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Abstract
IMPCAS has constructed and currently manages a large number of accelerator facilities. However, the current accelera-
tor monitoring methods are unable to satisfy all of the device requirements. The accelerator control monitoring system 
(ACMS) was created and established to provide an efficient and accurate accelerator control monitoring system. It enables 
automatic alerting of problems with accelerator control systems and infrastructure. It utilizes a big data distributed stream 
processing engine and open-source monitoring tools. Metrics, logs, and EPICS PV values are the major three types of data 
that it monitors. Prometheus is primarily used to monitor metrics such as network traffic, hardware devices, and software 
operations. Graylog is used to monitor logs created by various applications and systems. We also created the EPICS Pulsar 
connector software, which allows us to transfer PV values to the Pulsar messaging cluster and use the Flink compute engine 
for real-time monitoring. The designed data management module allows users to define alert rules in a variety of ways. The 
ACMS enables the separation of the Flink business system and alarm rules. Users may use the data management module to 
add or alter alarm rules in real-time without having to restart the alarm software. This reduces the effect of alarm flooding 
when the accelerator reaches the beam shifting or shutdown condition and dramatically enhances alarm efficiency. The main 
components of the ACMS may be deployed in clusters, making it extremely versatile. Experimental results demonstrated 
that it has a higher throughput than the Phoebus Alarm system and can handle millions of monitoring indicators. The ACMS 
employs a modular framework that is very scalable. Long-term stability analyses were performed at the SESRI and HIRFL 
facilities. It achieved all of the intended goals and could greatly improve the accident handling efficiency while minimizing 
the failure time of the accelerator control system.
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1  Introduction

An accelerator is a precision integrated complex system 
composed of multiple subsystems such as ion-source, power 
supply, magnet, high-frequency, vacuum, beam diagnostic, 
and cooling-water systems. The accelerator control system 
links the various subsystems and realizes cooperative opera-
tions. It operates continuously and any software or hardware 
malfunction may result in a beam loss or an accelerator shut-
down. As a result, the real-time monitoring of the control 

system is extremely critical and required. It can identify 
prospective difficulties and optimize potentially uncertain 
aspects by monitoring indicators in real-time. When a fail-
ure occurs, the appropriate employees may be swiftly and 
properly contacted to deal with it, improving the accelera-
tor’s operating efficiency. Many studies have recently been 
conducted on the operation monitoring of accelerator control 
systems. Some facilities have utilized open-source moni-
toring software. For example, CERN created the DIAMON 
system in 2009 to monitor control facilities and updated it 
to the COSMOS system in 2017 [1]. The new system core 
makes use of the open-source component Icinga2 to moni-
tor and visualize the accelerator control system architecture. 
SuperKEKB built their monitoring system with the open-
source tool Zabbix, and they created the zabbix-epics-py 
plugin to integrate EPICS PV monitoring [2]. Some moni-
toring software has also been based on EPICS. For example, 
Alarm Handler (ALH) was created for the Advanced Photon 
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Source (APS). ALH is a basic EPICS OPI client application 
that provides an excellent overview of any outstanding alert 
conditions reported by the control system [3]. It is written in 
C, receives data through the CA protocol, visualizes it, and 
can control alarms in great detail. ALH requires the presence 
of Motif and X11 headers and libraries. Kay Kasemir and 
Xihui Chen of the Oak Ridge National Laboratory (ORNL) 
created the Best Ever Alarm System Toolkit (BEAST) on 
the basis of ALH and applied it to the Spallation Neutron 
Source (SNS). BEAST’s architecture is designed in C/S. The 
core component Alarm server monitors PV according to the 
configuration information, generates alarm information, and 
writes it into the relational database. It realizes the persis-
tent storage of data and is a Control System Studio (CSS) 
plug-in [4]. With the release of the Java Platform Module 
System (JPMS), Kay Kasemir developed a JavaFX version 
of CSS and named it Phoebus. Phoebus’s Alarm system is 
specifically used for alarm monitoring. Unlike the BEAST, 
the Alarms message middleware has been upgraded from 
JMS to Kafka, and uses Elasticsearch to store historical data 
[5]. Users can view historical data through Kibana. Alarms 
maintains alarm information using an XML file, which is 
particularly rigid when monitoring several PVs at the same 
time. It cannot avoid alarm flooding, especially when the 
accelerator equipment is repaired or shut down. Despite the 
fact that numerous researchers have made considerable pro-
gress in this area [6], Kafka’s broker will lose monitoring 
data when it fails, and data migration is extremely incon-
venient, which is unacceptable for a large accelerator device 
such as the High Intensity Heavy-ion Accelerator Facility 
(HIAF) [7, 8]. Thus, we proposed and constructed the accel-
erator control monitoring system (ACMS), which compre-
hensively monitor an accelerator control system with high 
reliability, throughput, and scalability.

This paper is organized as follows. Section 2 describes the 
overall architectural design of the ACMS. Section 3 intro-
duces each sub-function module of the ACMS in detail, and 
Sect. 4 offers the experimental findings and a discussion of 
the ACMS and Phoebus Alarm throughput testing. Finally, 
Sect. 5 concludes this paper by discussing its contributions.

2 � System design

The accelerator control system has numerous pieces of 
conventional and non-standard software and hardware. The 
ACMS was built with the intention of monitoring these for 
both functional and business purposes. In relation to the 
functionality, the system monitors the accelerator infra-
structure for errors and breakdowns and notifies the system 
administrator or appropriate specialists as soon as a prob-
lem is detected. In relation to the business aspects, the sys-
tem primarily focuses on the control system runtime data 

and offers support for the control accelerator. As a result, 
ACMS’s monitoring scope covers metrics, logs, and EPICS 
PVs [9–11]. The metric monitoring mainly uses Prometheus 
[12], which is open source and collects component metrics 
by integrating various exporters. It perfectly solves most of 
the indicators monitored in the heterogeneous infrastruc-
ture. Graylog is used to monitor logs from various facilities 
[13]. Its master-node mode is extensible, and the UI includes 
query and analytic features. We created a log alarm mod-
ule for it because it supports permission management and 
offers a variety of log types and standards. The EPICS to 
Pulsar connector was developed to import EPICS PVs into 
Pulsar [14]. Combined with the Flink real-time computing 
engine, we realize the real-time monitoring of EPICS PVs 
[15]. (See the EPICS control system real-time monitoring 
section below for details.)

The whole system design, as illustrated in Fig.  1, is 
separated into four layers: the underlying components, data 
acquisition, data calculation and storage, and visualization 
and management. The underlying components are primar-
ily the various facilities we wish to monitor, including sys-
tems, software log files, hardware devices, and EPICS PVs. 
Data acquisition is the procedure of collecting data from 
monitored objects using various collectors. It serves as a 
data source for further data analysis. Data calculation and 
storage is the process of analyzing and storing the monitor-
ing data. It includes processes such as real-time timestamp 
conversion, exception cleaning, data formatting and stand-
ardization, and alert information generation. Finally, the data 
are saved in databases such as Elasticsearch, MySQL, and 
InfluxDB [16, 17]. The data are then used for displaying sub-
sequent monitoring views and locating problems. Visualiza-
tion and management creates a uniform portal for displaying 
various monitoring data. Simultaneously, we created Alert 
Center and DB manager modules to facilitate alert dissemi-
nation, rule maintenance, and historical data query features.

The ACMS employs a modular structure with distinct 
tiers, effective encapsulation, adaptable maintenance, and 
great scalability. Second, employing established open-source 
components and middleware technology boosts the process-
ing capacity and dynamic scaling capabilities. Finally, the 
system has excellent stability and availability, can run con-
tinuously 24 h a day and 7 days a week without interruption, 
and satisfies the monitoring requirements of the accelerator 
control system’s numerous facilities.

3 � Software development

3.1 � Metric monitoring

The ACMS is built around metric monitoring. Metrics 
are statistics that are gathered at various points in time to 
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describe how monitored metrics change over time. They are 
regarded as time series data and identified by names. Each 
indicator’s sample data provide at least three dimensions of 
information: the name, time, and value. Other labels such 
as alarm descriptions and monitored device locations are 
also provided for alerting information and future analysis. 
Prometheus is used to monitor metrics such as the network 
traffic and CPU memory consumption. Prometheus metrics 
are classified into four kinds. These include the univariate 
metric Counter, which only increases and never decreases, 
the univariate metric Gauge, which can increase or decrease, 
and the Histogram and Summary of several variables. As 
illustrated in Fig. 2, Prometheus is part of the new generation 
of cloud native monitoring systems. It includes the following 
core modules: the Prometheus server, Pushgateway, export-
ers, Alertmanager, and graphical interface.

The Prometheus server is in charge of collecting, stor-
ing, and analyzing monitoring data. The Prometheus time 
series database is only available for 15 days and cannot 
retain a large number of measurements, which leads to 
the danger of data loss. To address ACMS’s demand for 
long-term monitoring data storage, we selected InfluxDB 
as an option for persistently storing monitoring data. For 
monitoring systems that cannot expose all of their internal 
data for Prometheus to pull as metrics on a regular basis, 
we provide Pushgateway to actively push the monitoring 

status to ACMS. Instead of exposing data to Prometheus, 
it functions as an intermediary component to gather data 
indicators from an external push. Then, Prometheus 
retrieves data from Pushgateway on a regular schedule.

Grafana is a free and open-source program for display-
ing massive amounts of measurement data [18]. It is used 
in Prometheus to view and evaluate metric data. Exporter 
translates the acquired data into the appropriate text format 
and offers an HTTP interface for Prometheus to collect 
data on a regular basis. There are already over 120 export-
ers for typical open-source components, from which we 
mostly employ four: hardware, application, middleware, 
and system. Figure 3 depicts the graph we use to moni-
tor H3C switch traffic using SNMP exporter. H3C switch 
equipment MIB files can be downloaded from the com-
pany’s official website [19]. SNMP exporter collects the 
necessary switch status and traffic data depending on the 
provided MIB OIDs, and then exports these in a metric 
format that Prometheus can utilize. Prometheus provides 
PromQL, a data query DSL language, for analyzing met-
rics and generating alerts. The average traffic load from 
each switch port is calculated using PromQL. The pro-
duced traffic load data are also used as a time series metric 
that can be seen in Grafana and saved in the InfluxDB 
database. As a result, the ACMS can monitor changes 
in the traffic load across the whole control network and 

Fig. 1   ACMS system architecture diagram
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provide warnings concerning switch and access node 
conditions.

In order to collect the operating indicators of the host, 
such as information about the CPU, memory, disk, and other 

devices, we use node exporter to provide Prometheus with 
monitoring data in a standard format. Figure 4 shows the 
resource monitoring information of the IOC host. Because 
the node exporter cannot cover all the monitored items, 

Fig. 2   Metric monitoring alarm flowchart

Fig. 3   (Color online) SNMP monitoring network traffic graph
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we use the process exporter to monitor different software 
processes of the accelerator control system, such as the 
number of processes and survival status of services. The 
acquired metrics are stored locally by the Prometheus server, 
and we define alert rules based on PromQL, such as the 
following:expr: 100- (avg by(instance) (irate(node_cpu_sec-
onds_total{mode = “idle”}[5 m])) * 100) > 80.

If this rule is violated, an alarm regarding excessive CPU 
utilization is triggered, and the alarm information is sent 
to Alertmanager. Alertmanager processes received alerts 
in accordance with the configuration file and delivers alert 
reminders in a variety of formats.

3.2 � Log monitoring

The accelerator control system’s infrastructure consists of 
numerous network devices, databases, servers, applica-
tions, and hosts. To increase the accelerator’s operating 
efficiency, logs from various devices and systems must be 
stored, monitored, and analyzed. We created a log moni-
toring system based on Graylog to capture all of the logs 
generated by the various devices and applications. Graylog 
is a log aggregation and analysis program that is also open 
source. It includes capabilities similar to those of ELK but 
is more succinct and efficient [20]. Figure 5 depicts the log 
monitoring architecture. The system is separated into three 
layers: the underlying data source, data collection layer, and 
core processing layer.

Three components make up the core processing layer. 
Elasticsearch is used to store and retrieve log file data 

indefinitely. Graylog’s configuration is stored in Mon-
goDB, and Graylog primarily provides a web interface and 
an external interface [21]. The data collection layer mostly 
completes the log data collection. Graylog gathers logs 
using a variety of methods. We now gather logs primarily 
using two methods. The first approach is to use Syslog to 
collect information about network devices. To transmit 
logs to Graylog, we use the system’s syslog module and 
the UDP protocol. Because all Linux ports below 1024 are 
privileged, it is necessary to use iptables to divert traffic 
from the custom port to port 514. The second method is to 
use the Graylog collector sidecar client program to acquire 
the necessary logs. Its backend can contact Filebeat or 
Nxlog, and these clients will automatically monitor the 
selected log directory or log file and track the reading of 
these files. Finally, the data are sent to Graylog for storage. 
The bottom layer contains certain log types that we cur-
rently collect, such as application logs, middleware logs, 
and EPICS PV alarm logs.

After collecting log messages from the client using 
Inputs, we utilize Extractor to extract the appropriate field 
information from them. Finally, we may perform statisti-
cal analyses on different logs. The EPICS PV alarm log is 
shown in Fig. 6. The Graylog dashboard report can be used 
to determine whether there are issues with thousands of 
internet devices. Distinct alert conditions are created for 
different log streams. When Graylog generates an alarm, 
it sends the associated alarm information to the ACMS 
Alert Center.

Fig. 4   (Color online) Monitoring diagram of IOC server
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3.3 � EPICS control system real‑time monitoring

We created the IMPCAS Netanalyzer program to continu-
ously monitor the accelerator control network [22]. It pro-
vides an in-depth analysis of the accelerator control proto-
cols, particularly the Channel Access (CA) and PV Access 
(PVA) protocols. The PV search frequency and IOC sta-
tus could be statistically analyzed. The output log is sent 
to Graylog through Nxlog for real-time viewing, which is 
important for monitoring the status of the EPICS network. 

Therefore, the ACMS, like the Phoebus Alarm system, pri-
marily monitors and alarms changes in PV values in real-
time. We initially created the EPICS Pulsar connector, as 
shown in Fig. 7a, in order to write a PV value into Pulsar in 
real-time. The application was developed using JCA 2.4.3. 
First, we create the EPICS PV POJO class. This class’s pri-
mary properties are pvname, value, and pvtime. The connec-
tor will first read the configuration files pvproduce.properties 
and pulsarconfig.properties. The IP addresses of the IOC 
and gateway, as well as the names of all PVs to monitor, 

Fig. 5   Log file monitoring alarm graph

Fig. 6   Graylog view alarm log historical data
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are included in the pvproduce file. The serviceurl and topic 
name may be found in pulsarconfig. The connector will 
attach a MonitorListener to each PV in order to monitor the 
DBR value in real-time. Finally, it is serialized with pvname 
and pvtime and sent to the topic specified by the Pulsar clus-
ter. For example, the message with the topic “persistent://
HIRFL-CS/hirflgatewayioc/hirflcs” looks like this:

{“pvname”:”gateway: load”,”value”:0 .38,”pvT
ime”:1666773224892}.

The real-time alarm system for EPICS PVs has a multi-
layered design. The Flink service, function, and data stream 
are the three layers from bottom to top. The business process 
is represented by the service layer, which is in charge of 
providing alarm data to Alertmanager. Alarm rule synchro-
nization, updating, and matching are also accomplished here. 
Serializable items are converted into streams by the data 
stream layer. Each functional module of the system is real-
ized in the function layer. Figure 7b depicts the full business 
process. The Driver is in charge of the complete Flink’s job 
launch. The initial step after startup is to load the MySQL, 
Pulsar, and Flink configuration files. The configuration in 
MySQL is processed into a rule stream in the second stage 
using the CDC data source module. The Pulsar topic will be 
processed into a data stream in the third stage. It is necessary 
to broadcast to all parallel subtasks because the rules change 
in real-time and are globally valid for the whole application. 
A map structure is used to hold the underlying broadcast 
state. In the fourth stage, we link the Pulsar data stream to 

the MySQL broadcast stream, resulting in a broadcast con-
nected stream. To acquire alert rules and data, a broadcast 
process function is created based on this connected stream. 
Concurrently, the alarm rule matching processing is carried 
out here. After filtering the data, we are able to obtain a Pul-
sar alert stream, which contains real-time alarm information. 
This is sent to Alertmanager for further processing.

3.3.1 � Alarm rule matching

The key element of the EPICS PV real-time alarm system 
is the matching of alarm rules. AviatorScript is used in 
the ACMS to match alarm rules. AviatorScript is a light-
weight, high-performance expression evaluation engine 
written in Java. Figure 8 depicts the whole rule match-
ing flow. To begin, the pulsar-flink connector is used to 
read data from the Pulsar and deserialize it into a JSON 
String. Then, using JSON-flattener, the nested JSON 
String is turned into a Java Map. Simultaneously, the rule 
expression is derived from MySQL’s effective rules, and 
the matching procedure between the two is completed by 
the Aviator expression engine. As an example, the rule 
pvname = = ‘HIRFL:channel1’ indicates that the value of 
the pvname attribute is identical to HIRFL:channel1, and 
value > 100 indicates that the value attribute is larger than 
100. The rule matching succeeds only when the Aviator 
evaluator instance validates that both the pvname and value 
are true. At this point, the alarm process is initiated, a Pulsar 

Fig. 7   a EPICS to Pulsar. b Flowchart of Flink streaming processing
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alert message is created to form the Alertmanager message 
structure, and it is transmitted to Alertmanager for alerting.

3.3.2 � Alarm module design

We created the ACMS Alert Center. As seen in Fig. 9, 
its primary role is to forward received alarm messages to 
Tencent Phone, Yimei SMS, email, DingTalk, Enterprise 
WeChat, and other platforms. Alert Center is built using 
the Beego framework and employs the MVC design pattern. 
Beego is an http framework for developing Go apps quickly 
utilizing native http requests. Goroutine’s concurrent effi-
ciency can facilitate high-traffic web application access. The 
app.conf file in the current directory will be parsed when 
the system boots. We initialized several default options in 
this file, such as the Alert Center listening port, MySQL 

connection string, and DingTalk and WeChat connection 
URLs. All of the http requests received enter the framework 
from the main function, and are parsed by the URL route to 
determine which controller to execute. For route parsing, 
we employ all-matching routes. As an example, Prometheus 
uses the “/prometheus/alert” route. Figure 10 depicts the 
Alertmanager’s alert information. Because Flink and Pro-
metheus must first send the alert information to Alertman-
ager, their routes are the same. For Grafana and Graylog, we 
define different message structures and routes to push alarm 
messages. Alarm Center is very extendable, and it can pro-
cess all the alert messages delivered by systems that utilize 
the WebHook interface. In order to prevent alarm flooding 
and realize intelligent alarms, the Grouping, Silence, and 
Inhibition functions of Alert Center are currently imple-
mented through Alertmanager. Grouping separates alarms 

Fig. 8   Alarm rule matching flowchart

Fig. 9   (Color online) Flowchart. 
Of the alarm module
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with similar natures into a single notification. For example, 
hundreds of alerts may be sent to Alertmanager because 
of network failures. To determine which service instances 
are affected, we may set Alertmanager to combine alerts by 
cluster or alert name and provide a single compact notice. 
Silence is a straightforward mechanism that mutes reminders 
at particular times. If there is a match, no notice will be gen-
erated for this alert, similar to the Annunciator in Phoebus 
Alarm. Inhibition means that when an alarm is issued, it is 
not repeatedly sent, which could cause other errors.

Phoebus Alarm classifies alarm severity into five degrees 
based on the alarm type and severity of the PV. This design 
method is used by Alert Center in the alarm push procedure. 
We divided the alert degree into five levels, as indicated in 
Table 1. Different alarm levels in Alert Center will transmit 
signals to different alarm channels. When the alert level is 3, 
for example, the system cannot recover by itself and requires 
human intervention. The appropriate individuals are noti-
fied using SMS, WeChat, and DingTalk. Figure 11 shows 

the user’s alert SMS and WeChat messages. We formatted 
the alarm content in a targeted manner because the content 
provided by standard SMS is restricted. Alert Center will put 
each piece of information into the alert log file and MySQL 
database after finishing the push of alarm messages, which 
is useful for alarm statistics and historical data review.

3.3.3 � Alarm data management

The ACMS data management system was created to allow 
for remote control of alarm rules and historical data for each 
system. The software was developed based on the idea of 
separating the front and back ends in order to realize sys-
tem adaptability and scalability. The MVC pattern is used 
at the architectural level. To provide users with a seamless 
experience, the front end relies heavily on the standard 
development modes of Beetl, Bootstrap, and AdminLTE. 
Based on standard technologies such as Spring Boot, Shiro, 
and MyBatis, the back end is primarily responsible for data 

Fig. 10   Alert information received by Alertmanager

Table1   Alarm levels in Alert Center

Name Comment Alarm mode Level

Ok Currently in normal state – 0
Warn There are potential problems that do not affect normal operation Email 1
Minor Severity is low. The system has a minor failure and can be restored to normal on its own Email, WeChat,

DingTalk
2

Major More serious. No automatic recovery, human intervention is required SMS, WeChat,
DingTalk

3

Invalid Very serious. The system is not working properly and must be resolved immediately Phone, SMS,
WeChat, DingTalk

4
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processing and transmission. The data management system 
has complete authority. Access to various types of data can 
be granted based on users and roles. MySQL is the database 
linked in the background, and it allows access to numer-
ous data sources. The alarm rule management interface is 
depicted in Fig. 12. The system provides functions such as 
adding, deleting, modifying, and querying alarm rules. The 
three fields of name, exph, and expl are used for matching 
alarm rules and must be filled in precisely. Because it is 
dependent on Aviator, the precedence of operators is the 
same as that in JAVA. The is_valid field indicates whether 
the alarm rule is valid or not, and its value is only 0 or 1. 
When the accelerator is in the shutdown or maintenance 
state, for example, the user must set its value to 0. As a 
result, the alert will not be triggered in Flink’s rule stream. 
When sending alerts to Alertmanager, the fields alertname, 
level, and group are utilized to construct the label structure, 
and annotations are built using the fields summary, descrip-
tion, mobile, and email. The comma-separated variables 
mobile and email describe the recipients who will receive 

this alert message. Groups are used to determine the system 
that contains the alert rule, which is important for auditing 
alerts.

4 � ACMS versus Phoebus alarm

Functionally, the ACMS is more effective than Phoebus 
Alarm at monitoring different logs and infrastructure indi-
cations. It has real-time monitoring and analysis capabili-
ties that Phoebus Alarm does not have for the EPICS con-
trol network. In addition, users may change the alarm rules 
whenever they want in accordance with their own demands 
without having to restart the main program, making up for 
the latter’s limitation of a single alarm channel. For EPICS 
PV real-time monitoring, the primary distinction between 
the ACMS and Phoebus Alarm is the messaging system. 
The ACMS uses Pulsar, while Phoebus Alarm uses Kafka. 
To completely isolate subsystem PVs, the ACMS may 
employ Pulsar’s inbuilt multi-tenancy feature, in contrast 

Fig. 11   Examples of WeChat 
and SMS alert messages
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to Phoebus Alarm, which publishes all data into a fixed 
topic. We utilized the OpenMessaging benchmark to assess 
the throughput values of the ACMS and Phoebus Alarm to 
ensure fairness [23]. It is a package of tools within the Linux 
Foundation that makes benchmarking distributed messaging 
systems simple. To build message clusters for Pulsar and 
Kafka, we employed three virtual machines. The Client was 
in charge of assigning jobs, setting the benchmark subject, 
producing customers and producers, and so on. It utilized 
actual machinery. The entire hardware and software setup 
is shown in Table 2.

Durability refers to the ability to maintain system con-
sistency and availability in the face of external problems 
such as hardware or operating system failures. Pulsar has 
four levels of durability, whereas Kafka offers three levels 
of durability: 1, 2, and 4. We needed both Pulsar and Kafka 
to guarantee level 1 synchronous durability in order to pre-
cisely record the values of all PVs in sequence without data 
loss. Figure 13 depicts the outcomes of the tests. The red 
line in the illustration reflects the publication throughput of 
the ACMS’ Pulsar. The figure is the average of three tests. 
It can be noted that the ACMS’ Pulsar had a publication 

throughput of approximately 600,000. This implied that we 
could publish 600,000 pieces of PV data per second, which 
was approximately 2.8 times higher and clearly superior to 
that of Phoebus Alarm’s Kafka.

5 � Conclusions and future work

The HIAF is a next-generation high-current heavy-ion accel-
erator facility built by IMPCAS. Its control system includes 
thousands of control components along with infrastructure. 
These must be available 24 h a day and 7 days a week. As 
a consequently, its maintenance includes many challenges. 
Large data volumes, interrelated control components, and 
thousands of operational tasks are all difficulties to over-
come. A real-time monitoring system that meets the operat-
ing and maintenance requirements of large accelerators has 
become an essential core component in their regular func-
tioning. There is no single monitoring solution on the market 
that can meet all of our requirements. We built the ACMS 
by integrating a small amount of open-source software and 
distributed stream processing engine.

Fig. 12   Alarm rule data configuration management interface

Table 2   Detailed configuration 
of software and hardware

Content Configuration

Message cluster CPU: Intel (R) Xeon (R) CPU E7-4820 v4 @ 2.00 GHz Memory: 32 GB Network 
card: 1Gbps System: CentOS 7.4.1708 Quantity: 3

Client CPU: Intel (R) Xeon (R) Gold 5218R CPU @ 2.10 GHz Memory: 64 GB Network 
card: 1Gbps System: CentOS 7.4.1708 Quantity: 1

Pulsar ensembleSize: 3 writeQuorum: 3 ackQuorum: 2
journalWriteData = true journalSyncData = true version: 2.6.0

Kafka min.insync.replicas = 2 batch.size = 1048576 max.partition.fetch.bytes = 10485760
flush.messages = 1 flush.ms = 0 acks = all version: 2.6.0
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The ACMS has a modular architecture with great scal-
ability and may be dynamically expanded to meet a variety 
of business monitoring requirements. It can collect data from 
a wide range of sources and has advanced data processing 
and analysis capabilities. It is extremely versatile because 
the fundamental components may be deployed in clusters. 
At the same time, it is very adaptable, with users able to 
select multiple display ways for each monitored piece of 
data. It supports a wide range of alert delivery mechanisms, 
including SMS, email, and WeChat. When used in different 
scenarios, users may choose from a selection of alert sys-
tems. Currently, the system is being utilized in HIRFL and 
SESRI projects. It is primarily used to monitor the EPICS 
and accelerator infrastructure at SESRI. The system recog-
nizes the precise location and alert of a defect during the 
accelerator’s diagnostics. A total of 38,202 alerts have been 
sent since it was installed and used on HIRFL in December 
2019. It has been proven to be reliable and is well appre-
ciated by users after constant updates and enhancements. 
Based on the existing accelerator alarm data of the ACMS, 
we will provide future assistance for accelerator operation 
and maintenance in terms of data preprocessing, fault locali-
zation, and anomaly identification. This will save trouble-
shooting time and allow AIOps for the accelerator control 
system in the medium and long terms.
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