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Abstract
When multiphysics coupling calculations contain time-dependent Monte Carlo particle transport simulations, these simula-
tions often account for the largest part of the calculation time, which is insufferable in certain important cases. This study 
proposes an adaptive strategy for automatically adjusting the sample size to fulfil more reasonable simulations. This is real-
ized based on an extension of the Shannon entropy concept and is essentially different from the popular methods in time-
independent Monte Carlo particle transport simulations, such as controlling the sample size according to the relative error 
of a target tally or by experience. The results of the two models show that this strategy can yield almost similar results while 
significantly reducing the calculation time. Considering the efficiency, the sample size should not be increased blindly if the 
efficiency cannot be enhanced further. The strategy proposed herein satisfies this requirement.

Keywords Time-dependent Monte Carlo particle transport simulation · Shannon entropy · Adaptive strategy

1 Introduction

Multiphysics processes have been extensively studied in sev-
eral important fields. Owing to its complexity, an analytical 
solution is hardly possible, and numerical calculations are 
treated as efficient tools instead of expensive experiments. 
When time-dependent processes governed by different phys-
ical rules are coupled, one apparent solution is to divide 
the entire calculation into many steps, in which different 
control equations should be solved individually. Some data 
must be transmitted from one process to another to mimic 
the coupling effect. In certain important cases, the time-
dependent particle transport is an indispensable part of the 
multiphysics process.

The coupling between fluid mechanics and neutron 
transport was used as an example, which was used to dem-
onstrate the sample-size adaptive strategy. In many cases, 

other physical processes must also be considered. However, 
considering only these two processes is not trivial and is 
meaningful in certain important situations. The governing 
equations for fluid mechanics are as follows:

In the above equations, � is the density, p is the pressure, u⃗ 
is the fluid velocity, E =

1

2
u⃗u⃗ + I is the energy, I is the mate-

rial-specific internal energy, and Q is the feedback quantity 
from neutron transport. The fluid pressure p, density � , and 
internal energy I are related by the equation of state, whose 
general form is

When neutrons fly in a medium, nuclear energy is released 
by reactions between the neutrons and the nucleus. These 
reactions change the temperature, density, and velocity of 
the medium. However, because these reactions rely on their 

(1)
𝜕𝜌

𝜕t
+ ∇ ⋅ 𝜌u⃗ = 0,

(2)
𝜕𝜌u⃗

𝜕t
+ ∇ ⋅ 𝜌u⃗u⃗ = −∇p,

(3)
𝜕𝜌E

𝜕t
+ ∇ ⋅ 𝜌Eu⃗ = −∇ ⋅ pu⃗ + Q.

(4)p = f (�, I).
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relative velocities, the thermal and hydrodynamic motions of 
the nucleus influence the neutron transport process. There-
fore, the correct transport equation should include the dis-
tribution function of the nucleus, except for the neutron flux, 
which should be determined by the corresponding transport 
equation. This created a complex problem involving a group 
of simultaneous transport equations. Fortunately, because 
the local thermal equilibrium hypothesis is suitable, the use 
of Maxwell distribution to describe the thermal motion of 
a nucleus is sufficiently precise. After averaging, the coeffi-
cients of the neutron transport equation rely only on the rela-
tive velocity of the neutron and the hydrodynamic motion of 
the medium. Therefore, the neutron transport equation that 
considers the effect of fluid motion is given by [1]

where v⃗ is the neutron velocity, V⃗ = v⃗ − u⃗ is the rela-
tive velocity, N(r⃗, V⃗ , t)dr⃗dV⃗  is the mean neutron number 
in the volume element dr⃗dV⃗  around (r⃗, V⃗) at time t, and ∑�

f
�

V
�

N
�

=
∑
(r⃗,V

�

)f (r⃗, V⃗
�

→ V⃗)V
�

N(r⃗, V⃗ �, t) , 
∑
(r⃗,V) is the 

total macro cross section. In the total macro cross section,

where 
∑i

x
(r⃗,V

�

) is the probability of x reaction taking 
place with i nucleus when a neutron travels a unit distance, 
f ix(r⃗, V⃗

′
→ V⃗) is the probability of generating neutrons with 

velocity V⃗  when a neutron takes place x reaction with i 
nucleus at point r⃗ , and q(r⃗, V⃗ , t) is an external source. At the 
beginning of each step, the fluid calculation provides a new 
transport environment for neutron transport, and the time-
dependent particle transport problem is calculated to obtain 
feedback quantities for the fluid calculation. This cycle is 
repeated several times to obtain the required quantities. 
Based on the above control equations, the Jointed numerical 
simulation software for mUlti-PhysIcs and multi-maTerials 
problems under ExtReme conditions (JUPITER) platform 
was developed by a team at the Institute of Applied Physics 
and Computational Mathematics. It utilizes mature frame-
work technology to support software development and has 
been confirmed and verified by many models.

Owing to the accuracy of the Monte Carlo method for 
geometry [2], physics modeling, and other merits, this 
method is often used to simulate particle transport [3]; 
however, it is extremely time-consuming. When there is 
a problem with multi-materials with large deformations 
and the scale of the model’s grid number is large, several 
steps are required for a reliable calculation, and each step 

(5)

𝜕N

𝜕t
+ v⃗ ⋅ ∇N +

dN⃗

dt
⋅ ∇VN + V

∑
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contains a Monte Carlo simulation of a large model. There-
fore, in this case, the calculation time is insufferable even 
with large-scale parallelization using a powerful supercom-
puter. Similar to the traditional Monte Carlo simulation of 
the time-independent particle transport problem, the core 
objective is to achieve the highest possible efficiency. This 
means finding a method with high calculation accuracy but 
not time-consuming. In other words, when efficiency flattens 
with an increase in sample size, there is no need to perform 
more calculations if efficiency, not calculation accuracy, is 
the goal. For the Monte Carlo method, it is well known that 
when the sample size tends to infinity, the calculation accu-
racy can reach any level because of the law of large numbers, 
which is impossible.

Apparently, it is difficult to set different reasonable sam-
ple sizes for each step based on experience because each 
step is a different particle transport problem. If a fixed, suf-
ficiently large sample size is set for all steps, which is the 
original sample size setting method of the JUPITER plat-
form, many calculations may be wasted because the effi-
ciency factor will be flat as the sample size is increased to 
a certain level. Therefore, experience-based methods are 
not considered to be efficient. Moreover, because the Monte 
Carlo simulation provides several feedback quantities with 
very different fluctuation levels, the sample size controlled 
by the relative error of one tally may not be sufficient or 
may be excessively large for another tally. Therefore, error-
based methods [4] are unsuitable. Because the calculation of 
time-dependent particle transport is expensive, Monte Carlo 
simulations still need to develop an adaptive strategy to sci-
entifically set the sample size, even with the rapid progress 
of supercomputers.

The remainder of this paper is organized as follows: The 
second section describes all aspects of a sample size adap-
tive strategy based on an extension of the Shannon entropy 
concept. The third section contains some active numerical 
results from the calculations of the two models. The final 
section provides the concluding remarks.

2  Sample size adaptive strategy

2.1  Research basics

Entropy is a notion existing in both physics and mathemat-
ics. Clausius is considered the father of the concept of 
entropy. The important contributions to the development of 
this concept were made by Boltzmann, Gibbs, and Planck. 
Moreover, mathematicians, including Shannon, Kolmogo-
rov, Sinai, Rényi, Holevo, and Tsallis, were also preoccu-
pied with the concept. On the history of different paths to 
entropy concept, see, e.g., [5–7]. Therefore, there are various 
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definitions of entropy. In this study, the entropy concept used 
is the one proposed by Shannon in [8], which has some novel 
applications in various fields [9, 10]. For example, Ref. [9] 
showed that Shannon entropy is an efficient dynamic indica-
tor that provides a direct measure of the diffusion rate and, 
thus, a timescale for the instabilities arising when dealing 
with chaos.

It is worth pointing out that the Shannon entropy was first 
introduced into Monte Carlo particle transport simulation 
as a posterior indicator for convergence of fission source 
distribution in eigenvalue calculation of nuclear systems 
[11–14]. Suppose there are N cells in total for some nuclear 
systems and M fission neutrons at some moment. Let mi be 
the number of fission neutrons in cell i. Hence, 

∑
i mi = M . 

Let pi =
mi

M
 and

we obtain the Shannon entropy Hori . For the power iteration 
method of eigenvalue calculation, if there are K iteration 
steps and Hk

ori
, k = 1,⋯ ,K are entropies of each step, then 

the convergence of this entropy sequence is a necessary con-
dition for the convergence of the fission source distribution. 
It is primarily used as follows: When the entire calculation 
has been completed and the Shannon entropy of each step 
has been obtained, a step number n is selected by judging 
the entropy sequence after this step is perceived to have con-
verged. If the number of the first active steps is greater than 
n, this calculation is considered reasonable. Otherwise, it is 
judged that the inactive iteration steps are insufficient, and 
the results are systematically biased.

In recent years, there have been some attempts to explore 
on-the-fly judgment methods [15–18] for the convergence 
of the fission source distribution, which belongs to the 
time-independent particle transport problem. It has already 
been noted [19] that the Shannon entropy concept can be 
problematic when it indicates the convergence of the fission 
source distribution in a slow-convergence system. Fortu-
nately, our concerns did not include this type of problem.

2.2  Analysis for an reasonable adaptive strategy 
for sample size

Two important facts should be considered. (1) The surviving 
particles of the current step should be transferred to the next 
step as an external source. The attributes of these particles are 
samples of unknown distribution that change with the number 
of steps. This distribution can be called survival particle dis-
tribution for convenience; (2) Monte Carlo simulation of par-
ticle transport should provide global tallies (one tally per cell) 
for mechanical calculation as a source item. These facts have 
a general sense of many multiphysics coupling processes. It 

(7)Hori = −

M∑

i=1

pi ln(pi),

would be interesting to develop a sample size adaptive strategy 
to balance small errors and calculation costs. The basic con-
siderations of this study are as follows: Suppose a sufficiently 
large sample size of one step is divided into batches, and each 
batch contains a fixed number of samples, the Monte Carlo 
simulation should finish all batches one at a time. However, 
if the number of surviving particles is sufficient, and global 
tallies have converged according to some judgment rules 
after some of these batches have been finished, the remaining 
batches can be omitted because the safely finished batches are 
sufficient to obtain reasonable results. This point can be rea-
sonably verified by the fact that when stops in advance in one 
step, the global efficiency of global tallies, according to some 
index, is flat with batches that have already been finished.

To realize these ideas, three questions must be answered. 
The first question is whether the surviving particles are suf-
ficient. The second one is by which indicator the global tallies 
can be judged to converge sufficiently. The last one is which 
on-the-fly diagnostic can be used to stop the Monte Carlo 
simulation in advance. The solutions to these problems are 
presented in the following three subsections. These methods 
are based on the Shannon entropy concept.

2.3  Indicator for judging whether survival particles 
are enough

Based on the definition of Shannon entropy, an indicator can 
be designed to show if the number of surviving particles are 
sufficient. Suppose there are N cells in total for the system and 
G energy groups so that the total number of phase-space grids 
is NG. Let Vi(i = 1,⋯ ,N) be the volume of cell i and mij be 
the number of surviving particles in cell i and energy group 
j. If defining

and

then there are L Ht values in total for L finished batches. 
Here, Ht is the entropy corresponding to survival particle 
distribution. Note that pij ≥ 0 and 

∑
ij pij = 1 ; thus, pij can 

be considered as a discrete probability distribution. When 
batches are individually simulated, the Ht values form a 
sequence. If the sequence converges, it can be said that 
these L batches have made the surviving particles suffi-
cient. Apparently, finer phase-space grids represent stricter 
standards. In Eq. (8), dividing by Vi is not trivial because it 
represents the concept of number density. Note that mij in 
batch k should contain mij in all batches k1 satisfying k1 < k.

(8)pij =
mij∕Vi∑
ijmij∕Vi

(9)Ht = −
∑

ij

pij ln(pij),
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2.4  Indicator for judging whether global tallies 
have converged sufficiently

When particle transport is coupled with other processes, the 
Monte Carlo simulation must provide feedback quantities to 
those processes as an input. The precision of these inputs, 
also known as tallies in the Monte Carlo method, signifi-
cantly influence the confidence of the coupling calculation. 
In most cases, these quantities can be expressed as integrals 
of the flux and the corresponding functions. Therefore, if 
global flux tallies converge sufficiently, these feedback quan-
tities are credible to a certain degree. Focusing on global 
flux tallies can also avoid the problem of dealing with dif-
ferent types of tallies in different multiphysics processes. If 
Fi is the flux in cell i, let

and

Here, Hf is the entropy corresponding to global flux. The 
convergence of Hf sequence formed by finished batches 
indicates the global convergence of the flux tallies. In addi-
tion, Fi in batch k should contain the contributions of the 
particles in all batches k1 that satisfy k1 < k . To the best of 
our knowledge, this is the first time an indicator like Eq. (11) 
has been introduced into the Monte Carlo simulation of par-
ticle transport to indicate the convergence of global tallies. 
This has the advantage that there is no need to calculate the 
relative error. This advantage saves significant memory and 
calculation costs, particularly for large-scale models.

2.5  On‑the‑fly diagnostic for judging 
whether entropy sequence has converged

Based on the stochastic oscillator indicator, which is com-
monly used in the technical analysis of financial markets, 
a posterior diagnostic method has been proposed to assess 
fission source convergence in Monte Carlo criticality cal-
culations [18]. The stochastic oscillator indicator of the nth 
iteration step of criticality calculation is defined as follows:

where Hn,p

min
 and Hn,p

max are the minimum and maximum Shan-
non entropies, respectively, over the last p steps, and Hn is 
the entropy of the current nth step. It has been proven that 

(10)pi =
Fi

∑N

i=1
Fi

(11)Hf = −

N∑

i=1

pi ln(pi).

(12)Kn =
Hn − H

n,p

min

H
n,p
max − H

n,p

min

,

when the entropy sequence converges, this stochastic oscil-
lator index fluctuates around 0.5 stochastically [18]. The 
posterior rule for accessing the convergence is given by the 
following inequality:

In other words, this criterion requires that both Kn and its 
average over the next m steps should be within � of 0.5. If 
the active cycle starts after the iteration step, satisfying the 
aforementioned inequality, the entire calculation should be 
accepted. However, this rule can be modified to be an on-
the-fly diagnostic [20] for the convergence of the entropy 
sequence corresponding to the survival particle distribution 
and global flux tally, as explained in the last two subsec-
tions. This point is as follows: If we decompose all samples 
into S batches and simulate all batches individually, we can 
obtain a sequence of entropy values and stochastic oscillator 
indicators called Hi (i = 1,⋯ , S) and Ki (i = p,⋯ , S) . When 
completing the nth (n ≥ m + p − 1) batch and the following 
inequality is satisfied:

the surviving particle distribution and global flux tallies can 
then be perceived to have converged. The parameters p, m 
were set to 20 and 50, respectively, but the � value was set by 
the user. The smaller the � is, the stricter the rule is. There-
fore, a conservative or radical strategy can be developed by 
using different � values.

2.6  Description of the adaptive strategy

The entire mechanism for automatically adjusting the sam-
ple size is summarized as follows: In each step of the time-
dependent Monte Carlo particle transport simulation, a suf-
ficiently large sample size is initially set and divided into M 
batches. After finishing one batch, new Ht and Hf values are 
obtained. When a finished batch number exceeds m + p − 1 , 
the on-the-fly diagnostic is invoked to decide if it needs to 
stop the Monte Carlo simulation in advance according to 
both the entropy sequences. Only when both judgments 
return a true value, the simulation of this step is stopped in 
advance. If stopped in advance in step L, there will not be 
enough survival particles to be used in step L + 1 although 
the current survival particles can be seen as sufficiently sam-
pled from the survival particle distribution. In this case, we 
randomly select from the current surviving particle bank 
to supply more surviving particles as source particles in 
step L + 1 . This operation is considered reasonable based 

(13)|Kn − 0.5| < 𝜖 and

||||||

1

m

m−1∑

i=0

Kn+i − 0.5

||||||
< 𝜖.

(14)|Kn−m+1 − 0.5| < 𝜖 and

||||||

1

m

m−1∑

i=0

Kn−i − 0.5

||||||
< 𝜖,
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on the probability theory. Note that in parallel computing, 
frequently calculating these entropies should use the method 
proposed in [21]; otherwise, the time cost of obtaining these 
entropies will offset the benefit of the sample size adjust-
ment. In other words, this method uses local data in each 
process to calculate the local entropy and the average of the 
entropies of all processes as the final entropy value. Thus, 
massive data broadcasts can be avoided. It can be verified 
that when the sample size approaches infinity, the entropy is 
the same as the original entropy. Even with a finite sample 
size, this new entropy can be used to indicate the conver-
gence of the corresponding survival particle distribution 
or global tallies. Although there is a statistical estimation 
method for the Shannon entropy [22], we have not adopted 
it because of its complexity; however, this will be the focus 
of our future studies.

It is worthwhile to provide four annotations. (1) When 
an under-sampling problem [23] exists for a specific model, 
an insufficient history number causes the Shannon entropy 
corresponding to the survival particle distribution to fluctu-
ate more drastically. Therefore, the inequality Eq. (14) can-
not be satisfied easily, and the entire calculation will not be 
stopped in advance. (2) Theoretically, the method in this 
study may fail for some symmetric and oscillating models. 
However, for time-dependent particle transport simulation, 
strict symmetric and oscillating models are rare; hence, it 
is not a serious issue. (3) The Fourier fundamental mode 
coefficient works similar to the traditional Shannon entropy; 
therefore, the recently proposed Fourier diagnosis [24] can 
be a substitute for the Shannon entropy diagnosis. Because 
we adopted an efficient method for calculating Shannon 
entropy in MPI parallel environments and did not perform 
a numerical comparison, we do not know which method is 
better. (4) The recently proposed batch-size growth method 
[25, 26] is consistent with our method. However, our work 
aims to improve the efficiency of time-dependent particle 
transport simulations using multiphysics calculations. The 
two aforementioned studies aim to improve the efficiency 
of time-independent criticality calculations. The existing 
difficulties are different for these two types of problems. 
Theoretically, the concepts proposed in these studies are 
suitable for transplantation. These performances can only 
be compared by future numerical experiments.

3  Numerical results

It is worth mentioning again that our goal in designing this 
sample size adaptive strategy is to avoid unnecessary calcu-
lations when the results are sufficiently good when evaluated 
by a standard. In each step, when the original sample size 
is divided into several batches, and each batch is simulated 
individually according to the original plan, we expect that 

this strategy can stop in advance when the efficiency evalu-
ated by some standard becomes flat. Apparently, because 
of the inevitable stochastic nature of this strategy, we could 
not precisely capture the stop point. However, capturing it 
approximately can still save considerable calculation time 
while keeping the results approximately unchanged when 
compared to the original case. The two models discussed 
in the next sections were used to demonstrate this effect. 
The Arbitrary Lagrange-Euler (ALE) algorithm was used 
to perform mechanical calculations.

3.1  Model one

Model one was a sector piece with an open angle of 2◦ and 
a radius of 6.45 cm. There are two concentric layers. Each 
layer is composed of a mixture of U 235 and U 238 but with 
different densities. In total, 600 cells were used. The initial 
sample size was 12,800,000 samples per step, which was 
sufficiently large for this model. These samples were divided 
into 640 batches with 20,000 samples per batch. The calcula-
tions used a total of 32 cores. We perform two independent 
calculations with � = 0.1 and � = 0.05 . All the other condi-
tions were identical to those described above. Figure 1 shows 
how the neutron number(Np ) in the model changes with time 
for three cases, with and without sample size adaptation but 
with two different � values). Table 1 shows the compari-
son of neutron numbers ( Np ) at the end of the calculations 
for these three cases and the time costs. It can be observed 
that the proposed sample size adaptive strategy significantly 
decreases the calculation time while maintaining an almost 
unchanged result. When the judging rule is stricter, similar 
to the � = 0.05 case, the result is closer to the original case; 
however, the reduction in the calculation time is smaller. For 
a more detailed comparison, we randomly chose a step to 

Fig. 1  Comparison of neutron number
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determine whether the adaptive strategy could stop the cal-
culation in advance when the efficiency flattened. We used 
the following equation:

to evaluate the efficiency of global flux tallies [27]. Here, 
N = 600 is the total cell number, T is the calculation time, 
and Ri is the relative error of the flux in cell i. In this step, 
the � = 0.1 case stops at the 416th batch, whereas the � = 0.05 
case cannot stop in advance; that is, all 640 batches are simu-
lated in this case. From Fig. 2, we see that the sample size 
adaptive strategy stops in advance when the global efficiency 
is almost flat with batch numbers. Considering the efficiency, 
when global efficiency becomes flat, it is not necessary to 
do more simulations. Figures 3 and 4 show the two Shan-
non entropies ( Ht and Hf ) for the same step. As expected, 
the sample size adaptive strategy stopped the entire calcu-
lation when these entropies flattened. Figure 5 shows the 
real sample size that was simulated in different cases. The 
reduction in calculation time was evidently due to a decrease 
in the sample size. However, the results were almost the 
same and the efficiency remained almost unchanged because 

(15)Global_FOM =
N

T
∑N

i=1
R2
i

Table 1  Comparison of neutron number(Np ) for different cases at 
0.252 microsecond

Different cases Np Time 
cost 
(hours)

Without sample size adaptive 2.058 × 1024 1.75
Sample size adaptive with � = 0.1 2.049 × 1024 0.93
Sample size adaptive with � = 0.05 2.059 × 1024 1.73

Fig. 2  Global efficiency of all flux tallies in some step

Fig. 3  Shannon entropy Ht in some step

Fig. 4  Shannon entropy Hf in some step

Fig. 5  The real sample size in different cases
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the simulated sample size was already sufficient. We cannot 
say which is the best � because of inevitable randomness; 
however, it can be said that a small � means a conservative 
strategy, whereas a large � means a radical strategy. This is a 
characteristic of most of the algorithms. However, the results 
indicate that � can maintain the concerned physical quanti-
ties. Therefore, if used appropriately, the method proposed 
in this study can definitely improve the calculation efficiency 
and provide a tool for different users.

3.2  Model two

Model two is a cuboid which contains 200,000 hexahedron 
cells. It is divided into three layers that contain four types 
of isotopes of U ( 234 U, 235 U, 236 U, 238 U) but with different 
densities. The mechanical calculation is done in one step, 
and the Monte Carlo particle transport simulation is iterated 
for 100 steps to calculate

We performed 20 calculations without sample size adapta-
tion but with different random number seeds to obtain the 
reference answer. Each calculation used 1,600 batches with 
30,000 samples per batch, and 32 cores were utilized. From 
Table 2, we can see that the sample size adaptive strategy 
obtains a reasonable � value while significantly decreasing 
the calculation time at approximately only 22% of the origi-
nal case without adaptive sample size adjustment. Note that 
the number in parentheses is the standard deviation of 20� 
values, and the � value of the sample size adaptive strategy 
is located in the 95% confidence interval obtained from these 
20� values.

4  Conclusion

Based on the extension of the Shannon entropy concept, two 
indicators are designed to show whether samples of survival 
particle distribution are sufficient and whether global flux 
tallies have converged sufficiently. An on-the-fly diagnostic 
method based on the stochastic oscillator indicator for the 
convergence of these two indicators is proposed to avoid 

(16)� =
1

N(t)

dN(t)

dt
.

manual intervention, thus forming a complete adaptive strat-
egy. This is the first time that it has become possible to adjust 
the sample size according to certain definite and reasonable 
rules. Based on the results of the two models displayed in the 
previous section, this self-adjustment mechanism maintains 
reasonable precision while reducing the calculation time. 
This indicator and mechanism can be easily generalized to 
other multiphysics calculations, including time-dependent 
Monte Carlo particle transport simulations.
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