-
eters � equal to 2 mm; the coverage depth of the Bragg peak 
maximum irradiation dose was approximately 1 mm. The 
other modality was the spread-out Bragg peak (SOBP) irra-
diation with 5.8 MeV energy broadening and spatial broad-
ening parameter �=5 mm for full coverage of the target area. 
A total of 1 × 107 protons were used in the simulations to 
evaluate the proposed method. Finally, to investigate its per-
formance with a different dose, various numbers of protons, 
ranging from 107 to 109 , were implemented for the thoracic 

cavity proton therapy. The corresponding doses of the dif-
ferent numbers of protons delivered to the phantoms varied 
from 5.3 cGy to 5.3 Gy, covering the region of generally 
delivered dose in clinical treatments [37].

2.2 � Subset‑driven origin ensemble with resolution 
recovery

The subset-driven origin ensemble with resolution recov-
ery (SD-OE-RR) algorithm was used for PG reconstruction 
with list-mode projection data. Different from the SD-OE-
RR proposed in a previous study [38], the calculations of the 
resolution correction factor and initial guess of the source 
distribution f0 given by Eqs. (2) and (3) were modified for 
CZT CC-based PG reconstruction.

where cos �i denotes the cosine of the Compton scattering 
angle calculated by the deposited energies for event i; cos �ti 
is the theoretical cosine of scattering angle determined by 
the scattering position, absorbed position, and voxel vj in 

(2)Δ(cos �qi) ≈
m0c

2

Ei2

⋅ (�Ei + �Di) + �Pi,

(3)f0 = ΣjΣi�(vj, ei){| cos �ti − cos �i| ⩽ �(cos �qi)},

Fig. 2   Framework of dose depth profile reconstruction from CC detection-based PG by the proposed method
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the field of view (FOV); Ei2 is the deposited energy in the 
absorber; �Pi is the deviation caused by the spatial resolu-
tion of the detectors; and �Ei and �Di are the energy deviation 
percentages caused by the statistical fluctuation and Doppler 
broadening effect, respectively. For the CZT CC used in the 
study, the total cosine Δ(cos �qi) was approximately equal 
to 0.05.

The voxels probably containing the sources of event i 
were stored as a one-dimensional vector Oi = Σjoij , where 
the subset of the origin ensemble Σjoij is given by Eq. (4). 
Then, the iteration of the SD-OE-RR was based on the 
Monte Carlo–Markov chain, updating the probability den-
sity function by Eq. (5); this is similar to the original origin 
ensemble algorithm [19]. The defined �(x) function equals 
0 when x ≠ 0 and equals 1 when x = 0 . Moreover, k+1 and 
k represent iteration times, �1,k+1 represents the randomly 
selected subset of the origin ensemble in the (k + 1)th itera-
tion, and �2,k+1 represents another independent random num-
ber used in the (k + 1)th iteration to determine whether to 
move the location of the origin. Besides, F(�1,k+1) is the sum 
of f (�1,k+1) and f of the �1,k+1-centered four adjacent pixels. 
Finally, sgn(x) denotes the sign function.

SD-OE-RR was programmed with CUDA C++ for parallel 
acceleration. The FOV size was set as 200 mm, and 107 itera-
tions were implemented for each reconstruction.

(4)
oij = ln[1 + �(max{| cos �ti − cos �i| − Δ(cos �qi)|, 0})]∕ln2

(5)

f (�1,k+1) =max{sgn(2(F(�1,k+1) + 1 − F(�1,k))),

sgn(2(F(�1,k) − F(�1,k+1)))⋅

sgn
(F(�1,k+1) + 1

F(�1,k)
− �2,k+1

)

⋅ [F(�1,k+1) + 1],

sgn(2(F(�1,k − F(�1,k+1)))) ⋅ sgn(�2,k+1

−
F(�1,k+1) + 1

F(�1,k)
) ⋅ [F(�1,k) + 1]}

2.3 � Double evolutionary algorithm

In a previous study, the PG depth profiles (GDPs) and dose 
depth profiles (DDPs) could be fitted by an analytical approxi-
mation of the Bragg curve called Q̃ function. The convolution 
relation between the corresponding fitting curve G̃DP and 
D̃DP was given by Eq. (6), which is an analytical approxima-
tion of the Bragg curve. The Q̃ function is the convolution 
of a Gaussian function G(x) and a power-law function Pv(x) , 
which was introduced by Parodi and Bortfeld [20] for PET 
and adapted to PG by Schumann et al [29]. In this study, the 
evolutionary algorithm was used to obtain the kernel function 
k̃ of various known simple phantoms and deduce the unknown 
D̃DP of complex phantoms. This approach was abbreviated as 
double evolutionary algorithm (DEA).

The DEA iteration process used in this study is described 
next: 

1.	 Initialization. A specific array of a Q̃ distribution is used 
to create a set of Npop individuals. Each individual rep-
resents a D̃DP or k̃ array for two different evolutionary 
algorithm applications.

2.	 Parent selection. Two parental arrays are obtained with 
a fitness proportional selection. The arrays with higher 
fitness give rise to new offspring.

3.	 Crossover. With random points cutting in two arrays, the 
parental arrays implement the single-point crossover to 
form two-child arrays.

4.	 Mutation. The new offspring is mutated to derive a 
potential improvement in fitness. Each modified array 
could be shifted in depth by a random integer value 
in the interval [−2, 2] with probability p1 = 0.3 and 
multiplied with a uniformly distributed random factor 
between [1-r,1+r] (r = 0.2) with probability p2 = 0.3 . 

(6)G̃DP = D̃DP ⋅ k̃

Table 3   Simulated proton-
induced PG reconstruction 
results of the three OE-RR 
algorithms for 107 incident 
protons

Position Method 12C 14N 15O 16O 12C+15O+16O

MC 98.18 ± 0.37 85.16 ± 0.64 95.31 ± 0.39 101.30 ± 0.37 100.00 ± 0.39

Peak OE-RR 95.98 ± 0.63 81.29 ± 0.83 89.64 ± 0.53 100.20 ± 0.42 97.95 ± 1.07

ROE-RR 97.52 ± 0.45 82.53 ± 0.87 93.32 ± 0.61 99.96 ± 0.37 99.14 ± 0.45

SD-OE-RR 96.87 ± 0.44 83.52 ± 0.93 93.67 ± 0.56 100.72 ± 0.35 99.63 ± 0.39

MC 100.72 ± 0.03 90.87 ± 0.09 97.68 ± 0.10 103.76 ± 0.06 102.75 ± 0.09

80% OE-RR 98.12 ± 0.68 88.14 ± 0.34 93.47 ± 0.51 104.12 ± 0.15 102.57 ± 0.60

Fall-off ROE-RR 99.03 ± 0.81 88.34 ± 0.53 96.31 ± 0.46 103.10 ± 0.55 102.21 ± 0.27

SD-OE-RR 99.32 ± 0.43 88.96 ± 0.88 96.12 ± 0.52 103.19 ± 0.06 102.26 ± 0.36

MC 100.86 ± 0.03 94.22 ± 0.22 98.95 ± 0.51 104.06 ± 0.06 104.49 ± 0.22

50% OE-RR 101.97 ± 0.63 92.33 ± 0.26 101.39 ± 0.34 105.75 ± 0.32 104.53 ± 0.43

Fall-off ROE-RR 101.06 ± 0.35 91.95 ± 0.92 100.38 ± 0.73 105.87 ± 0.31 104.85 ± 0.73

SD-OE-RR 101.67 ± 0.78 91.85 ± 0.52 99.73 ± 0.49 105.57 ± 0.25 104.57 ± 0.30
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It could be also varied around a randomly chosen point 
with probability p3 = 0.4 and a Gaussian curve of ran-
dom height (between ±10% ) and width of 10 mm (2�).

5.	 Replacement. The next generation is created by choosing 
50% of individuals with the best fitness value from the 
parental and newly generated population.

6.	 Iteration. Repeat steps 1 to 4 until reaching the pre-deter-
mined iterations, i.e., Niter.

The specific array mentioned above, which replaces their 
corresponding continuous function, represents a vector with 
400 elements in the interval [ −200 mm, 200 mm] for k̃ and a 
vector with 200 elements in the interval [0 mm, 200 mm] for 
D̃DP , respectively. The DEA iterations were implemented 
3000 times for the kernel function k̃ of various known sim-
ple phantoms and 1000 times for unknown D̃DP of complex 
phantoms.

2.4 � Dose depth profile reconstruction framework

As shown in Fig. 2, the CC-based dose depth reconstruc-
tion framework mainly comprises two parts: the G̃DP 
obtained by the CC and the convolution kernel k̃  obtained 
by prior known phantoms and final dose estimation via 
the DEA. Then, the estimated convolution kernel k̃  of 
multiple materials or multi-energy was obtained by alge-
braic averaging (i.e., interpolation method) or weighted 
average of the known kernels. The previously known 
kernels with proton beams of different energies irradiat-
ing different materials were calculated by the DEA. The 
original GDP was obtained by SD-OE-RR reconstruction 
with the projection data of a non-ideal CC. Moreover, the 
estimated G̃DP was given by local peak fitting based on 
the original GDP. The local fitting interval of curves used 
in the study was the interval above 80% of the peak value.

3 � Results

3.1 � PG reconstruction

Table 3 shows the PG reconstruction results for three ori-
gin ensemble (OE) algorithms (i.e., ordered OE-RR [15], 
ROE-RR [18], and SD-OE-RR algorithms). The PGs with 

four characteristic photons (i.e., from 12 C, 14 N, 15 O, and 
16 O de-excitations) were chosen to evaluate their per-
formance. To alleviate the effect due to the incomplete 
absorption and background radiation, the effective events 
for reconstructions were selected by using the total energy 
windows of coincidence events within ± 0.2  MeV of the 
four known PG energy spectral peaks (i.e., 4.44 MeV, 
2.31 MeV, 5.25 MeV, and 6.13 MeV) [15]. As shown in 
Table 3, compared with previous OE algorithms, SD-OE-
RR presents the same or slightly higher reconstruction 
accuracy. Besides, in a 64-bit Linux computer with a 2.50 
GHz Intel i5-7200U CPU and a GTX 1650 Ti Nvidia 
GPU, for approximately 200000 events, the reconstruction 
times were 26, 21, and 3 s for the ordered OE-RR, ROE-
RR, and SD-OE-RR algorithms, respectively. Therefore, 
the SD-OE-RR algorithm proposed in this study con-
sumes less time while providing reconstruction whose 
distal-fall position deviation was less than 2 mm. The 
results also demonstrate that the proposed algorithm can 
make use of the PG distribution reconstructed by the SD-
OE-RR algorithm to obtain the estimated G̃DP with good 
agreement in the positions of peak and distal fall-off.

3.2 � Reconstruction of dose depth profiles

As shown in Fig. 3(a) and (b), compared to the exact DDP 
in the two-layer phantom made of cortical bone and muscle, 
the reconstructed DDP with CC by the proposed method had 
less than 0.3 mm deviation at the 50% distal fall-off position. 
Moreover, the relative deviation was within 2.5% in terms 
of absolute dose in the region above 80% maximum inten-
sity. Besides, the reconstructed DDP had an average rela-
tive deviation of 7.7% in the region of the level area behind 
the dose mutation interface. As shown in Fig. 3(c) and (d), 
the reconstructed DDP of the three-layer phantom made of 
cortical bone, muscle, and soft tissue had a deviation below 
0.26 mm at 50% distal fall-off position, and within 5.2% in 
terms of absolute dose around the Bragg peak. As shown in 
Fig. 3(e) and (f), for the SOBP induced by a 145∼160 MeV 
proton beam irradiating a phantom made of cortical bone, 
muscle, and soft tissue, the reconstructed DDP could repro-
duce the peak region with an accuracy within 2 mm and pre-
dict the relative dose in the peak area with a deviation less 
than 4%. Furthermore, the relative deviation of the global 
curves (until the distal end fall-off) was approximately 4.5%.

Figure 4 shows that, with respect to the exact 2D dose 
distributions, the Compton-based reconstructed PG dis-
tributions obtained by the SD-OE-RR algorithm were in 
good agreement with the positions of the distal fall-off, 
but the peak broadening was skewed, similar to the dis-
tributions of the initial PGs. Note also in Fig. 4(d) and (f) 
that the reconstructed DDPs for the in vivo proton beam 

Fig. 3   (Color online) Simulation results of proton beam irradia-
tion for multi-layer box phantoms: a, c, e show the comparison of 
the DDPs between the exact values obtained by MC simulations and 
reconstructed values via the proposed method from CC for three dif-
ferent multi-layer phantoms consisting of cortical bone, muscle, and 
soft tissue, respectively; b, d, f show their corresponding relative dose 
deviation, respectively

◂
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Fig. 4   (Color online) Simula-
tion results of proton therapy 
for thoracic mediastinal tumors 
with 130.2∼131 MeV proton 
pencil beams ((a)∼(e)) and for 
thoracic esophageal tumors with 
144.2∼145 MeV proton pencil 
beams ((f)∼(j)), respectively. 
( 107 protons). a, f show the 
exact distributions of dose at 
the CT slice obtained from 
MC simulations; b, g show the 
distributions of the initial PGs 
induced by the proton beams; 
c, h show the reconstructed 
PG distributions obtained by 
SD-OE-RR with CC data; d, i 
show the comparison between 
the exact DDPs in (a, f) and 
reconstructed DDPs from (c, h); 
(e, j) show their corresponding 
relative deviations
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had a deviation of less than 0.6 mm for the distal fall-
off position. Moreover, the reconstructed DDPs were in 
good agreement with the exact values at the Bragg peak 
in the region above 80% maximum intensity, where the 
relative deviation was within 5.3%. However, as shown in 
Fig. 4(d) and (e), the reconstruction in the region before 
the Bragg peak had a large deviation due to the proton 
beam passing through a more complex structure such as 
a lung. In contrast, Fig. 4(i) and (j) shows that when the 
proton beam passes through a more homogeneous struc-
ture such as mediastinum, most of the relative deviations 

were within 10% in the region of the level area behind the 
dose mutation interface.

Compared to the exact initial PG distribution shown in 
Fig. 5(b), the Compton-based reconstructed PG distributions 
obtained by the SD-OE-RR algorithm shown in Fig. 5(c) 
were in good agreement with the distal fall-off position and 
spatial distribution in the area around the peak. As shown 
in Fig. 5(d), the reconstructed DDP for the in vivo proton 
beam could predict the position of the distal fall-off with an 
accuracy within 0.8 mm. Moreover, as shown in Fig. 5(e), 
the reconstructed DDP was in good agreement with the exact 

Fig. 5   (Color online) Simulation results of proton therapy for thoracic 
mediastinal tumors with 131.2∼137 MeV proton pencil beams ( 107 
protons) of 2D Gaussian shape in the transversal plane ( � = 5mm ): a 
exact distribution of dose obtained by MC simulation; b correspond-

ing initial PG distribution; c reconstructed PG distribution obtained 
by SD-OE-RR with CC data; d comparison between the exact DDP 
in (a) and the reconstructed DDP from (c); e corresponding relative 
deviations of dose
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value at the Bragg peak in the region above 80% maximum 
intensity, with a relative deviation of less than 4.8% in terms 
of absolute dose. However, for the region of the level area 
before the Bragg peak, the reconstructed DDP had larger 
values than the exact values with a mean relative deviation 
of approximately 9.2%.

Figure 6 shows the simulation results of proton therapy 
for thoracic mediastinal tumors with different numbers of 
incident protons. Given that the reconstruction accuracy 
of the PGs with the CC was influenced by the number of 
detected events, the DDP reconstructed by the proposed 
method was correlated with the number of incident protons. 

Fig. 6   (Color online) Simulation results of proton therapy for tho-
racic mediastinal tumors with different numbers of incident protons: 
a reconstructed GDPs obtained by SD-OE-RR for different particle 

rates; b relative deviations between the exact and reconstructed DDPs 
for different particle rates; c corresponding reconstructed DDPs
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When the number of incident protons increased, the num-
ber of effective events available for the reconstruction of 
PGs also increased by almost the same proportion, under the 
premise that the particle rate of incident protons (which was 
proportional to the dose rate) remained unchanged. When 
the number of incident protons varied from 107 to 109 , corre-
sponding to a delivered dose ranging from 5.3 cGy to 5.3 Gy, 
the number of PG events by the simulated CZT CC ranged 
from approximately 2000 to approximately 200000. As 
shown in Fig. 6(a), the accuracy of the reconstructed GDP 
deteriorated as the particle number decreased, especially 
in the area before the Bragg peak. This is consistent with 
the results of previous studies on OE-RR-based PG recon-
struction [15, 18]. However, the reconstructed positions of 
the distal fall-off were almost the same, which means that 
the distal fall-off was reproduced accurately. Therefore, the 
reconstructed DDP could provide an accurate range pre-
diction for 107 incident protons. Moreover, the accuracy of 
the dose prediction will be better if the number of protons 
increases. As shown in Fig. 6(b) and (c), for a total 1.6-
Gy dose, which corresponds to 3 × 108 incident protons, the 
reconstructed DDPs were in good agreement with the distal 
falling edge of the Bragg peaks with an accuracy within 
0.6 mm, and the corresponding relative deviations in the 
region above 80% maximum intensity were less than 5.5%. 
When the total delivered protons reached 109 (i.e., approxi-
mately 5.3 Gy), the relative deviations in the region above 
80% maximum intensity were less than 4% and the average 
value of the global deviation was approximately 5%.

4 � Discussion

The difficulty of dose reconstruction based on CC comes 
from two aspects: the rapid and accurate PG reconstruc-
tion with non-ideal CC measured data and the calculation of 
dose from the reconstructed PG distribution. In this paper, 
we first propose a modified SD-OE-RR algorithm to real-
ize a faster and more accurate PG reconstruction. As shown 
in Table 3, the SD-OE-RR algorithms provided peak esti-
mations with an accuracy of approximately 1.0 mm for all 
the PGs. The accuracy of the distal fall-off positions was 
within 2 mm except for the 50% fall-off position of 14 N. 
Compared with the previous OE-RR algorithm, the pro-
posed SD-OE-RR algorithm additionally considered the 
correction of the Doppler broadening effect calculated by 
the CZT extranuclear electron momentum, which further 
improves the speed of the convergence and accuracy of the 
relative intensity peak of the reconstructed PG [39]. Besides, 
the parallel SD-OE-RR algorithm exploits the advantages 
of GPU multi-thread simultaneous computing and greatly 
reduces the reconstruction time, meeting the requirements 
of rapid reconstruction with a large number of events. For 

the proposed SD-OE-RR algorithm, in order to reduce the 
image blur caused by the large variability between the aver-
age states for computing the reconstructed images during OE 
iterations [17], we selected the imaging field of view with 
a number of voxels of 256 at most in each dimension while 
ensuring that it covered at least 20 cm in the depth direc-
tion to achieve beam monitoring. Besides, we only used the 
total energy window to select the effective events of PGs. 
However, we identified sources of background noise, such as 
secondary protons or neutrons generated during the irradia-
tion, that could lead to an accidental coincidence event of 
wrong origin in the actual irradiation; this could hardly be 
culled by the energy windows [40]. Better event selection 
methods such as those based on neural networks [41] or the 
distance-of-closest approach [42] can be used for PG event 
selection before reconstruction by the proposed method in 
future clinical applications. After PG reconstruction, the 
corresponding profile (i.e., GDP) with SD-OE-RR for 16 O 
was used to obtain the G̃DP by curve local fitting with Q̃ . 
Selecting the fitting interval above 80% of the peak value 
was due to the good agreement between the reconstructed 
and exact values, as shown in a previous study for OE-RR-
based PG reconstruction.

Based on the original evolutionary algorithm and Q̃ 
function fitting proposed in Parodi and Bortfeld [25], we 
propose a DEA algorithm to realize the dose calculation 
from the reconstructed PG distribution. The main modi-
fications were the calculation approach of the convolu-
tion kernel and a novel convolution kernel calculation 
approach for complex phantoms. Instead of using the 
analytical method, we used a similar EA to obtain the 
vectors k̃  with the same length of elements to replace the 
continuous kernel function. We implemented the protons 
with an energy range from 131 to 159 MeV while irradiat-
ing different phantoms. In this case, the main peak posi-
tions of these vectors remained almost unchanged when 
the energy of the proton beams or the density of targets 
did not vary significantly. Given that the SOBP generally 
uses an energy range within 30 MeV, the filter kernel of 
the corresponding proton energy in the distal falling edge 
or median depth can be used for dose prediction, as veri-
fied by Schumann et al. [29]. The density of most human 
tissues is between 1.0 and 1.1 g/cm3 , except for the corti-
cal bone, which is approximately 1.82 g/cm3 . Thus, the 
average convolution kernel could be calculated from the 
convolution vectors obtained by the monoenergetic proton 
beams irradiating the box phantoms composed of a single 
material. Moreover, the corresponding estimated convolu-
tion vector k̃  were used as the pre-defined filter kernel in 
multi-layer materials and polyenergetic protons, as well 
as the complex thoracic phantom. In particular, because 
the specific material proportion of the thoracic phantom 
and their convolution kernel vectors were often not known 
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in advance, its average convolution vector k̃  was calcu-
lated using the convolution kernel vectors of materials 
with similar densities (i.e., water and cortical bone), to 
simulate the practical application of the proposed method.

The results shown in Figs. 3, 4, 5, and 6 verified the fea-
sibility of the proposed method in the range and dose pre-
diction during proton therapy. The DDPs reconstructed by 
PGs with a non-ideal CC were in good agreement with the 
exact values of dose distribution calculated by TPS. In the 
simulation of the box phantom, the reconstructed DDP had 
an accuracy of less than 0.3 mm for range prediction and 
within 5.2% for dose prediction of monoenergetic protons 
irradiating. The prediction deviation of the range was less 
than 2 mm for a polyenergetic proton beam irradiating the 
multi-layer phantom (even for a large spread-out Bragg peak 
of approximately 2 cm). Besides, for the proton pencil beam 
spot scanning simulations with SOBP of approximately 
3 mm with a total dose (approximately 2 Gy ∼ 5 Gy) com-
monly used in clinical applications, the reconstructed DDPs 
for the in vivo proton beam had less than 0.8 mm deviation 
for the distal fall-off position and were in good agreement 
with the exact values in the region above 80% maximum 
intensity. The accuracy of the reconstruction depends on the 
number of incident protons, which determined the statistical 
properties of the measured projection data. The deviations 
of the range prediction were less than 1 mm for a number 
of incident protons of at least 107 , which corresponds to a 
delivered dose of 5.3 cGy. Moreover, the accuracy of the 
dose prediction is better as the number of incident protons 
increases.

Compared with the previous range prediction methods 
based on CC-based PG imaging, the proposed method 
achieved higher accuracy in terms of range verification 
by directly reconstructing the dose depth distribution. 
This is because the distal falling edge of the PGs and 
that of the dose distribution usually had a deviation of 
approximately 2 mm or more [43]. Therefore, the indirect 
range prediction based on the PGs had systematic errors. 
The proposed method simultaneously realized the dose 
reconstruction of the Bragg peak region of the proton 
beam in different materials, thereby providing a means for 
online monitoring and control of the beam hot spot. Com-
pared with other offline dose verification methods, the 
proposed dose prediction method based on CC is prom-
ising in terms of optimization of the parameters of the 
proton beam and therapy plan according to the patient ,  s 
condition after a short-time feedback within several sec-
onds, and to further improve the curative effectiveness 
of proton therapy. In future work, after completing the 
construction of the CC prototype, we will conduct range 
and dose prediction experiments based on CC applied 
on the proton beam under clinical conditions to further 

optimize the proposed method and apply it in future rapid 
beam monitoring.

5 � Conclusion

In this paper, we propose an approach to realize the dose 
depth profile reconstruction with a CC for proton therapy. 
A modified SD-OE-RR algorithm and double evolutionary 
algorithm are presented to address the two main challenges 
in CC-based dose reconstruction. The simulation results of 
the box phantom irradiation and thoracic tumor treatment 
demonstrate the feasibility of the proposed method in accu-
rate dose depth distribution reconstruction. Moreover, the 
simulation results also demonstrated that the algorithms pro-
posed in this paper are feasible for more accurate prediction 
of beam range based on CC during proton therapy. The pro-
posed method may be used in future rapid dose monitoring 
and more accurate range verification during proton therapy.
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