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Abstract The goal of this study is to solve the neutron

diffusion equation by using a meshless method and eval-

uate its performance compared to traditional methods. This

paper proposes a novel method based on coupling the

meshless local Petrov–Galerkin approach and the moving

least squares approximation. This computational procedure

consists of two main steps. The first involved applying the

moving least squares approximation to construct the shape

function based on the problem domain. Then, the obtained

shape function was used in the meshless local Petrov–

Galerkin method to solve the neutron diffusion equation.

Because the meshless method is based on eliminating the

mesh-based topologies, the problem domain was repre-

sented by a set of arbitrarily distributed nodes. There is no

need to use meshes or elements for field variable interpo-

lation. The process of node generation is simply and fully

automated, which can save time. As this method is a local

weak form, it does not require any background integration

cells and all integrations are performed locally over small

quadrature domains. To evaluate the proposed method,

several problems were considered. The results were com-

pared with those obtained from the analytical solution and

a Galerkin finite element method. In addition, the proposed

method was used to solve neutronic calculations in the

small modular reactor. The results were compared with

those of the citation code and reference values. The accu-

racy and precision of the proposed method were accept-

able. Additionally, adding the number of nodes and

selecting an appropriate weight function improved the

performance of the meshless local Petrov–Galerkin

method. Therefore, the proposed method represents an

accurate and alternative method for calculating core neu-

tronic parameters.

Keywords Neutron diffusion equation � Meshless local

Petrov–Galerkin (MLPG) � Moving least squares

approximation (MLSA) � Meshless methods

1 Introduction

The numerical tools of partial differential equations

(PDE) play a key role in the accuracy and acceleration of

the solution process in engineering problems. In the last

few years, significant progress has been achieved in this

field due to the development of computer technology.

Despite this progress, numerical methods are often gener-

alized to solve differential equations in a heuristic manner

[1]. Numerical methods consist of two types based on the

discretization method. The first employs a mesh (mesh-

based method), and the second uses a local approximation

by polynomials (meshless method).

Mesh-based numerical methods are divided into three

classical groups for solving PDEs: finite difference meth-

ods (FDM), finite volume methods (FVM), and finite ele-

ment methods (FEM) [2]. These methods have been used to

solve engineering problems for more than 60 years and

cover a wide scope of problems such as material science,
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aerospace engineering, computational physics, safety,

reliability analysis, solid mechanic, fluid mechanical

interactions, and molecular interaction. Mesh-based meth-

ods are powerful numerical tools for solving problems and

evaluating, predicting, and simulating the behavior of

systems. However, mesh-based methods have some limi-

tations in that they cannot provide fully acceptable results.

Moreover, despite the great progress in mesh generation,

creating an accurate mesh remains difficult. In addition,

mesh-based methods are typically time-consuming [1].

Therefore, there is an interest in developing alternative

methods that remove or reduce the need for meshing. A

review of these methods shows that meshless methods have

achieved considerable success in recent decades and have

attracted substantial interest from researchers because of

their applications for solving computational problems

[3–9]. The most outstanding of these methods are intro-

duced below.

The advent of the meshless concept dates back to the

model of astrophysical phenomena without boundaries

(smooth particle hydrodynamics (SPH)), for example,

exploding stars and dust clouds. This idea was proposed as

a theory for non-spherical stars by Gingold and Monaghan

[10]. The SPH scheme has been successfully applied to

many problems such as heat conduction, explosion phe-

nomena, and free surface [11, 12]. Then, Nayroles et al.

[13] proposed the diffuse element method that has been

employed by many researchers. Belytschko et al. [3]

introduced an extended version of Nayroles’s method,

which included a series of improvements over the diffuse

element method formulation (the element-less Galerkin

methods) [14]. Liu et al. [15, 16] introduced a new method

for correcting the lack of consistency in the SPH scheme,

known as the reproducing kernel particle method.

Oñate et al. [17] studied the finite point manner to model

elasticity and plate bending and fluid flow problems using the

collocation point technique, least squares approximation,

and weighted least squares approximation. Since then,

research has tended to use the radial basis function approx-

imation technique [18–21]. Several studies on radial basis

functions have been applied to solve physical problems such

as transport phenomena [22], heat conduction [23], neutron

diffusion [24, 25], and analysis of Kirchhoff plates [26]. De

and Bathe [27] proposed the finite spheres approach for

constructing the approximation function. Moradipour and

Yousefi [28] used a meshless kernel-based method to solve

the Black–Scholes variational inequality of American

options. In addition to the analysis of two-dimensional

elasticity problems, Ebrahimnejad et al. [29] presented three

schemes of the 2D meshless finite volume method. One of the

main methods of meshless schemes is the meshless local

Petrov–Galerkin (MLPG) method proposed by [30]. The

MLPG method has frequently been used to successfully

solve many engineering problems [31–35].

This method is based on the idea of the local weak form,

which eliminates the requirement of the background cell.

In addition, this method provides numerical integration in a

meshless sense to simplify the integrand of the weak form

[4, 6, 30, 36–38]. In this global weak form method, a

rational basis is provided to construct meshless methods

with a larger degree of flexibility [36, 39–44]. The MLPG

method is an effective method for solving many problems,

which is based on a local weak form and the moving least

squares approximation (MLSA) to approximate the shape

functions [45, 46]. As this method does not need a ‘‘finite

element mesh,’’ it is a truly meshless method [2]. All

integrals in the formulation can be easily evaluated over

regularly shaped domains and their boundaries [30]. The

shape functions must be effectively constructed to achieve

a desirable order of continuity.

Accordingly, the capability and flexibility of meshless

methods provide the motivation for using this approach to

solve the neutron diffusion equation in this study.

2 Methodology

In this research, the MLPG method was used to solve the

neutron diffusion equation in two-dimensional geometry.

First, the solution was approximated by using a local

approximation in the problem domain. This approximation

scheme was used to formulate the residual of the governing

equations on the problem and find the shape function. The

obtained shape function was employed in the MLPG algo-

rithm to solve the problem. Then, the problem was modeled

by the analytical solutions and the Galerkin finite element

method (GFEM) to evaluate the proposed method. In the

following subsections, all steps required to derive the shape

function and the weak form of the problem equation are

explained. A schematic representation of the local support

domains used to create the shape function is demonstrated in

Fig. 1. The domain representation of the assumed problem of

the mesh-based and meshless approaches is shown in Fig. 2.

2.1 Determining the shape function by MLSA

Selection of an approximation function has an important

role for reaching a sufficient number of equations to

determine the unknowns [47, 48]. Some of the most

important functions consist of Shepard functions [40, 49],

least squares [14, 50], local radial point interpolation [51],

and local point interpolation [52]. One of the best schemes

for interpolating data with an appropriate accuracy is the

moving least squares method, which has more compati-

bility with MLPG method [53]. The moving least squares
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approximation was created by mathematic researchers for

data fitting and surface construction [54]. The steps for the

determination of the shape function are as follows:

(1) First, to demonstrate the trial function, the meshless

approach should use local interpolation. Therefore, a

function of the field unknown variables, U(X), is

defined in a subdomain, Xs, which indicates the

support domain of the MLS approximation for U(X).

It should be mentioned that the support domain is

located in the problem domain Xp. X = (x, y), which

indicates a two-dimensional problem. To find an

approximation distribution of function U in the

support domain, the local moving squares approxi-

mation of function U(X) for all X in the support

domain should be defined as follows [42]:

uh Xð Þ ¼
Xm

j¼1

pjðXÞajðXÞ ¼ PT Xð ÞaðXÞ: ð1Þ

PT Xð Þ is a complete monomial basis of order m. m is

the number of monomial terms, and here the linear

basis m = 3.

PT Xð Þ ¼ PT x; yð Þ ¼ f1; x; yg ð2Þ

a Xð Þ is a coefficient vector as follows:

aT Xð Þ ¼ aT x; yð Þ ¼ fa0 Xð Þ; a1 Xð Þ; . . .; am Xð Þg:
ð3Þ

The approximated values of the field function are:

uh X;XIð Þ ¼ P XIð Þa Xð Þ I ¼ 1; . . .; n: ð4Þ

(2) In the second step, the weighted discrete L2 norm is

defined as follows:

J Xð Þ ¼
Xn

i¼1

W X � Xið Þ Uh X;Xið Þ � Ui Xið Þ
� �2

¼ ½PT Xið Þa Xð Þ � Ui�2: ð5Þ

Ui is the nodal parameter of the field variable at node i. n

indicates the number of neighborhood nodes of node i. The

weight function W X � Xið Þ is the associated weight

Fig. 1 A schematic

representation of the local

support domains in the meshless

approach

Fig. 2 Comparison of a

problem domain in a meshless

approach and a mesh-based

method
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function of node i. It is noted that the weight function for

all internal and external nodes in the support domain is

nonzero and zero, respectively.

(3) In the third step, for determining the coefficients matrix,

a(X), J should be minimized with respect to a(X) [42]:

oJ

oa
¼ 0: ð6Þ

This equation leads to a linear relationship (7) between

a(X) and U:

AðXÞaðXÞ ¼ BðXÞUs: ð7Þ

Solving Eq. (7) for a(X) gives [54]:

aðXÞ ¼ AðXÞ�1BðXÞUs; ð8Þ

where Us is a vector for choosing the field function nodal

parameters for interior nodes of the support domain as

follows:

Us ¼ fU1;U2; . . .;UngT: ð9Þ

The matrices A(X) and B(X) are given as [54, 55]:

A Xð Þ ¼ PTWP ¼
Xn

i¼1

Wi X � Xið ÞP Xið ÞPT Xið Þ ð10Þ

B Xð Þ ¼ PTW ¼ ½W1 Xð ÞP X1ð Þ; . . .;Wn Xð ÞP Xnð Þ�; ð11Þ

where Wi Xð Þ ¼ W X � Xið Þ.
Hence, for this two-dimensional problem, A(X) is a

symmetric matrix according to the linear basis (m = 3) that

can be explicitly written as:

A3�3ðxÞ ¼
Xn

i¼1

Wi xð ÞP xið ÞPT xið Þ

¼ Wðx� x1Þ
1 x1 y1

x1 x2
1 x1y1

y1 x1y1 y2
1

2
64

3
75

þ W x� x2ð Þ
1 x2 y2

x2 x2
2 x2y2

y2 x2y2 y2
2

2
64

3
75

þ W x� xnð Þ
1 xn yn

xn x2
n xnyn

yn xnyn y2
n

2
64

3
75

¼

Pn

i¼1

wi

Pn

i¼1

xiwi

Pn

i¼1

yiwi

Pn

i¼1

xiwi

Pn

i¼1

x2
i wi

Pn

i¼1

xiyiwi

Pn

i¼1

yiwi

Pn

i¼1

xiyiwi

Pn

i¼1

y2
i wi

2
66666664

3
77777775

3�3

ð12Þ

(4) The fourth step is the derivation of the shape

function. If the above equations are substituted into

Eq. (4), the form of an interpolation function that is

MLSA of u(X) at X is written as:

uh Xð Þ ¼
Xm

j¼1

/iðXÞUiðXÞ ¼ UT Xð ÞUs ð13Þ

UT Xð Þ can be rewritten as below [55]:

UT Xð Þ ¼ f/1 Xð Þ/2 Xð Þ. . ./nðXÞg1�n
¼ pT Xð ÞA�1 Xð ÞB Xð Þ; ð14Þ

where UðXÞ indicates the MLS shape function vector

for n nodes in the support domain of point X.

Therefore, the shape function for the ith node is

introduced in Eq. (15) [55]:

/iðXÞ ¼
Xm

j¼1

pj Xð Þ A�1 Xð ÞB Xð Þ
� �

ji
: ð15Þ

Fig. 3 Flowchart of the applied algorithm for deriving the shape

function (MLSA algorithm)
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A flowchart of the algorithm for the above steps is

shown in Fig. 3.

2.2 Solving the neutron diffusion equation

by MLPG

To solve the neutron diffusion equation, the nodal

parameters uj and its derivatives should be defined. uj is a

function of time, while the shape function /j is a function

of X only [56]. The spatial and temporal derivatives of the

above shape function with respect to X or Y are extracted

from the above equations. Equation (13) can then be

rewritten as:

uh X; tð Þ ¼
Xn

j¼1

uj tð Þ/j Xð Þ; ð16Þ

2.2.1 The temporal derivation of uh is

uh
t ¼

Xn

j¼1

u
0

j
tð Þ/j Xð Þ: ð17Þ

2.2.2 The spatial derivation of uh is

uh
x ¼

Xn

j¼1

uj tð Þ/
0

j
Xð Þ: ð18Þ

2.2.3 In addition, the second-order spatial domain is

uh
xx ¼

Xn

j¼1

uj tð Þ €/j Xð Þ: ð19Þ

The derivatives are denoted by subscripts. In addition, a

local quadrature domain, XQi
, is defined for each interior

node, xi. R indicates the residual function. The integral of

the weighted residual is zero [57].

Z

XQi

RWidXQi
¼ 0: ð20Þ

As mentioned earlier, Wi is a weight function that is

nonzero only on XQi
and similar to the weight function

used in the MLSA process.

2.3 Determining the residual of the neutron

diffusion equation

In this step, two-dimensional neutron diffusion equa-

tions are first introduced. For arbitrary volume, v, the

balance neutron equation is considered. This well-known

equation is shown below.

Time rate of change of the number of neutron in a volume½ �
¼ Production rate in the volume½ �
� Absorptions in the volume½ �
� Net leakage from the surface of volume½ �:

The first term is mathematically expressed in Eq. (21):

d

dt

Z

v

1

v
u r; tð Þdv: ð21Þ

The production rate is considered as a neutron source in

Eq. (22):

Z

v

S r; tð Þdv: ð22Þ

The neutron absorption term is presented in Eq. (23):
Z

v

Rau r; tð Þdv: ð23Þ

The leakage term is shown in Eq. (24):

Z

v

r � Jdv ¼ d

dt

Z

v

r � ½Dru r; tð Þ�dv: ð24Þ

The mathematical formulation of the neutron diffusion

theory is obtained as follows:

ou
ot

� Dr2u r; tð Þ þ Rau r; tð Þ ¼ Sðr; tÞ: ð25Þ

Equation (25) can be rewritten as Eq. (26):

ut � Duxx þ Rau� S ¼ 0; ð26Þ

where u is the solution, D is the diffusion coefficient, s is a

neutron source, and Ra is the absorption cross section. The

residual for this equation is defined according to an

approximation solution as follows:

Residual ¼ R ¼ uht � Duhxx þ Rau
h � s ¼ 0: ð27Þ

Equation (27) is substituted into Eq. (20) to give a

system of n linear equations for n nodes:

Z

Xqi

uht � Duhxx þ Rau
h � s

� �
widXQqi ¼ 0: ð28Þ

Then, each of the neutron diffusion equation terms

should be substituted by Eq. (16) into Eq. (19):

(a) The first term is obtained by substituting Eq. (17)

into Eq. (28):
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Z

Xqi

uht
� �

widXQqi ¼
Z Xn

j¼1

u
0

j
uj xð ÞwiðxÞdx: ð29Þ

(b) The second term is obtained by substituting Eq. (19)

into Eq. (28):

� D

Z

Xqi

½uhxx�widXqi ¼
Z

Xqi

Duhxwi;XðxÞdXqi � Duhxwi

Xqin

Xqi1

����

¼ D

Z Xn

j¼1

ujðtÞu
0

j
xð Þw0

i
ðXÞdx� DujðtÞujðxÞwiðxÞ:

ð30Þ

(c) The third term is obtained by substituting Eq. (16)

into Eq. (28):

Z

Xqi

Rau
hwidXqi ¼

Z Xn

j¼1

Rau
h
j ðtÞuj Xð ÞwiðxÞdx:

ð31Þ

(d) The fourth term is obtained by substituting the

fission effective factors into Eq. (22):

Z

Xqi

�SwidXqi ¼ �
Z

v
k
tRf wiðxÞdx: ð32Þ

Therefore, Eq. (28) can be rewritten as:
Z Xn

j¼1

u
0

j
uj xð Þwi xð Þdxþ D

Z Xn

j¼1

ujðtÞu
0

j
xð Þw0

i
ðXÞdx

� D
Xn

j¼1

ujðtÞujðxÞwiðxÞ
Xqin

Xqi1

����

þ
Z Xn

j¼1

Rau
h
j ðtÞuj Xð ÞwiðxÞdx�

Z
v
k
tRf wi xð Þdx ¼ 0:

ð33Þ

For clarity, the sums are moved outside the integrals as

shown in Eq. (34):

Xn

j¼1

Z
uj
0 ðtÞuj xð Þwi xð Þdxþ D

Xn

j¼1

Z
ujðtÞu

0

j
xð Þw0

i
xð Þdx

� D
Xn

j¼1

uj tð Þuj xð Þwi xð Þ
Xqin

Xqi1

����

þ
Xn

j¼1

Z
Rauj tð Þuj xð Þwi xð Þdx�

Z
v
k
tRf wi xð Þdx ¼ 0:

ð34Þ

This equation can be rearranged into its final form as

shown in Eq. (35):

Xn

j¼1

u
0

j
ðtÞ

Z
uj xð Þwi xð Þdxþ D

Xn

j¼1

ujðtÞ
Z

u
0

j
xð Þw0

i
xð Þdx

� D
Xn

j¼1

uj tð Þuj xð Þwi xð Þ
Xqin

Xqi1

����

þ
Xn

j¼1

uj tð Þ
Z

Rauj xð Þwi xð Þdx� v
k
tRf

Z
wi xð Þdx ¼ 0:

ð35Þ

It should be noted that the integrals obtained in dis-

cretized equations are regular integrals. To calculate the

integrals, the numerical integration method based on the

20-point Gauss–Legendre quadrature was applied

[33, 45, 58].

2.4 Solution of the time-dependent neutron

diffusion equation

The first stage in the time-dependent solution is the

discretization of space and time variables. The space and

time variables are essentially discretized to gain a series of

(nonlinear) algebraic systems. Therefore, it is necessary to

decouple the space and time variables to solve this

problem.

In this study, three different approaches to time dis-

cretization were applied, the forward Euler, Crank–Nicol-

son, and backward Euler scheme. It is notable that the

results of the second scheme were more acceptable than

other methods because the method is unconditionally

stable. In addition, the time required for this process was

shorter than other methods. In the method, time is replaced

by the time derivative at the half-step u
0

j
t þ Dt=2ð Þ with the

central difference approximation [59]:

u
0

j
t þ Dt=2ð Þ ¼ uj t þ Dtð Þ � ujðtÞ

Dt
: ð36Þ

In this discretization method, uj t þ Dt=2ð Þ is approxi-

mated as the average of uj tð Þ and uj t þ Dtð Þ. It is noted that

the second-order accuracy in time and space is provided by

the Crank–Nicolson method. In addition, this method is

unconditionally stable.

By collecting all the nodal parameters into a vector

u
ðtÞ
j = (u

ðtÞ
1 . . .u

ðtÞ
n ), the matrix form of Eq. (35) is derived as

below:

M
Xn

j¼1

uj
0 ðtÞ þ N

Xn

j¼1

ujðtÞ � S ¼ 0 ð37Þ

M
Xn

j¼1

u
0

j
t þ Dt

2

� �
þ N

Xn

j¼1

uj t þ Dt
2

� �
� S ¼ 0 ð38Þ
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M
u t þ Dtð Þ � u tð Þ

Dt

� �
þ N

u t þ Dtð Þ þ u tð Þ
2

� �
� S ¼ 0

ð39Þ

2Mu t þ Dtð Þ � 2Mu t þ Dtð Þ þ NDtu tð Þ þ NDtu t þ Dtð Þ
� 2tDt
¼ 0

ð40Þ

u tþDtð Þ 2M þ NDtð Þ ¼ 2tDt þ uðtÞð2M � NDtÞ; ð41Þ

where M and N are coefficients of u
0

j
and uj, respectively.

The proposed final relationship, which was used in the

computational algorithm as the main formula at each time

step, is:

u tþDtð ÞL ¼ s� þ uðtÞK: ð42Þ

All approaches were calculated by a code written

entirely in FORTRAN 95. To enforce the boundary con-

ditions in the problem, the following provisions should be

considered. Each element of matrix L, Lij, is defined based

on the three conditions. If xj is in the support domain of

boundary node xi, Lij is /j xið Þ. If xj is in the support domain

of any point in the quadrature domain of the internal node

xi, Lij is 2Mij þ NijDt. Otherwise, the value of Lij is zero.

In addition, each element of matrix K, Kij, is defined

based on the three conditions. If xj is in the support domain

of boundary node xi, Lij is zero. If xj is in the support

domain of any point in the quadrature domain of the

internal node xi, Lij is 2Mij � NijDt. Otherwise, the value of

Lij is zero and S� is based on the problem conditions.

As mentioned previously, the shape function is an

important requirement for applying meshless methods. A

qualified approach should satisfy several conditions to

provide the shape functions of meshless methods [48].

These conditions consist of having an arbitrary nodal dis-

tribution, being numerically stable, satisfying a certain

order of consistency, and being compactly supported [48].

The accuracy of interpolation for the arbitrary points

depends on the number of nodes in the support domain

[53]. The number of nodes in each interpolation domain

should be used to determine the appropriate shape function

and local interpolation schemes to match the sensitivity of

any meshless interpolation methods to a variable. There-

fore, an appropriate support domain should be selected to

apply an accurate approximation [4]. It should be noted

that, in order to evaluate the performance of the proposed

method, several weight functions such as the cubic spline,

the quadratic spline, the compact support radial basis, and

Gaussian weight functions were studied. These weight

functions are presented below:

1. Cubic spline weight function

wi xð Þ ¼ 2

3
� 4r2

i þ 4r3
i ; for 0� ri �

1

2

¼ 4

3
� 4ri þ 4r2

i �
4

3
r3
i ; for

1

2
� ri � 1 ¼ 0;

for ri [ 1:

ð43Þ

2. Quadratic spline weight function

wi xð Þ ¼ 1 � 6r2
i þ 8r3

i � 3r4
i for 0� ri � 1 ¼ 0;

for ri [ 1:

ð44Þ

3. Compact support radial basis function (CSRBF)

wi xð Þ ¼ 1 � rið Þ6þ 6 þ 36ri þ 82r2
i þ 72r3

i þ 30r4
i þ 5r5

i

� �
;

for 0� ri � 1 ¼ 0; for ri [ 1:

ð45Þ

4. Gaussian weight function

wi xð Þ¼

exp � di

ci

� �2
" #

� exp½� ri

ci

� �2

�

1� exp½� ri

ci

� �2

�
for 0�di�ri

0 for di�ri

8
>>>>><

>>>>>:

ð46Þ

where ri is the size of the support for the weight

function, wi, and di = |x - xi| is the distance between

node xi and x. The distance between nodes is equal to

half the mean free path of the neutron. The value of the

mean free path for a thermal neutron in a reactor core

is 0.7. In addition, the radius of the support domain for

the weight function is approximately three mean free

paths of the neutron. Moreover, ci is a constant con-

trolling the shape of the weight function, wi, which is

an effective parameter for the stability and accuracy of

the method that is obtained through experiments. In

this problem, ci in the range of 0.3–0.8 leads to more

stable and accurate results. Then, for each interior

node, xi, a local quadrature domain, XQi
, is defined

[60].

The main steps of the proposed algorithm include:

1. Defining the initial condition of the problem;

2. Defining the boundary condition of the problem;

3. Setting up the cloud points;

4. Finding the affect domain of each node;

5. Looping over the time steps;

6. Applying the MLSA algorithm:

6:1 Selecting the neighboring nodes;

6:2 Deriving the shape functions and its deriva-

tive for the nodes;
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6:3 Evaluating the nodal matrices and vectors;

6:4 Setting the nodal portion to the global

matrices and vectors;

6:5 End loop (Fig. 3);

7. Solving the government equations at each node;

8. Applying the moving least squares shape function

for interior nodes of a local domain for

recalculation;

9. Determining the coefficients at each node to obtain

higher accuracy;

10. Determining and evaluating the obtained results;

11. Evaluating the effects of increasing the amount of

nodes in the problem domain;

12. Recording the history of the state variables and

their derivatives;

13. Back to 5;

14. End.

The flowchart of the MLPG algorithm is demonstrated

in Fig. 4.

3 Results and discussion

Several example problems were studied to validate the

proposed method. The results of the MLPG method were

then compared with the results of the analytical solution

and the Galerkin finite element method.

3.1 Convergence degree test

In order to calculate the convergence degree of the

MLPG method, a slab is considered. The boundary con-

ditions are a perfect reflector on the left and a bare surface

on the right of the slab. The model geometry is presented in

Fig. 5. The logarithm of the error versus the number of

nodes is presented in Fig. 6. It is clear that increasing the

number of nodes decreases the error. Figure 7 illustrates

the logarithm of the error versus the logarithm of the

inverse of the number of nodes. It is well known that the

slope of this diagram depicts the convergence rate. For

Fig. 4 Flowchart of the MLPG algorithm

Fig. 5 Geometry of the convergence degree test

Fig. 6 Error logarithm versus the number of nodes
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Fig. 7 a Logarithm of the error

versus the logarithm of the

inverse of the number of nodes

and b the convergence rate

versus the number of nodes

Fig. 8 Geometry of the single region

Table 1 Applied neutronic parameters for Case I

Applied models Energy group Absorption cross section Nu-fission cross section Diffusion coefficient

Slab I 1 0.03051 0.000256 1.440130

2 0.10582 0.154726 0.015723

Fig. 9 Thermal neutron flux obtained from the MLPG and GFEM

and the analytical solution (Case I)
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further clarification, the convergence rate versus the num-

ber of nodes is presented in Fig. 7b, which demonstrates

that the behavior of the proposed method is stable for less

than 500 nodes.

3.2 Constant source problem

In this test problem, a distributed source problem was

considered. This problem consists of two models, a single

region (Fig. 8) and two regions (Fig. 11) including a source

in region 1 and a reflector in region 2 with dimensions of

150 cm 9 150 cm. The boundary conditions include a

perfect reflector on the left side and a bare surface on the

right side. In this section, three types of problem were

considered:

Case I The geometry of the single region is presented in

Fig. 8. The parameters required for this calculation are

given in Table 1. A comparison of the fast and thermal

neutron flux of the MLPG method with that of the GFEM

and the analytical solution is presented in Figs. 9 and 10,

respectively.

Case II The geometry of the two-region problem is

presented in Fig. 11, and the required parameters are given

in Table 2. A comparison of the fast and the thermal

neutron flux of the MLPG method with that of the GFEM

and the analytical solution is presented in Figs. 12 and 13,

respectively. As shown, the results of the proposed method

exhibit good agreement with those of the analytical

solution.
Fig. 10 Fast neutron flux obtained from the MLPG and GFEM and

the analytical solution (Case I)

Fig. 11 Geometry of the two-

region problem

Table 2 Applied neutronic parameters for Case II

Applied models Energy group Absorption cross section Nu-Fission cross section Diffusion coefficient Region

Slab II 1 0.03051 0.000256 1.440130 Fuel

2 0.10582 0.154726 0.015723

1 0.035128 0.000000 1.852524 Reflector

2 0.032540 0.000000 0.294517
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The average error of these results obtained by applying

various weight functions is presented in Table 3, which

indicates that the accuracy of the solution is improved by

using Gaussian weight functions. In Table 4, the average

error and CPU time of this problem are demonstrated for

the Gaussian and CSRBF weight functions. Figure 14

presents a comparison of the fast neutron flux in Case I and

Case II obtained by inserting 50 9 50 nodes.

In addition, to evaluate the performance of the number

of inserted nodes, MLPG methods with 20 9 20 nodes and

40 9 40 nodes were compared. As shown, an accurate

value of the thermal flux was achieved by the MLPG with

40 9 40 nodes for Case I (Fig. 15). Figure 15 indicates

that the performance of the MLPG method was improved

by increasing the number of nodes. Figure 16 demonstrates

the contour of the fast and the thermal neutron flux. The

best results for Case II were obtained with 40 9 40 nodes.

Case III In addition, in order to evaluate the perfor-

mance of the proposed method for dealing with curve

boundaries, a problem with a curved domain was consid-

ered. The geometry of this problem is presented in Fig. 17.

A comparison of the contours of the thermal neutron flux of

this problem is shown in Fig. 18. Two MLPG methods

with various numbers of nodes were employed in this

problem. The results show good agreement between the

proposed method and analytical solutions. In addition, the

obtained results illustrate that, to achieve the required

accuracy, a large number of nodes can be inserted in the

problem domain. Furthermore, increasing the number of

nodes in a curved domain by the MLPG method is much

simpler than mesh generation for mesh-based methods.

However, the integration process for a curved domain is

challenging. As mentioned, a parallel algorithm was used

in this study to improve the calculation.

Case IV Moreover, in order to evaluate the performance

of the proposed method, two types of node distribution,

normal and scatter models, were applied to Case I. The

average error of these results obtained by applying various

weight functions is presented in Table 4. Table 5 indicates

that the accuracy of the solution was improved by using

Gaussian weight functions and the scatter distribution. The

patterns of the node distributions are presented in Fig. 19.

Fig. 12 Thermal neutron flux obtained from the MLPG and GFEM

and the analytical solution (Case II)

Fig. 13 Fast neutron flux obtained from the MLPG and GFEM and

the analytical solution (Case II)

Table 3 Comparison between average errors obtained by applying

various weight functions

Error MLPG applied weight functions

Gaussian CSRBF Cubic spline Quadratic spline

Case I 0.0035 0.073 0.094 0.085

Case II 0.0038 0.070 0.091 0.083

Table 4 Comparison between average errors and CPU time obtained

by applying Gaussian and CSRBF weight functions

Problem No. MLPG applied weight functions

Gaussian CSRBF

Error CPU time (s) Error CPU time (s)

Case I 0.0035 2 0.073 2.5

Case II 0.0038 3.5 0.070 6
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Fig. 14 Comparison of the fast neutron flux in Case I (left) and Case II (right)

Fig. 15 Comparison of the effect of the number of nodes on the thermal flux

Fig. 16 Contour of the fast (left) and the thermal (right) neutron flux
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Fig. 17 Geometry of Case III

Fig. 18 Thermal neutron flux contour for Case III

Table 5 Comparison between

average errors obtained by

applying normal and scatter

node distributions for Case I

Distribution pattern MLPG applied weight functions

Gaussian CSRBF Cubic spline Quadratic spline

Normal distribution 0.0035 0.073 0.094 0.085

Scatter distribution 0.0030 0.059 0.082 0.065

Fig. 19 a Normal and b scatter

node distributions
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3.3 Void test problem

The void test problem was first studied by Abuzaid and

Gashut [61]. The problem involves a slab including mul-

tiple regions with a perfect reflector on the left side and a

bare surface on the right side. Figure 20 presents the

geometry and properties of the problem. A comparison

between the results of the proposed method and the ana-

lytical solution is provided in Fig. 21, which indicates a

good agreement.

3.4 Neutronic calculations for a SMR reactor

The proposed method was applied to calculate the

neutronic parameters in a small modular reactor (SMR).

The core used for the analysis was Westinghouse’s SMR,

with an electrical output of 200 MW and an active core

height of 2.4 m. The core consists of 89 assemblies con-

tained within a core barrel and reactor vessel. These

assemblies include 52 fuel assemblies and 37 control rod

assemblies. The SMR core map is presented in Fig. 22. The

reactor vessel components were based on an AP1000

Fig. 20 Geometry of the void

test problem

Fig. 21 Comparison of the

MLPG method and the

analytical solution in the void

test problem
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design but modified to a reduced diameter and height of

3.5 m and 24.7 m, respectively [62].

The fuel assembly was a square lattice in a standard

17 9 17 layout with 264 fuel rod locations, 24 guide tube

locations, and 1 central location for instrumentation,

incorporating the standard Westinghouse design specifica-

tions. The fuel of the core was uranium oxide (UOX) with

less than 5% U-235 enrichment (2.5w/o, 3.5w/o, 4.2%w/o

U-235 fuel) and a density of 10.36 g/cm3. The fuel rod

consisted of a uniform cylindrical pellet stacked together

within a Zircaloy clad tube. Between the fuel stack and the

clad, clearance was provided to accommodate fuel swelling

due to accumulation of fission products, thereby preventing

clad rupture. The gap was filled with helium gas to improve

heat conduction from fuel to cladding. The guide tubes in

the fuel assembly served as a location for the insertion of

the rod cluster control assembly (RCCA). The RCCA is a

spider assembly consisting of evenly spaced control rods of

either silver indium cadmium or boron carbide rods based

on the type of fuel used. Detailed specifications for the fuel

rod, cladding, structure, control rod, and burnable poison

(i.e., discrete and integral) were taken from CASL (Con-

sortium for Advanced Simulation of LWRs) VERA core

physics benchmark specifications [62].

This study reveals the ability of the MLPG method to

solve the neutronic diffusion equation and evaluates the

performance of this method when different selectable pa-

rameters were incorporated into the solution. In order to

automate the procedure of the proposed method for this

problem, a computer program was developed. The first

stage of computational procedures consists of creating the

cross section database by WIMSD4 code in three-group

energy. Then, some of the main neutronic parameters of the

Fig. 22 SMR core map

Table 6 Comparison of the effective multiplication factor between MLPG methods and citation code

Parameter Citation Referenced value MLPG applied weight functions Nodes insertion

Gaussian CSRBF Cubic spline Quadratic spline

Effective multiplication factor 1.12414 1.12511 1.12332 1.11032 1.11054 1.11902 37 9 37

1.12403 1.11940 1.11891 1.11974 91 9 91

1.12413 1.12439 1.12475 1.11996 289 9 289

Table 7 Comparison of the maximum-to-average flux ratio between MLPG methods and citation code

Parameter Citation Referenced value MLPG applied weight functions Nodes insertion

Gaussian CSRBF Cubic spline Quadratic spline

Maximum-to-average flux ratio 2.48520 2.4980 2.48213 2.43191 2.44521 2.39120 37 9 37

2.48500 2.45225 2.46378 2.44032 91 9 91

2.48490 2.48821 2.49707 2.45318 289 9 289

Table 8 Comparison of the control rod worth between MLPG methods and citation code

Parameter Citation Referenced value MLPG applied weight functions Nodes insertion

Gaussian CSRBF Cubic spline Quadratic spline

Control rod worth 0.15613 0.1571 0.15243 0.14254 0.15500 0.14382 37 9 37

0.15629 0.14367 0.15630 0.14630 91 9 91

0.15610 0.14975 0.15679 0.14587 289 9 289
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core were calculated by the proposed method. The results

of the MLPG method were compared with the results of the

citation code and the reference values. In addition, as the

selection of the weight function and the number of nodes in

the problem domain play an important role in solution

accuracy, the performance of the MLPG method was

examined with respect to these parameters. Table 6

demonstrates the effective multiplication factor as a main

parameter of the core calculation. Tables 7 and 8 present

the maximum-to-average flux ratio and the control rod

worth, respectively. The choice of weight function is

clearly a significant factor for obtaining an accurate solu-

tion. The most important frequently used weight functions

are the cubic spline, quadratic spline, CSRBF, and Gaus-

sian. Table 9 compares the average errors of results

obtained from the various weight functions and reveals that

the Gaussian function produces better accuracy than other

functions.

In addition, the performance of the MLPG method with

respect to the number of nodes was evaluated for the above

parameters. The values obtained for these parameters are

promisingly close to the citation code results and reference

values for 289 9 289 nodes. Moreover, a comparison

between the average errors and the CPU time by applying

Gaussian weight functions and various node distributions

to derive an effective multiplication factor is given in

Table 10. The errors decrease with increasing node num-

ber. In addition, the scatter distribution results are more

accurate than those of the normal distribution.

The fast flux and the thermal flux of the reactor core are

demonstrated in Fig. 23 for the MLPG method with vari-

ous node numbers. In addition, to evaluate the performance

of the MLPG method with respect to the number of nodes,

37 9 37, 91 9 91, and 289 9 289 nodes in the radial

direction and 21 layers in the axial direction were

employed in the problem domain for any of the fuel

assembly types.

Table 9 Comparison between

average errors of results

obtained by applying various

weight functions (for

289 9 289 nodes)

Error MLPG applied weight functions

Gaussian CSRBF Cubic spline Quadratic spline

Effective multiplication factor 0.001 0.0064 0.032 0.045

Maximum-to-average flux ratio 0.002 0.041 0.037 0.179

Control rod worth 0.001 0.046 0.020 0.071

Table 10 Comparison between

average errors of results and

CPU time obtained by applying

Gaussian weight function and

various node distributions

Parameter MLPG Gaussian weight function

Nodes normal distribution Nodes scatter distribution

Error CPU time (s) Nodes Error CPU time (s) Nodes

Effective multiplication factor 0.012 4.0 37 9 37 0.010 3.5 37 9 37

0.087 5.5 91 9 91 0.063 4.0 91 9 91

0.001 10 289 9 289 0.001 7.5 289 9 289

Fig. 23 Comparison of a the fast flux and b the thermal flux of the

applied MLPG method for 37 9 37, 91 9 91, and 289 9 289 nodes

with the citation code
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Figure 24 shows the power factor distributions for a 1/8

symmetry of this core. In this figure, the reference values

are compared with the values of the proposed method

(MLPG 289 9 289 nodes). The reference value exhibits

good agreement with the calculated value. The differences

between these parameters are also demonstrated in Fig. 24.

The comparison of these methods with the citation code

and reference values indicates that increasing the number

of nodes leads to a more accurate performance of the

MLPG method.

4 Conclusion

In this work, the meshless local Petrov–Galerkin method

and moving least squares approximation were coupled to

solve the neutron diffusion equation. Several problems

were examined to demonstrate the degree of accuracy that

can be obtained by employing this method as well as the

applicability of the proposed method with respect to

effective factors. The results of the proposed method were

compared with the analytical solution and the GFEM,

indicating good agreement. Additionally, the proposed

method was used to solve neutronic calculations in the

SMR reactor. The results were compared with those

obtained from the citation code and reference values.

The accuracy and precision of the proposed method

were both acceptable and further improved by increasing

the number of nodes and through selection of an appro-

priate weight function. It should be noted that the runtime

varied from 0.5 to 10 s, depending mainly on the weight

function type, the number of nodes per cell domain, the

number of nodes in the boundary, the pattern of node

distribution, the type of boundary conditions applied, and

the particular computer system on which the code is run.

As mentioned above, the numerical proposed method

removes the mesh generation process by inserting nodes

into the problem domain. Therefore, this study eliminated

the mesh generation time plus the interactive and CPU time

and decreased the time costs.

In summary, using the MLPG method to solve the

neutron diffusion equations is promising due to improved

computational accuracy and execution time. Accordingly,

the outstanding performance of the MLPG method has

been confirmed for nuclear engineering calculations, indi-

cating that it can be successfully applied to the desired

nuclear computational codes.
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