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Abstract
Workers who conduct regular facility inspections in radioactive environments will inevitably be affected by radiation. There-
fore, it is important to optimize the inspection path to ensure that workers are exposed to the least amount of radiation. This 
study proposes a discrete Rao-combined artificial bee colony (ABC) algorithm for planning inspection paths with minimum 
exposure doses in radioactive environments with obstacles. In this algorithm, retaining the framework of the traditional 
ABC algorithm, we applied the directional solution update rules of Rao algorithms at the employed bee stage and onlooker 
bee stage to increase the exploitation ability of the algorithm and implement discretion using the swap operator and swap 
sequence. To increase the randomness of solution generation, the chaos algorithm was used at the initialization stage. The 
K-opt operation technique was introduced at the scout bee stage to increase the exploration ability of the algorithm. For path 
planning in an environment with complex structural obstacles, an obstacle detour technique using a recursive algorithm was 
applied. To evaluate the performance of the proposed algorithm, we performed experimental simulations in three hypothetical 
environments and compared the results with those of improved particle swarm optimization, chaos particle swarm optimiza-
tion, improved ant colony optimization, and discrete Rao’s algorithms. The experimental results show the high performance 
of the proposed discrete Rao-combined ABC algorithm and its obstacle detour capability.

Keywords Minimum dose · Path planning · Nuclear facility inspection · ABC algorithm · Rao algorithms · Swap sequence · 
K-opt operation

1 Introduction

The inspection of nuclear power plants and facilities is 
essential to prevent accidents and provide a stable and 
safe working environment. With the rapid development 
of science and technology, improved radiation protection 
instruments are being developed and utilized; however, 
radiation exposure remains inevitable for facility inspection 
workers working in radioactive environments. In particu-
lar, the amount of radiation that workers are exposed to is 

considerable when nuclear facilities are overhauled or dis-
mantled. Therefore, it is important to plan the path of facility 
inspections well to ensure that workers are exposed to the 
least amount of radiation.

Solving the problem of minimum dose path planning 
relies primarily on three important techniques: construc-
tion of the radiation environment, collision detection, and 
a search algorithm for the optimal path. The radiation envi-
ronment was constructed using either a forward method 
or an inversion method. The forward method is typically 
applicable when the location and strength of the radia-
tion sources are known. In research on the construction of 
radiation environments using the forward method, several 
methods have been proposed in consideration of the geo-
metric shape and type of radiation source and the shielding 
of radiation because of obstacles. Stochastic methods based 
on the Monte Carlo technique [1–3] and analytical methods 
based on the Point Kernel technique [4–6] have attracted 
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considerable attention. The inversion method is used to 
reconstruct the radiation field from the dose rate values 
measured in specific places when the radiation sources are 
unknown. Reconstruction methods using a concentration 
function [7], net function interpolation [8] and Bayesian 
inference [9] are noteworthy. However, in this paper, we 
assume simple environments because the main purpose of 
this study is to develop an algorithm for planning the path 
of minimum dose inspection considering obstacles. We 
assume that the radiation sources are point sources whose 
locations and strengths are known. The radiation environ-
ment is two-dimensional, and the shielding effect of the 
obstacles is overlooked. Such an environment can easily 
be constructed using Point Kernel technique, which is an 
analytical method.

Collision detection techniques vary depending on the 
type of search algorithm used for path planning. Grid-
based algorithms such as Dijkstra and A* consider obsta-
cles by dividing the radiation-contaminated region into 
grids and excluding the obstructed grids from the path 
search [2, 10, 11]. Sampling-based algorithms, such as 
rapidly-exploring random tree (RRT) and probabilistic 
roadmap (PRM), consider obstacles as a way to exclude 
samples that occur within an obstacle zone or collide with 
obstacles when they are connected with other samples [1, 
12, 13]. In meta-heuristic algorithms, the entire path con-
sists of a series of straight segments. If a straight segment 
passes through an obstacle, then the detour curve replaces 
the straight segment. Because the cumulative dose of the 
path is determined by how this detour path is created, the 
obstacle detour technique considerably influences the opti-
mal path search. Xie et al. [14] abstracted obstacles into 
rectangles of different sizes to plan the facility inspection 
path with obstacles. If the straight line between two target 
points collides with the obstacle rectangle, it avoids the 
obstacle by creating a curved detour path with the small-
est dose, including the vertices of the rectangle. Lai and 
Smith [15] avoided obstacles by abstracting them as one 
or more rectangles and moving two nodes of a straight line 
passing through the obstacles to the free vertices of the 
obstacle rectangles. Hong et al. [16] proposed a technique 
for determining the detour path with the smallest dose 
by recursive circulation, considering the case in which 
there is another obstacle while bypassing one obstacle. 
This technique, applied to the minimum dose path plan-
ning problem with fixed start and goal points, is suitable 
for optimal path search in radiation environments with 
narrow routes or complex structural obstacles. Therefore, 
we applied this technique to solve the problem of facility 

inspection path planning in radiation environments with 
obstacles.

Unlike path planning, which searches for paths with a 
minimum dose when a start point and a goal point are given, 
inspection path planning is a problem of determining the 
tour path (i.e., target sequence) such that the cumulative 
dose received by a person during the entire inspection pro-
cess is minimized under the condition that the inspection 
places (target points) are fixed. Mathematically, the former 
is a continuous optimization problem, whereas the latter is a 
combinatorial optimization problem. Therefore, grid-based 
algorithms or sampling-based algorithms cannot be used 
for inspection path-planning problems. The inspection path 
planning problem using meta-heuristic algorithms has been 
investigated in several studies. Liu et al. [17] explored the 
inspection path in an obstacle-free radiation environment 
using an improved particle swarm optimization (IPSO) 
algorithm combined with a genetic algorithm. Wang and 
Cai [18] developed a discrete chaos particle swarm optimi-
zation (CPSO) algorithm that combines chaos algorithms 
to plan inspection paths without considering obstacles. 
Xie et al. [14] proposed an improved ant colony optimiza-
tion (IACO) algorithm that considers simple rectangular 
obstacles.

The inspection path planning problem is similar to the 
traveling salesman problem (TSP), a representative com-
binatorial optimization problem. In solving the TSP, it is 
known that the artificial bee colony (ABC) algorithm is 
superior to other meta-heuristic algorithms in exploration 
and exploitation abilities [19–21]. Research on combi-
natorial optimization using the ABC algorithm has been 
conducted by many researchers. For example, Karaboga 
and Gorkemli [22] proposed a discrete ABC algorithm 
for the combinatorial optimization problem using the 
greedy subtour mutation operator. Khan and Maiti [23] 
studied the ABC approach using swap operators, swap 
sequences, and K-opt operation techniques to solve the 
TSP. In this study, we propose a discrete ABC algorithm 
that combines the directional solution update method of 
Rao algorithms [24, 25] to plan an inspection path with a 
minimum dose under a radiation environment with com-
plex obstacles. The remainder of this paper is organized 
as follows. Section 2 describes in detail the radiation dose 
map construction, obstacle detection technique, and the 
newly proposed discrete Rao-combined ABC algorithm. 
A comparative analysis with other meta-heuristic algo-
rithms is described in Sect. 3, and the conclusions are 
presented in Sect. 4.
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2  Inspection path planning method

2.1  Construction of radioactive environment

We used an interpolation method based on the radiation 
dose map to determine the radiation dose rate at any point 
in the radiation-contaminated region when the location and 
intensity of the radiation sources are given. First, the radia-
tion dose map was constructed in advance by dividing the 
contaminated region into N ×M grids and obtaining the 
radiation dose rate at each grid point (i, j) ( i = 1, 2,… ,N , 
j = 1, 2,… ,M ). If the radiation environment is composed of 
several point sources, the radiation dose rate at the grid point 
(i, j) is expressed by the following equation when shielding 
by obstacles is ignored:

 where As is the strength of the sth radiation point source and 
rij,s is the distance from the grid point (i, j) to the sth source. 
Next, the dose rate at any point in the contaminated region 
during the path search process can be obtained by interpo-
lation using the dose map. The dose rate at point g in grid 
(i, j) is obtained using the following interpolation equation:

 where Ri,j ( i = 2,… ,N  , j = 2,… ,M ) is the dose rate at 
grids (i, j) and Si,j is the area of the rectangle with grid point 
(i, j) and the given point g as diagonal vertices.

The cumulative dose of a given path can be determined by 
dividing the path into small segments and summing up the 
doses in each segment. Here, the dose of each segment was 
obtained by multiplying the average value of the dose rate at 
the two nodes of the segment by the duration of the segment:

 where G denotes the number of segments, Dg denotes the 
cumulative dose in the gth segment, Δlg denotes the length 
of the gth segment, and v denotes the human walking speed. 
In this study, we assumed that the human walking speed is 
constant at v = 1 m/s.

2.2  Obstacle detour technique

If there is an obstacle between two target points, we consider 
the path between the two target points as a detour curve; 
otherwise, we consider it as a straight line. The detour curve 

(1)Ri,j =
∑

s

As

r2
ij,s

,

(2)Rg =
Si,jRi−1,j−1 + Si,j−1Ri−1,j + Si−1,jRi,j−1 + Si−1,j−1Ri,j

Si,j + Si,j−1 + Si−1,j + Si−1,j−1
,

(3)D =

G∑

g=1

Dg =

G∑

g=1

(
Rg−1 + Rg

2

)
Δlg

v
,

between two target points was obtained using an obstacle 
detour technique based on Hong et al.’s recursive algorithm 
[16], considering the case of complex obstacle structures. 
Any obstacle can be abstracted into one or more rectangles, 
depending on its shape (black rectangles in Fig. 1). Each rec-
tangle was extended 30 cm outward considering the human 
body volume (blue rectangles in Fig. 1). Among the four 
vertices of each extended rectangle, vertices that are not 
included in the other extended rectangle are identified. These 
vertices are called envelope points. The envelope points are 
then numbered counterclockwise for each obstacle.

The obstacle detour path is obtained using the following 
method (Fig. 2). If an obstacle exists in the path between 
the two target points, it can be turned in two directions: 
clockwise and counterclockwise. First, the start point is 
connected to the nearest envelope point in the direction 
of detour. Next, the envelope point is connected to the 
adjacent envelope points in order. This connection con-
tinues until it reaches the envelope point nearest to the 
goal point. The envelope and goal points are connected to 
complete the detour path. At this time, if there is another 
obstacle between the target point and the envelope point 
or between the envelope point and the adjacent envelope 
point, sub-detour paths are obtained via recursive circula-
tion. Among the detour paths obtained, the path with the 

Fig. 1  Modeling obstacles by rectangles and numbering the envelope 
vertices

Fig. 2  Obstacle detour scheme
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smallest cumulative dose was selected as the detour path 
between the two target points. For example, in Fig. 2, when 
the path is detoured clockwise, the detour path (detour1) 
consists of the start point n → envelope point 1 → envelope 
point 5 → goal point n + 1 . Because the counterclockwise 
detour path (detour2) has another obstacle between enve-
lope point 3 and goal point n + 1 , instead of the straight 
path, the sub-detour path (subdetour1 or subdetour2) is 
taken. Eventually, the counterclockwise detour can have 
two paths. Among the three paths obtained, the path with 
the smallest dose was selected as the detour path between 
the target point n and target point n + 1 . The algorithm for 
obtaining the obstacle detour path is shown in Algorithm 1 
by Hong et al. [16].

2.3  Discrete Rao‑combined ABC algorithm

In this section, we propose a discrete Rao-combined artifi-
cial bee colony (DRABC) algorithm to solve the problem of 
planning the minimum dose path for nuclear facility inspec-
tion. The algorithm combines the framework of traditional 
ABC algorithms, known for their robustness and conver-
gence, with the Chaos algorithm [26] to further enhance its 
randomness, Rao’s algorithms [24, 25] to further enhance 
its exploitation, and 3-opt operation [27] to further enhance 
its exploration. Meanwhile, because the path-planning prob-
lem for facility inspection is a combinatorial optimization 
problem, a discrete meta-heuristic algorithm is required. 
Therefore, we applied a discrete solution update technique 
based on the swap operator and swap sequence of Wang 
et al. [28].

2.3.1  Traditional ABC algorithm and Rao’s algorithms

The ABC algorithm is a population-based meta-heuristic 
algorithm that mimics the foraging characteristics of hon-
eybees [29]. In the ABC algorithm, honeybees are divided 
into three categories: employed, onlooker, and scout bees. 
Employed bees search for better food sources around the 
food source in their memory. Each food source is assigned 
to a single employed bee. They share their search informa-
tion with onlooker bees waiting in the hive. Onlooker bees 
select food sources based on the information provided by 
employed bees and explore new food sources. Therefore, 
the more profitable the food source, the more onlooker bees 
fly in. The employed bee, which has failed to find better 
food sources for a long time, abandons it and becomes a 
scout bee, randomly searching for new food sources. The 
general algorithmic structure of ABC optimization is given 
below:

Rao proposed the Jaya algorithm [24] and three Rao algo-
rithms [25] as meta-heuristic algorithms for optimization 
problems of continuous variables. Rao’s algorithms are sim-
ple and metaphor-less, especially parameter-less. In Rao’s 
algorithms, each solution in the population is updated by 
interactions with the best, worst, and randomly chosen solu-
tions in the population. Each solution Xp in the population is 
updated according to the following equation:

 where r1 and r2 are random numbers between [0,1], and 
Xb , Xw and Xq ( q ∈ {1, 2,… , SN} , SN: population size) 
are the best, worst, and randomly chosen solutions in the 
population, respectively. The symbol | ⋅ | indicates the abso-
lute value. If the solution Xp is better than the solution Xq , 
then the term (Xp or Xq) indicates Xp ; otherwise, it indicates 
Xq . As evidenced from Eqs. (4)–(7), the updated solution 
approaches the best solution and moves away from the worst 
solution. To increase the exploration, Rao2 and Rao3 algo-
rithms also include interactions with other randomly chosen 
solutions. If the objective value of the randomly chosen solu-
tion is better than that of the original solution, the updated 
solution approaches the randomly chosen solution, and if 
worse, moves away from it, ensuring both exploration and 
exploitation. It is emphasized that Rao2 and Rao3 become 
the same if all the variables have positive values.

2.3.2  Swap operator and swap sequence

The concepts of the swap operator and swap sequence were 
proposed by Wang et al. to solve the TSP using the PSO 
algorithm [28]. Khan and Maiti used these operations in 
the ABC algorithm to solve TSP [23]. Consider the solu-
tion X = (x1, x2,… , xK) of TSP, which consists of K posi-
tive integer elements. Let V = {1, 2,… ,K} ; then xk ∈ V and 

Initialization stage

Repeat

Employed bee stage

Onlooker bee stage

Scout bee stage

Memorize the best solution achieved so far

Untiltermination criteria is satisfied

(4)(Jaya) X�
p
= Xp + r1(Xb − |Xp|) − r2(Xw − |Xp|),

(5)(Rao1) X�
p
= Xp + r1(Xb − Xw),

(6)
(Rao2) X�

p
= Xp + r1(Xb − Xw) + r2(|Xp or Xq| − |Xq or Xp|),

(7)
(Rao3) X�

p
= Xp + r1(Xb − |Xw|) + r2(|Xp or Xq| − (Xq or Xp)),
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xk ≠ xl for ∀k ≠ l . The swap operator SO(k, l) is defined as 
the swap of element xk and element xl in solution X. When 
the solution obtained by the swap operator is X′ , this opera-
tion is denoted as X� = X ⊲ SO(k, l) . Here, the symbol ⊲ 
represents a binary swap operator. For example, the new 
solution obtained when applying the swap operator SO(2, 4) 
to solution X = (x1, x2, x3, x4, x5) = (3, 1, 5, 2, 4) becomes 
X� = X ⊲ SO(2, 4) = (3, 1, 5, 2, 4) ⊲ SO(2, 4) = (3, 2, 5, 1, 4) . 
That is, the second element of X, 1, and the fourth element, 2, 
are interchanged.

A collection of different swap operators on a particu-
lar sequence of a solution is called a swap sequence, and is 
denoted by SS = (SO1, SO2,⋯ , SOn) . Here, SO1, SO2,… , SOn 
are the swap operators. When a swap sequence acts on a solu-
tion, all swap operators in the swap sequence act on the solu-
tion in turn. That is,

 When different swap sequences are applied to the same 
solution, if the same new solution is obtained, the swap 
sequences are called the equivalent set of swap sequences, 
and the swap sequence with the smallest number of swap 
operators is called the basic swap sequence.

The following operators can be defined with respect to the 
swap sequence.

Plus operator of the two swap sequences: ⊕

Let solution X′ be obtained when the swap sequence SS1 is 
applied; then, SS2 acts on solution X. At this time, if there 
exists a swap sequence SS′ that generates solution X′ when 
applied to solution X, the swap sequence SS′ is called the addi-
tion of SS1 and SS2 , denoted by SS� = SS1 ⊕ SS2.

Negative operator between the two solutions: ⊖

When the basic swap sequence acting on solution X to obtain 
solution X′ is denoted as SS, the swap sequence SS is called the 
difference between solution X and solution X′ and is denoted 
by SS = X� ⊖ X.

Multiply operator of random numbers and swap sequence: ⊙

Multiplying the swap sequence SS by a random number r 
implies that all swap operators that make up the exchange 
sequence SS are maintained with probability r. When swap 
sequence SS acts on solution X, each swap operator is chosen 
with probability r. The resulting swap sequence SS′ is denoted 
as SS� = r ⊙ SS . Each swap operator in swap sequence SS′ is a 
collection of swap operators chosen with probability r among 
the swap operators of SS.

X� = X ⊲ SS = X ⊲ (SO1, SO2,⋯ , SOn)

= (⋯ ((X ⊲ SO1) ⊲ SO2)⋯ ⊲ SOn).

2.3.3  The proposed algorithm

The discrete Rao-combined ABC algorithm proposed in this 
study is a hybrid algorithm that combines solution generation 
using the chaos algorithm in the initialization stage, solution 
update using discrete Rao’s algorithms in the employed bee 
and onlooker bee stages, and solution exploration using the 
3-opt perturbation technique in the scout stage while main-
taining the framework of traditional ABC algorithms. The 
proposed DRABC algorithm is shown in Algorithm 1.

Initialization stage
Population initialization was performed using the chaos 

algorithm. The chaos algorithm exhibits high randomness, 
ergodicity, and regularity. Therefore, initializing a population 
using a chaos map can increase the population diversity and 
accelerate convergence. The following piecewise logistic map-
ping equation was used to generate a chaotic sequence [26]:

 where cxt is the t-th generated chaos variable vector, and 
� is a constant with a value of 4. The chaotic variables 
generated by Eq. (8) are distributed with ergodicity, ran-
domness, and regularity in the search space. Using Eq. 
(8), we generate the initial solutions of the population as 
follows. First, a K-dimensional random number vector cx0 
whose elements are placed in the interval [0,1], is gener-
ated. Next, chaos variable vectors are generated accord-
ing to Eq. (8). This process is repeated using the maxi-
mum number of iterations of the chaotic algorithm. Next, 
when arranging each element in incremental order for 
each chaos variable vector, an index vector consisting of 
the indices of the elements to be arranged is obtained. For 
example, if the chaotic variable vector generated for K = 5 
is cx = (0.4527, 0.9548, 0.5311, 0.0215, 0.1246) , the small-
est value of 0.0215 becomes the first element when it is 
arranged in incremental order. Thereafter, the first element 
of the index vector has an index of four. When the second 
smallest, 0.1246, is organized, it becomes the second ele-
ment; thus, the second element of the index vector is given 
an index of five. If all the elements are organized in this man-
ner, the index vector X = (4, 5, 1, 3, 2) can be obtained. Next, 
a tour path of the corresponding targets was constructed for 
each index vector, and the cumulative dose of the path was 
obtained. In the example above, the corresponding tour path 
is 4 → 5 → 1 → 3 → 2 → 4 . Finally, the smallest cumula-
tive dose of SN tour paths was taken as the initial solution 
of the population.

(8)

cx
t+1 =

{
4𝜇 ⋅ cx

t
⋅ (0.5 − cx

t), 0 < cx
t < 0.5

1 − 4𝜇 ⋅ cx
t
⋅ (cxt − 0.5)(1 − cx

t), 0.5 ⩽ cx
t < 1
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Employed bee stage

In the traditional ABC, each solution in the population 
is updated by interacting with another randomly chosen 
solution. The probabilities of the randomly chosen solu-
tions being good and bad are the same; it cannot be estab-
lished that the new solution is better than the original. 
Consequently, traditional ABC does not have a very high 
exploitation ability. DRABC uses Rao’s solution update 
methods instead of the previous ABC update method to 
further enhance exploitation. Jaya algorithm (4) and Rao 
algorithms (5)–(7) use directional solution updates, such 
that the new solution approaches the best, moves away 
from the worst, and if the randomly chosen solution is 
better than the original, it approaches it, and if it is worse, 
it moves away from it.

The solution update rules based on Eqs. (4)–(7) are 
expressed using the swap operator and the swap sequence 
as follows.

 As each element of the solution is a positive integer, the 
absolute value signs in Eqs. (4)–(7) become meaningless, 
and Rao2 and Rao3 algorithms become the same. In the 
employed bee stage of the DRABC algorithm, all solutions 
in the population are updated with a uniform probability 
according to Eqs. (9)–(11). If the obtained new solution X′

p
 

is better than the original solution Xp , the p-th solution in 
the population is replaced by X′

p
 ; otherwise, it maintains the 

original solution Xp . In the DRABC algorithm, the solu-
tion is updated by selecting one of the three rules in every 
iteration of Eqs. (9)–(11). The rule selection method is as 
follows: each rule has a counter with an initial value of 1. 

(9)
(disJaya) X�

p
= Xp ⊲

(
r1 ⊙ (Xb ⊖ Xp)⊕ r2 ⊙ (Xp ⊖ Xw)

)
,

(10)(disRao1) X�
p
= Xp ⊲

(
r1 ⊙ (Xb ⊖ Xw)

)
,

(11)
(disRao2, 3) X�

p
= Xp ⊲

(
r1 ⊙ (Xb ⊖ Xw)

⊕r2 ⊙ ((Xp or Xq)⊖ (Xq or Xp))
)
.
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If there is an improvement in the solution after a rule is 
selected and used to generate a new solution, the counter 
value of the rule is increased by one. The selection of the 
rule is performed according to the roulette wheel selection 
method with its counter value. When the counter value of 
the mth rule is vm , the selection probability �m of the rule is 
obtained by the following equation:

Onlooker bee stage

Each solution in the population is updated/maintained with 
a uniform probability in the employed bee stage. However, 
in the onlooker bee stage, the solutions (food sources) are 
updated/maintained with a probability associated with their 
fitness values (honey amounts). Therefore, the larger the fit-
ness value, the more it is updated or maintained. The update 
method for the solution is the same as that in the employed 
bee stage. For the pth solution, the probability wp selected 
by the onlooker bee is as follows:

where fitp is the fitness value of the p-th solution. For the 
minimization problem, when the objective function is f, it 
can be expressed as

(12)�m =
vm

∑3

m=1
vm

, (m = 1, 2, 3).

(13)wp =
fitp

∑SN

p=1
fitp

, (p = 1, 2,… , SN),

(14)fitp =

{
1∕(1 + fp), if fp ≥ 0

1 + |fp|, otherwise

 When the selection probability of each solution is deter-
mined, the solution to be updated/maintained by the 
onlooker bee is selected according to the roulette wheel 
selection method.

Scout bee stage

In the scout bee stage, solutions that are not updated for 
a preset iteration number (called limits) are replaced with 
randomly generated new solutions to prevent solutions from 
falling into local optimization and to find global optimiza-
tion. This guarantees the exploration of the algorithm. For 
this purpose, each solution of the population has a counter. 
If the solution improves in the stages of employed bees and 
onlooker bees, the counter value becomes zero; otherwise, 
the value increases by one. If this counter value is equal to 
limits, the solution is considered abandoned because it has 
not been updated limits times, and a new solution is gener-
ated and replaced. In the proposed DRABC algorithm, we 
introduce the 3-opt perturbation technique when replacing 
abandoned solutions, attempting to replace them with new 
solutions that are better than the original solution. The 3-opt 
operation is conducted for a preset iteration number (denoted 
as MaxOptIter) in the scout bee stage of DRABC to update 
the abandoned solution. If any improvement is made, the 
abandoned solution is replaced with an improved solution, 
and the counter value of the solution is set to zero. Oth-
erwise, as in traditional ABC, a new solution is randomly 
generated to replace the abandoned solution, and its counter 
value is set to zero.
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A new solution generation algorithm using a 3-opt opera-
tion is presented in Algorithm 2. The abandoned solution (tar-
get sequence) is arbitrarily decomposed into three sub-paths, 
and new solutions are created by recombining these sub-paths 
and their inverse sub-paths. Among the seven possible new 
target sequences, the sequence with the smallest cumulative 
dose was selected as the new solution. If the new solution 
has a lower cumulative dose than the abandoned solution, the 
abandoned solution is replaced with the new solution.

3  Experimental simulation

We simulated three hypothetical radioactive environments to 
demonstrate the performance and obstacle detouring capabili-
ties of the proposed algorithm. The first hypothetical case was 
a relatively simple environment with no obstacles and a small 
number of targets and radiation sources. In this case, the pro-
posed DRABC algorithm was compared with other inspection 
path planning algorithms, namely IPSO [17], CPSO [18], and 
IACO [14]. To further demonstrate the performance of the 

Table 1  The locations and 
strengths of five radiation point 
sources in Case 1

Serial number 1 2 3 4 5

Location x (m) 24 30 20 60 55
y (m) 17 40 63 28 60

Strength A ( μSv ⋅m2∕s) 15 30 20 40 30

Table 2  The locations of 30 
targets in Case 1

Target 1 2 3 4 5 6 7 8 9 10

Location x (m) 10 13 32 33 39 49 57 69 77 67
y (m) 11 5 8 2 3 14 10 24 23 33

Target 11 12 13 14 15 16 17 18 19 20
Location x (m) 62 45 74 68 73 67 58 43 50 45

y (m) 37 37 44 56 71 74 75 71 51 52
Target 21 22 23 24 25 26 27 28 29 30
Location x (m) 41 17 14 7 20 5 12 5 17 42

y (m) 60 66 64 67 50 43 35 26 26 24

Fig. 3  (Color online) The hypothetical environment of Case 1
Fig. 4  (Color online) Cumulative doses of straight paths between any 
two targets in Case 1
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algorithm in complex environments, the second hypothetical 
case considered an environment with several rectangular obsta-
cles and a large number of targets. The proposed algorithm 
was compared to the IACO algorithm [14]. To demonstrate 
the high obstacle detour capability of the proposed algorithm, 
the third hypothetical case simulated an environment with 
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Fig. 5  (Color online) The best paths obtained by four algorithms in 
Case 1. (a) IPSO, IACO and DRABC; (b) CPSO
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many complex structural obstacles and radiation sources. In 
this case, we also highlighted the superiority of the proposed 
algorithm via a comparison with the discrete Jaya algorithm 
(9) and Rao algorithms (10)–(11).

3.1  Case 1

Figure 3 shows the 80 m × 80 m hypothetical environment 
of Case 1. The locations and strengths of the five radiation 
sources and 30 targets are listed in Tables 1 and 2, respectively. 
Figure 4 shows the cumulative doses of straight paths between 
any two targets in Case 1. The radiation map was obtained 
according to the description in Sect. 2.1. The grid interval for 
the radiation map was set to 1.1 m.

For all algorithms used in the comparison, the population 
size and termination criterion for the iterations were fixed. The 
population size (SN) is set to 50. We used the maximum num-
ber of function evaluations (MaxNFEs) as the termination cri-
terion. Here, the number of function evaluations was the num-
ber of cumulative dose calculations for the entire inspection 
path. For Case 1, we set MaxNFEs = 150,000. To optimally 
set the algorithm-specific parameters of the CPSO, IACO, and 
DRABC algorithms, we applied Taguchi’s three-level experi-
mental design method [30]. According to the number of spe-
cific parameters, L3 design for CPSO, L9 for DRABC, and L27 
for IACO were performed. The optimal parameter values of 
the three algorithms obtained by the statistical analysis of 20 
iterations for each experiment are listed in Table 3.

Table 4  Experimental results of four meta-heuristic algorithms in Case 1

Algorithm Worst value 
( μSv)

Average value 
( μSv)

Best value ( μSv) Proportion of opti-
mal value (%)

Less than 
100 (%)

More than 
100 (%)

Average cpu time ( sec)

IPSO 149.2232 113.5752 94.8678 4 10 90 20.552
CPSO 155.8636 122.6496 95.8223 2 4 96 20.394
IACO 111.4076 99.7814 94.8678 28 64 36 13.107
DRABC 98.6882 96.1210 94.8678 42 100 0 12.872

Table 5  The locations and 
strengths of five radiation point 
sources in Case 2

Serial number 1 2 3 4 5

Location x (m) 150 120 100 40 55
y (m) 120 15 190 145 50

Strength A (μSv ⋅m2∕s) 50 60 40 80 80

Table 6  The locations of 54 
targets in Case 2

Target 1 2 3 4 5 6 7 8 9

Location x (m) 6 15 21 21 22 22 27 28 30
y (m) 134 191 168 163 32 114 14 51 80

Target 10 11 12 13 14 15 16 17 18
Location x (m) 32 34 34 36 42 42 51 53 53

y (m) 22 160 92 119 78 166 192 133 111
Target 19 20 21 22 23 24 25 26 27
Location x (m) 57 58 72 75 79 83 85 85 88

y (m) 153 129 47 106 99 44 64 167 75
Target 28 29 30 31 32 33 34 35 36
Location x (m) 91 93 95 102 103 107 112 114 120

y (m) 141 9 25 122 129 107 52 102 159
Target 37 38 39 40 41 42 43 44 45
Location x (m) 129 142 154 159 160 164 167 169 174

y (m) 66 53 85 150 173 43 134 17 94
Target 46 47 48 49 50 51 52 53 54
Location x (m) 178 178 184 184 186 186 193 196 203

y (m) 95 190 179 65 195 42 114 39 75
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We obtained the minimum dose inspection path for Case 
1 by iterating each algorithm 50 times with the optimal spe-
cific parameters. Figure 5 shows the best paths obtained by 
the four algorithms, and Table 4 shows the experimental 
results.

The experimental results show that the cumulative dose 
of the best path generated by CPSO is higher than those 
generated by the other algorithms. The IPSO, IACO, and 
DRABC algorithms identify the optimal path with a cumu-
lative dose of 94.8678 μ Sv but differ from each other in the 
search ratio of the optimal path. In terms of calculation time, 
DRABC is similar to IACO but approximately 1.6 times 
faster than IPSO or CPSO. From Table 4, it can be observed 
that the DRABC algorithm is superior to the other three 
algorithms for all metrics.

3.2  Case 2

Figure 6 shows the 210 m × 210 m hypothetical environ-
ment of Case 2 with 5 rectangular obstacles. Table 5 lists 
the locations and strengths of the five radiation sources, and 
Table 6 lists the locations of the 54 targets. If there is an 
obstacle between the two targets, the path is not a straight 
line; however, a detour path obtained using the technique 
described in Sect. 2.2. Figure 7 shows the cumulative doses 

Fig. 6  (Color online) The hypothetical environment of Case 2

Fig. 7  (Color online) Cumulative doses of straight paths between any 
two targets in Case 2

Table 7  Experimental results of IACO and DRABC algorithms in Case 2

Algorithm Worst value ( μSv) Average value ( μSv) Best value ( μSv) Proportion of opti-
mal value (%)

Less than 
105 (%)

More than 
105 (%)

Average 
cpu time 
( sec)

IACO 116.1915 105.9539 100.8149 1 43 57 124.614
DRABC 103.6477 101.2941 100.8149 50 100 0 119.540

Fig. 8  (Color online) The optimal path obtained by IACO and 
DRABC algorithms in Case 2
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of the paths between any two targets identified by consider-
ing the obstacles.

In Case 2, the performances of the DRABC and IACO 
algorithms were compared. The common parameters were 
set as SN = 100 and MaxNFEs = 106 . The specific param-
eters for each algorithm are listed in Table 3. The experiment 
was performed 100 times for each algorithm. The results are 
listed in Table 7.

From the experiments, we know that the cumulative dose 
of the optimal path for Case 2 is 100.8149 μSv. Figure 8 
shows the optimal path obtained. Table 7 shows the difference 
between the proposed and IACO algorithms. For the DRABC 
algorithm, 100% of the experiments obtained paths below 
105 μSv, of which 50% provided an optimal path. However, 
for the IACO algorithm, 43% of the experiments obtained 
paths below 105 μSv, and only one provided the optimal path. 
In terms of the calculation time, the DRABC algorithm was 
slightly faster than the IACO algorithm. Experiments showed 
that the superiority of the proposed algorithm is more pro-
nounced in large-scale problems with obstacles.

3.3  Case 3

Case 3 shows the high-path search and obstacle detour capabil-
ities of the proposed algorithm in the 350 m × 350 m hypothet-
ical environment with many radiation sources and obstacles 

of complex structures. A hypothetical environment is shown 
in Fig. 9. Tables 8 and 9 show the locations and strengths of 
19 radiation sources and 33 target points, respectively. The 
cumulative doses on the path between the two target points 
considering the obstacle detour are shown in Fig. 10.

In Case 3, the DRABC algorithm was compared with 
the disJaya, disRao1, and disRao2 algorithms, which are 
discrete versions of Jaya and Rao algorithms that are not 
combined with ABC. The common parameters for Case 3 
were set to SN = 100 and MaxNFEs = 2 × 106 . The experi-
ment was repeated 20 times.

The experimental results are listed in Table 10. As shown 
in Table 10, in the DRABC algorithm, 65% of the simula-
tions yielded an optimal path (with an accumulated dose 
of 55.7721 μSv), and all experiments provided solutions 
that were very close to the optimal path (standard devia-
tion 0.2685 μSv). Figure 11 shows the best and worst paths 
identified by the DRABC algorithm. From the two figures 
in Fig. 11, we can see that the obtained paths bypass the 
various shapes of obstacles that appear in layers very well. 
Meanwhile, the discrete Jaya and Rao algorithms do not find 
an optimal path in the set of common parameters. The best 
result is found with the disRao1 algorithm; however, this 
result is inferior to the worst result of the DRABC algo-
rithm. In terms of calculation time, the disRao1 algorithm 
was faster than the other algorithms. Experiments on Case 3 

Table 8  The locations and 
strengths of 19 radiation point 
sources in Case 3

Serial number 1 2 3 4 5 6 7

Location x (m) 40 90 190 265 320 90 160
y (m) 320 320 320 285 290 250 250

Strength A ( μSv ⋅m2∕s) 6 6 12 18 18 12 6
Serial number 8 9 10 11 12 13 14
Location x (m) 190 260 30 30 110 175 240

y (m) 250 250 110 230 210 170 130
Strength A ( μSv ⋅m2∕s) 6 6 12 18 18 36 12
Serial number 15 16 17 18 19
Location x (m) 320 320 100 175 250

y (m) 110 230 90 90 90
Strength A ( μSv ⋅m2∕s) 24 12 6 6 3

Table 9  The locations of 33 
targets in Case 3

Target 1 2 3 4 5 6 7 8 9 10 11

Location x (m) 65 140 140 175 210 300 320 100 175 250 60
y (m) 310 290 320 295 290 310 260 230 230 230 210

Target 12 13 14 15 16 17 18 19 20 21 22
Location x (m) 60 100 115 135 150 200 250 230 230 265 265

y (m) 130 105 170 170 120 120 105 150 190 125 215
Target 23 24 25 26 27 28 29 30 31 32 33
Location x (m) 290 45 70 120 125 175 175 205 225 280 295

y (m) 170 10 40 10 45 75 33 25 55 45 60
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show that the discrete Jaya and Rao algorithms, when com-
bined with the ABC algorithm, improve exploration and 
exploitation abilities without increasing computational time. 
Experiments also show that the proposed DRABC algorithm 
facilitates optimal path exploration, even in radiation envi-
ronments with complex structural obstacles.

4  Conclusion

In this study, a DRABC algorithm was proposed for plan-
ning inspection paths in radiation environments with 
complex structural obstacles. [16] proposed a continuous 

Rao-combined ABC algorithm that combined Rao’s direc-
tional solution update rules with the traditional ABC 
algorithm to enhance its exploitation ability. To plan the 
inspection path, we studied a discrete version of the algo-
rithm proposed by [16]. To this end, the concepts of the 

Fig. 9  The hypothetical environment of Case 3

Fig. 10  Cumulative doses of straight paths between any two targets 
in Case 3

(a)

(b)

Fig. 11  (Color online) The best and worst paths identified by the 
DRABC algorithm in Case 3. (a) The best path; (b) The worst path
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swap operator and swap sequence were applied to develop 
discrete Jaya and Rao algorithms, and accordingly, the solu-
tions were updated in the employed bee and onlooker bee 
stages. In addition, the chaos algorithm was used during the 
initialization stage to increase the randomness of the solu-
tion generation, and the 3-opt operation technique was used 
during the scout bee stage to increase the exploration ability 
of the algorithm. Three hypothetical radiation environments 
were simulated to test the performance of the proposed algo-
rithm. In the first hypothetical environment (Case 1), with 
five radiation sources, 30 target points, and no obstacles, the 
DRABC algorithm was compared with the IPSO, CPSO, 
and IACO algorithms. The experimental results showed that 
three algorithms, excluding CPSO, found the optimal path 
under the given conditions; however, the DRABC algorithm 
had the highest search proportion. To further demonstrate 
the performance of the proposed algorithm, a more com-
plex hypothetical environment (Case 2) with five radiation 
sources, 54 target points, and five rectangular obstacles was 
simulated. A comparison with the IACO algorithm showed 
that the DRABC algorithm was superior in the searchability 
of the optimal path or convergence of the algorithm. The 
simulation of a hypothetical environment (Case 3) with 19 
radiation sources and 33 target points showed that the pro-
posed algorithm identified optimal paths even in complex 
radiation environments with various shapes of obstacles, and 
this ability could be achieved because of the good combina-
tion of the discrete Rao’s algorithm and the ABC algorithm. 
The above experiments show that the proposed algorithm is 
very efficient in solving the problem of planning a facility 
inspection path.
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