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Abstract The visualization and data mining of tumor

multidimensional information may play a major role in the

analysis of the growth, metastasis, and microenvironmental

changes of tumors while challenging traditional imaging

and data processing techniques. In this study, a general

trans-scale and multi-modality measurement method was

developed for the quantitative diagnosis of hepatocellular

carcinoma (HCC) using a combination of propagation-

based phase-contrast computed tomography (PPCT),

scanning transmission soft X-ray microscopy (STXM), and

Fourier transform infrared micro-spectroscopy (FTIR). Our

experimental results reveal the trans-scale micro-morpho-

logical HCC pathology and facilitate quantitative data

analysis and comprehensive assessment. These results

include some visualization features of PPCT-based tissue

microenvironments, STXM-based cellular fine structures,

and FTIR-based bio-macromolecular spectral characteris-

tics during HCC tumor differentiation and proliferation.

The proposed method provides multidimensional feature

data support for constructing a high-accuracy machine

learning algorithm based on a gray-level histogram, gray-

gradient co-occurrence matrix, gray-level co-occurrence

matrix, and back-propagation neural network model.

Multi-dimensional information analysis and diagnosis

revealed the morphological pathways of HCC pathological

evolution and we explored the relationships between HCC-

related feature changes in inflammatory microenviron-

ments, cellular metabolism, and the stretching vibration

peaks of biomolecules of lipids, proteins, and nucleic acids.

Therefore, the proposed methodology has strong potential

for the visualization of complex tumors and assessing the

risks of tumor differentiation and metastasis.

Keywords Propagation based phase contrast tomography �
Soft X-ray microscopy, � Infrared micro spectroscopy �
Machine learning � Tumor microenvironment and

metastasis

1 Introduction

With the continued development of various technolo-

gies, such as microtomography and micro-spectroscopy,

biomedical measurement and diagnosis have transitioned

from traditional medical imaging to multi-dimensional

imaging and information fusion, and conversion has been

gradually applied to clinics to perform tumor detection and
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treat soft tissue injuries, and cardiovascular and cere-

brovascular diseases [1–3]. Many cross-disciplinary studies

have been conducted on the in situ micromorphological

measurement of tumor complex systems, the topological

evolution of angiogenesis networks, cellular inner struc-

tural changes, assessment of nanoparticle drug safety, and

multi-dimensional data associations over the past decade

[4–7]. Most early soft-tumor-related lesions are on the sub-

millimeter or micron scale, meaning they are difficult to

detect using traditional computed tomography (CT), mag-

netic resonance imaging, and ultrasound techniques based

on their relatively limited sensitivity and resolution.

Pathological examinations using electron or optical

microscopes can be performed at the micron or sub-micron

scale, but they require complicated and time-consuming

preprocessing and cannot obtain 3D sectional images.

However, the 3D micro-characterization of soft tissue

tumor niduses and angiogenesis is essential for studying

tumor growth, development, and early diagnosis [8–10].

Furthermore, the detection of organic biomacromolecules

is becoming increasingly important for the analysis and

discovery of tumor markers, which has significantly pro-

moted the development of fluorescence and infrared (IR)

microscopy techniques [11, 12]. One of the most pressing

problems facing current cancer research is the establish-

ment of trans-scale and multi-dimensional information

correlation analysis from tissues to cells and even biomo-

lecules. This study aimed to measure the multi-modality

imaging analysis, data fusion, and pathological diagnosis

of hepatocellular carcinoma (HCC) quantitatively. HCC is

a heterogeneous tumor associated with chronic infection

and cirrhosis caused by metabolic syndrome, alcohol

consumption, and viral infection by the hepatitis B/C virus.

According to the neoplasm staging, hepatic function, and

patient physiological status, HCC therapeutic management

mainly includes chemoembolization, transplantation, or

resection of the liver. However, the prognosis is unsatis-

factory, because the complexity of HCC prevents the major

goals of accurate diagnosis, determination of tumor bio-

logical boundaries, and therapeutic approaches. The multi-

modality measurement and comprehensive analysis of

HCC will help us better understand the growth of HCC and

provide more specific data for early diagnosis and clinical

research on HCC [13–17].

Synchrotron-based high-resolution microscopic and

spectral techniques have been established for detecting

different modality signals of the interactions of X-rays and

biological tissues. These techniques benefit its high-

brightness, and a broad and continuously adjustable spec-

tral range. The structural and spectral information of

weakly absorbing samples with a high signal-to-noise

ratios (SNRs) can be obtained using different imaging

techniques and demodulation algorithms [18–21]. There

have been many studies on tumor-related micro-patho-

morphology using hard X-ray propagation-based phase-

contrast tomography (PPCT) over the past few decades.

Micro-pathomorphology is involved in soft tissue tumori-

genesis, the tumor neovascularization network, injury of

the spine, hepatic echinococcosis, liver cirrhosis and

fibrosis, and pulmonary emphysema [22–26]. Fine nonde-

structive 3D structural features at the micron level can be

visualized and analyzed quantitatively, thereby promoting

early diagnosis and treatment. For the investigation of

nanoparticle medicine and morphological characteristics at

the nanoscale, soft X-ray scanning transmission micro-

scopy (STXM) has been developed to probe changes in cell

morphology and the intracellular distribution of nanopar-

ticles [27, 28]. The Fourier transform IR spectroscopy

(FTIR) technique has been employed for tumor-related

mechanism analysis and the discovery of bio-macro-

molecular markers [29, 30]. It has the advantages of mul-

tiple forms of testing samples, such as soft tissues, cells,

hair, saliva, blood, and urine. In particular, the nonde-

structive FTIR technique with synchrotron radiation (SR) is

well developed for biomacromolecule detection and is

characterized by a higher SNR and label-free analysis of

cellular functionality. A typical SR-FTIR spectrum of a

biological specimen can reveal the vibrational signals of

different organic macromolecules and their functional

groups based on the following characteristic spectral

regions: (1) nucleic acid fingerprint region of

750–1400 cm-1, (2) protein region of 1450–1750 cm-1;

and (3) the lipid region of 2750–3150 cm-1, which are

closely associated with the structural changes of different

molecular compositions. Therefore, the SR-FTIR method

plays an important role in analyzing biomacromolecules

and dynamics in the single-cell dimension. In this study,

we developed an integrated solution combining imaging

and spectroscopy, including PPCT, STXM, and SR-FTIR

[31, 32]. HCC samples were used for multi-modality

experiments with simple sample preparations. A PPCT

dataset and quantitative analysis were jointly used to reveal

3D tissue microstructural features, microcirculatory net-

work changes, and the relationships between tumor mor-

phological development and the microenvironment without

requiring specimen sectioning. STXM data can provide

images of an entire HCC cell without staining at a reso-

lution of 30 nm, and small-tissue and cellular changes can

be distinguished and classified automatically using a

machine learning algorithm. In this study, we employed the

back-propagation neural network (BP-NN) algorithm based

on its capabilities for image feature extraction from gray-

level histograms (GHs), gray-gradient co-occurrence

matrices (GGCMs), and gray-level co-occurrence matrices

(GLCMs) [33–35]. Staining cells or tissues with exogenous

labeling tags often leads to poor specificity based on cross-
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reactions of biomacromolecules. Non-staining SR-FTIR is

able to obtain HCC subcellular structural fingerprints and

organic composition distributions. Therefore, the proposed

trans-scale and multi-modality data acquisition and analy-

sis method will be helpful for developing HCC tumor

evaluation criteria with multi-quantitative parameters,

including tumor inflammatory environment, angiogenesis,

cell morphology, and biomacromolecule spectroscopic

features.

2 Materials and methods

2.1 Tissue and cell samples of liver tumors in vitro

One hundred surgical resection specimens of HCC were

provided by the First Affiliated Hospital of Xinjiang

Medical University (XJMU) with approval from the ethics

committee of XJMU. The inclusion and exclusion criteria

for the experimental samples are listed in Table 1.

Histopathological examinations of the HCC tissue

(HCCT) specimens revealed moderate or low differentia-

tion in this study. The HCC cell samples were immediately

extracted from small postoperative tissue blocks, digested

with 0.25% trypsin for 20 min, washed, and then cultured

in Dulbecco’s modified Eagle’s medium (DMEM). The

DMEM was modified to contain 4500 mg/L of glucose,

4 mM of L-glutamine, 1 mM of sodium pyruvate, and

1500 mg/L of sodium bicarbonate. It was also supple-

mented with 10% calf serum, 100 U/mL penicillin, and

100 lg/mL streptomycin for 70–80% confluency on the

bottom of the petri dish. The cells were maintained in a 5%

CO2 incubator at 37 �C throughout the experimental pro-

cess. All experimental samples were divided into two

groups of tumor lesion areas and para-carcinoma areas.

Prior to the experiments using SR-PPCT, all formalin-fixed

tissue samples were processed with a graded dehydration

series of ethanol solutions (GDES) and firmly packed in a

centrifuge tube to avoid artifacts caused by tiny deforma-

tions or movements. For the SR-FTIR experiments, serial

tissue sections with thicknesses of 10 lm were obtained

using frozen section methods, carefully attached to a BaF2
substrate, examined under a microscope, wrapped in foil,

and stored at - 80 �C to preserve the biochemical

substances in the samples. For SR-STXM measurements,

the cellular samples were fixed and dehydrated using

GDES at ambient temperature and then dropped onto a

Si3N4 window for cellular fine structural measurements.

Tissue specimens were used for histopathological

examination.

2.2 Experimental setup and data processing

A high-brightness light source can facilitate measure-

ments with a high SNR. Our synchrotron-based experi-

ments were conducted on the hard X-ray imaging, soft X-

ray microscopy, and IR spectroscopy beamlines at Shang-

hai Synchrotron Radiation Facility (SSRF). We present a

general technique flowchart for combining the SR-PPCT,

SR-STXM, and SR-FTIR methods to investigate the

pathological mechanisms of biomedical soft tissues via

trans-scale-modality correlation analysis in Fig. 1. The 3D

morphological tissue changes were observed using SR-

PPCT on BL13W1, which is equipped with a comple-

mentary metal–oxide–semiconductor with a resolution of

6.5 lm/pixel and different camera lenses

(9 1.25, 9 2, 9 10) for achieving different microtomo-

graphic spatial resolutions. All SR-PPCT projections were

preprocessed using background correction and phase

retrieval to improve the contrast-to-noise ratio and the

density resolution of weakly absorbing samples without the

use of a contrast agent. The phase-attenuation-duality

algorithm was implemented to retrieve a phase map uh at

any single projection angle h using the following formula:

uh r~ð Þ ¼ kre
rKN

� ln cos
kR2

4pM
r2

� �
� 2kre

rKN
� kR2

4pM
r2

� �
� sin kR2

4pM
r2

� �� ��1

� M2Ih r~Dð Þ
IIN

� �( )
;

where Ih is a single projection image, k is the X-ray

wavelength, re is the classic atomic radius, and rKN is the

Klein–Nishina total cross section for X-ray photon

Compton scattering from a single free electron. M = (R1?

R2)/R1, where R1 and R2 are the source-to-object and

object-to-detector distances, respectively. This method is

used for the discrimination of 3D tissue micromorpholog-

ical variations and visualization of abnormal microcircu-

lation networks, and aids in the collection of high-precision

Table 1 Inclusion/exclusion

criteria for HCC specimens in

our experiments

Inclusion criteria Age Gender Race Tumor staging Image screening

20–70 No limit No limit Moderate/low differentiation Hepatic carcinoma

Exclusion criteria Partial hepatectomy Congenital incomplete liver Liver defect
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nondestructive statistics for tissue microenvironmental

geometric parameters [36, 37].

The fine feature structures of tumor cells were measured

using STXM with a spatial resolution of approximately

30 nm on BL08U1-A. A high-flux soft X-ray beam focused

through the zone plate can be used to probe cellular

structural information based on the absorption scanning

mode [38, 39].

Typical spectra of frozen tumor tissue sections at a

spectral resolution of 4 cm-1 can be collected using FTIR

on BL01B, which is equipped with a Nicolet 6700 FTIR

spectrometer and Nicolet Continulm Microscope. In our

experiments, a 20 lm 9 20 lm aperture with a 10 lm step

size was applied to acquire mapping data in the

wavenumber range of 800–4000 cm-1. In our SR-FTIR

experiments, to improve the SNR, the step size was set

smaller than the aperture size to produce pixel map over-

laps and all data acquisitions were performed three times.

The raw mapping spectra were preprocessed with nine-

point smoothing and baseline correction to suppress the

ambient noise, electronic offset, dark current, and readout

noise of the IR detector further using OMIC 9.0.

3 Results

3.1 SR-PPCT measurement of HCC

microenvironments

The rapid proliferation and metastasis of tumors are

closely associated with changes in tumor microenviron-

ments. Compared to conventional CT, 3D trans-scale

visualizations of HCC soft tissues based on SR-PPCT

measurements reveal more detailed pathologic morpho-

logical characteristics and microenvironmental changes, as

shown in Fig. 2. Macro-moderate or high-differentiation

tumor lesions appear as abnormal gray spots or image

shadows in Fig. 2(a, b). By using the SR-PPCT technique

without staining, HCC-related pathological features can be

effectively displayed and distinguished from para-carci-

noma liver tissues (PCLT) on the micron scale, as indicated

Fig. 1 (Color online) Experimental setups for synchrotron-based PPCT, STXM, and FTIR at SSRF and general technique flowchart for the trans-

scale and multi-modality imaging and data analysis of HCC tumors
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by the yellow arrows in Fig. 2c–e. These results can reveal

the morphological distributions of arterioles, venules, sacs,

internal septa, fibrosis, microcalcification, and increasing

inflammation reactions in HCCT from any perspective.

Nondestructive 3D inner-structural information regarding

PPCT reveals detailed changes in tumor tissues associated

with tumorigenesis and metastasis, which are helpful for

precise tumor diagnosis.

Angiogenesis and microcirculation network formation

play important roles in tumor diagnosis and morphological

understanding. We present 3D visualizations of microvas-

cular distributions of HCC solid tumors using different

scales and modalities in Fig. 3. The entire HCC vascular

network based on conventional CT is presented in (a) and

the formation and development of tumors associated with

inflammation and micro-cyst clusters near blood vessels

based on SR-PPCT are presented in (b, c). The inflam-

matory microenvironment and blood supply system can

trigger the concentration of endothelial and epithelial cells

to form micro-cystic clusters, which consist of irregular

tumor micro-vessel networks. Based on visual inspections,

the blood vessels in normal tissue areas are thicker and

have higher curvature. In contrast, the blood vessels of

HCC are relatively thin and stiff, and their distribution is

more dispersive and glomerate. According to the compar-

isons of the high-resolution PPCT and pathologic exami-

nation slices in (d, e), SR-PPCT provides more abundant

and detailed vascular 3D structures without staining and

sample deformation, and reveals the sedimentation of cal-

cium salts with high gray value areas in (d) around the

microcysts indicated by yellow arrows. These salts are a

concomitant precursor of hepatic fibrosis.

3.2 Joint measurements with high-resolution SR-

PPCT and SR-FTIR mapping

The morphological characteristics of hepatic sinusoids

were observed using SR-PPCT. The inflammatory

microenvironment and formation of sinusoid capillaries in

HCC tumors can be clearly visualized based on the high

phase contrast and spatial resolution, as indicated by the

blue arrows in Fig. 4a–c. These factors promote the for-

mation of abundant irregular micro-vessels around and

inside HCC tumors, as indicated by the red arrows in

(b) and (c). Furthermore, representative spectra and 2D

distributions of biological macromolecules were collected

Fig. 2 (Color online) Results of medical imaging and SR-PPCT

microtomography of HCC tumors. a Radiological image, b cross

section of traditional CT at the position of the dashed line in a,
c transverse section located in the red circle in b, d coronal section

located at the position of the green dashed line in c, and e sagittal

section located at the position of blue dashed line in c as reconstructed
by SR-PPCT. Scale bar in b is 104 lm and scale bars in c–e are

100 lm
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via SR-FTIR measurements for association analysis

[40, 41]. FTIR mapping measurements with 200 lm 9

160 lm areas were performed in both the PCLT and

HCCT regions, which are denoted by the red and orange

rectangles, respectively, in (a). Images (d) and (h) were

captured in FTIR microscopic images for the selection of

PCLT and HCCT tissue regions of interest (ROIs) based on

the SR-PPCT results and pathologist analysis. The mea-

surements of each sample were repeated three times on

average. Twenty samples were randomly selected for each

group and three groups were selected. Chemical distribu-

tions and concentration maps were processed using nor-

malized pseudo-color scale bars to identify lipids, proteins,

and nucleic acids, which correspond to peaks at 2922,

1649, and 1074 cm-1, respectively, as shown in parts (e, f,

g, i, k, l). One can clearly see that the concentrations of the

nucleic acid and lipid components in the HCCT areas

increase significantly.

3.3 SR-STXM measurement of HCC cellular

structures

The SR-STXM technique was also employed to measure

the HCC cellular structures of liver cells, endothelial cells

of the blood sinus, and Kupffer cells, as shown in Fig. 5a–f.

One can see that the HCC-related nucleoli are divided and

diffused to varying degrees, as indicated by the white

arrows in (b, e, f). A large amount of cellular secretions and

lipid droplets emerge chaotically, as indicated by the blue

arrows in (c, d, e). Compared to (a), the mitochondria and

cytoplasmic volume in HCC cells increases significantly,

as indicated by the red arrows in (c, f). A more detailed

cellular structure of HCC-related changes can be observed

without staining by using high-resolution SR-STXM

measurements, as shown in (f). The large aggregation of

mitochondria, endoplasmic reticulum, and glycogen is

associated with the fast metabolism of HCC cells and

active tumor microcirculation. Additionally, nucleosome

dispersion and cell membrane morphological changes are

helpful for understanding the occurrence, metastasis, and

staging of HCC.

3.4 SR-FTIR measurement of HCC

biomacromolecules

The biomolecular vibration absorption peaks and char-

acteristic IR spectral regions were successfully measured

and are presented in Fig. 6a, b, corresponding to the PCLT

and HCCT functional group vibrations. The spectral range

of 3500–3100 cm-1 is attributed to O–H & N–H bond

stretching vibrations in the cellulose and polyamide, and

the range of 3050–2800 cm-1 is attributed to the sym-

metric and antisymmetric stretching vibrations of methyl

and methylene C-H bonds, which are related to the

increasing lipid-related acyl chains of HCCT. The peaks at

1649 and 1485 cm-1 are attributed to the protein amide I

Fig. 3 (Color online) 3D microenvironment of an HCC liver tumor

and medical examination comparisons. a 3D image of the entire liver

and the solid HCC tumor from medical CT, b, c enlarged recon-

structed results based on the PPCT, respectively, located in the yellow

circle area in a and red rectangle area in b, and d PPCT slice and e HE
slice of the HCC tumor micro-cyst area indicated by the blue

rectangle in c. One can observe similar HCC tumor lesions between

different imaging modalities. Scale bar = 100 lm
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(N–H bending and C=O stretching) and protein amide II

(C–N stretching and N–H bending), reflecting changes in

nucleolus histones. In the chemical distribution image, one

can see that the content of protein amide increases in

HCCT. The spectra at 1453 and 1397 cm-1 are attributed

to C=H bending vibrations and COO– symmetric stretching

vibrations, respectively. The range of 1209–1074 cm-1

represents the symmetric and antisymmetric stretching

vibrations of nucleic acids consisting of phosphorylated

molecules (PO2 phosphodiester stretch) and glycogen,

respectively. In comparison, there is a significant increase

in the concentration of nuclear acids between 1000 and

1300 cm-1, which is associated with DNA phosphorylated

carbonated nucleoli. The spectral band of 900–1000 cm-1

for HCCT appears more active, which is related to RNA

ribose chains.

4 Analysis and discussion

For quantitative analyses of HCC microenvironmental

changes, ROIs were selected from the areas of PCLT,

outside areas of HCCT (HCCT_out), and inside areas of

HCCT (HCCT_in) in 20 postoperative specimens, which

were randomly selected from 100 experimental specimens

and defined by our surgeon and pathologist. There were 60

ROIs in total (20 ROIs for each area), 150 lm 9 150

lm 9 150 lm voxels for each ROI, 6.5 lm3 per voxel, and

a volume of 0.975 mm3 per ROI. We defined the 3D micro-

Fig. 4 (Color online) Microstructural and organic macromolecular

feature spatial distributions in HCCT based on SR-PPCT coupled

with 10 9 objective lens and SR-FTIR techniques. a 3D microenvi-

ronment of HCC and its virtual tumor block, b, c fine structural

distribution of hepatic sinusoids (blue arrows) and the formation of

sinusoid capillaries (red arrows) in different sections of a, d, h optical

microscopic images of PCLT and HCCT tissue layers indicated by the

red rectangle in b and orange rectangle in c. Univariate maps for

collecting the chemical spatial distributions of lipids, proteins, and

nucleic acids in the layers of PCLT and HCCT regions in different

feature infrared spectra. e, i Lipids recorded with a feature peak at

approximately 2922 cm-1. f, k Distributions of proteins with a

feature peak at approximately 1649 cm-1. g, l Distributions of DNA
at 1074 cm-1. Scale bars: 50 lm in b, c and 30 lm in d, h
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vessel density (3D-MVD) as follows: 3D-MVD = (voxels

of micro-vessels)/(total voxels in RoI). Statistical results

for the microvascular numbers, microcyst numbers, and

inflammation areas are presented in Fig. 7. The t test sta-

tistical method was employed to compare the datasets with

a normal distribution and p value threshold of 0.05 repre-

senting statistical significance. This demonstrated that the

SR-PPCT technique combined with phase retrieval enables

the visualization of the boundaries of tumors and normal

tissues, as well as the microvascular networks in tumor

infiltration regions. We found that the smallest sinusoid

capillaries abundantly scattered along the edges of HCC

tumors are approximately 10 lm in diameter, which is a

possible early diagnosis feature of HCC. This indicates that

HCC is a typical multi-vascular solid tumor and that an

inflammatory microcystic environment is the basis of

tumor angiogenesis, which is characterized by uncontrolled

growth and metastasis.

This analysis is useful for the intelligent diagnosis and

feature delineation of different differentiated tumors and

for classifying the tumor microenvironmental changes by

using machine learning based on SR-PPCT sectional ima-

ges. There are 10 types of eigenvalues defined by GLCM,

GGCM, and GH [42, 43], as shown in Table 2. The

eigenvalue datasets were calculated in three groups (PCLT,

HCCT_out, HCCT_in, 100 samples per set, 300 samples

total). Then, a BP-NN model with 10 hidden layers was

employed to classify the three HCC tumor microenviron-

ments with different degrees of differentiation, as shown in

Table 2. The calculation of hidden layers (H) is

H = (E ? G)1/2? a, where E is the number of image

eigenvalues (input layer), G is the group number for clas-

sification (output layer), and a is a constant ranging from 1

to 10 for estimating the number of hidden neurons. For

training the BP-NN model, 70%, 15%, and 15% of the

samples were randomly selected as training, testing, and

verification samples, respectively. The optimal iteration

times (I), network performance, gradients, and R values of

linear regression fitting degrees were used to evaluate the

neural models with different number of hidden layers (H).

When H = 10 and I = 19, the R values for the training,

validation, testing, and all samples were all above 0.90.

Based on the differences between the upper and lower

quartiles of each sample eigenvalue, the distributions of

tumor microenvironment morphologies in all sample

spaces are plotted in Fig. 8a, which quantitatively repre-

sents the HCC-induced micro-morphological variations

between the control group (PCLT), benign group

Fig. 5 (Color online) Features of HCC cells reconstructed by and SR-

STXM techniques. Images of different hepatocytes obtained from SR-

STXM: a stellate hepatocyte, b Kupffer’s cell, c liver plate cell,

d endothelial cell of blood sinus, e epithelial cell of connective tissue,

f enlarged Kupffer’s cell with mass of mitochondria. Blue arrows

denote lipid globules or exosomes of hepatocytes, red arrows denote

mitochondria, and white arrows denote nucleoli. Scale bars: 50 lm in

a, e, 10 lm in b–d, f, g, and 5 lm in h

123

102 Page 8 of 14 G.-X. Wei et al.



Fig. 6 (Color online) IR spectroscopic results for PCLT and HCCT

layers collected in the transmission mode of SR-FTIR. The

vibrational absorptions of the most important biomolecules are

highlighted in a and b based on the averages of n = 20 randomly

selected data from the PCLT and HCCT samples, respectively

Fig. 7 (Color online) Analysis

of pathological variations of

different HCCT groups. a 3D-

MVDs and b microvascular

numbers of PCLT and HCCT,

respectively. c Inflammation

areas and d microcyst numbers

on the outside surface and inside

of HCCT, which affect the

development degree of HCC

tumor infiltration and its cell

proliferation
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(HCCT_out), and malignant group (HCCT_in). The BP-

NN model was employed to classify the three types of

HCC microenvironmental morphologies, as shown in

Fig. 8b. The accuracy of the BP-NN model is as follows:

96.0% for type_1 (PCLT), 100% for type_2 (HCCT_out),

97.0% for type_3 (HCCT_in), and 97.7% for all samples.

To evaluate classification accuracy, the precision and recall

rates were calculated as 0.980 and 0.990, respectively.

Therefore, the BP-NN model has the potential to classify

and diagnose HCC micro-scale tissue variations based on

an SR-PPCT database, which is helpful for the quantitative

analysis of the pathological correlations between micro-

environment changes and tumor development.

Based on the experimental results presented in Fig. 5,

HCC-induced cytopathic effects were measured using SR-

STXM. The GGCM-based eigenvalues of cellular images

were employed to evaluate cellular morphological changes

intelligently by calculating the grayscale and texture

characteristics of SR-STXM images. Eight rotation angles

were considered for each image (0�, 45�, 90�, 135�, 180�,
225�, 270�, and 315�) to calculate four different

characteristics, as shown in Fig. 9. These results effectively

reveal the inner microstructural differences between the

peri-carcinomatous liver cells (PCLC) and hepatocellular

carcinoma cells (HCCC). Compared to the characteristic

values of PCLC, the energy of HCCC is lower overall and

the entropy, contrast, and correlation of HCCC are gener-

ally greater, indicating that increasing HCC-related cellular

secretions and lipid droplets cause image eigenvalue

changes, such as an increase in entropy and contrast, and a

decrease in energy. The HCC-related changes in the cell

nucleus and nuclear membrane trigger a slight energy

reduction according to the experimental results. One can

see that the entire eigenvalue distribution accurately

reflects the HCCC morphological changes, which is helpful

for determining early HCCC damage degrees and per-

forming classification.

The PCLT and HCCT specimens were investigated

using the SR-FTIR technique to analyze HCC-related

biological macromolecular vibration absorptions, which is

helpful for the discrimination of small changes in IR

spectral positions and intensities. In Table 3, one can see

Table 2 Eigenvalue construction for HCC tumor micro-morphology

Feature types Grayscale and texture characteristics

Eigenvalues Mean value (E1), Variance (E2), Skewness (E3), Kurtosis (E4), Energy (E5), Homogeneity (E6), Contrast (E7), Correlation (E8),
Gray entropy (E9), Gradient entropy (E10)

BP-NN model

Input layer (E) Output layer (G) Hidden layer (H) Iterations (I) Performance Gradient

Preferences 10 3 10 19 0.199 0.114

Fig. 8 (Color online) Image feature distributions of HCCT microen-

vironmental variations and classification results based on the BP-NN

model. a Maps of 10 image eigenvalues in three groups, and b the

confusion matrix of the BP-NN model, which represents the

accuracies of three output classes
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that the N–H stretching vibration spectra of HCC shifts to

higher wavenumbers more significantly based on the

varying lengths of N–H chains. This implies that the HCC

cellular chemical environment changes significantly as

well. The symmetric and antisymmetric C-H stretching

vibration spectra of the HCC samples, which represent the

methyl and methylene related to cellular proteins and

lipids, shift from a range of 2962–2861 cm-1 to

3045–2920 cm-1. This indicates that vigorous tumor cell

metabolism plays an important role in angiogenesis, HCC

proliferation, and metastasis. The absorption peaks of

protein amide I and II for HCCT shift to lower

wavenumbers at 1625 and 1485 cm-1, which is associated

with secondary protein structural changes. This causes the

amide conformation to become loose and disordered. The

peaks related to nucleic acids and phosphodiester bonds in

HCC samples move to lower wavenumbers at 1151 and

1028 cm-1 as a result of the breakage of hydrogen bonds

and double strands of DNA. The relative absorption

intensities of some characteristic IR spectra, including

cholesterol (1467 cm-1), RNA (1121 cm-1), glycogen

(1045 cm-1), and DNA (1020 cm-1), were selected to

compare the differences between 20 control groups and

HCC groups based on unpaired t test analysis, as shown in

Table 1. The peak height ratio of P1045/P1467 for HCCT is

greater than that for PCLT based on a greater increase in

glycogen content compared to cholesterol content. The

P1121/P1020 ratio for HCCT is significantly greater than that

for PCLT, because it increases with the degree of malig-

nancy of the tumor. The P1121/P1020 (RNA/DNA) ratio in

HCC groups is also much greater than that in PCLT, which

indicates that the ratio of P1121/P1020 significantly increases

with the malignancy of the tumor and can be considered as

a biomarker for determining the degree of tumor differ-

entiation. The peak area ratio Aamide I/Aamide II of HCCT

was lower than that of PCLT, indicating that the HCC-

induced secondary structures of nuclear proteins differ

from those of intermediates, which could be used as a

potential criterion for identifying malignant tumors. The

peak area ratio A(CH3)/A(CH2) increases overall, indicating

that the chemical conformation of lipid macromolecules

changes, including additional branches of the hydrocarbon

chain associated with HCC cell division and proliferation.

5 Conclusion

Synchrotron-based PPCT, STXM, and FTIR methods

were combined to study HCC microenvironmental mani-

festations and micro-pathology through trans-scale and

Fig. 9 (Color online)

Calculated results for

morphological eigenvalues

based on the GGCM calculation

of HCCC and PCLC. a Image

energy, b image entropy,

c image contrast, and d image

correlation
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multi-modality visualization, correlation analysis, and

auto-diagnosis based on BP-NN machine learning. The

PPCT and STXM techniques provided insights into the

micro-morphological and cellular structural changes in

HCCT for clinical diagnosis, revealing that macro-tumor

development depends on the tissue inflammatory

microenvironment and tumor-derived exosomes. The for-

mation of microcystic clusters gradually develops into

sinusoid microvascular infiltration through the abnormal

multiplication of tumor cells, eventually leading to the

formation of a tumor angiogenesis network. The cyto-

morphological feature changes stemming from abnormal

HCC cell metabolism result in a common inflammatory

response in tumor boundary regions. FTIR micro-spec-

troscopy effectively measured the HCC-related feature

spectra, shifting, and chemical distributions of cellular

lipids, proteins, and nucleic acid changes, which explained

the abnormal metabolism and proliferation of HCC cells at

the level of biomolecular mechanisms. Therefore, the

proposed synchrotron-based multi-modality method can

provide a quantitative, trans-scale comprehensive analysis

technique for biomedical specimens, which could enable

the auto-classification and diagnosis of early stage tumor

microenvironments based on BP-NN machine learning.
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