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Abstract Simulations of infinite nuclear matter at different

densities, isospin asymmetries and temperatures are per-

formed using the isospin-dependent quantum molecular

dynamics (IQMD) model to study the equation of state and

symmetry energy. A rigorous periodic boundary condition

is used in the simulations. Symmetry energies are extracted

from the binding energies under different conditions and

compared to the classical molecular dynamics (CMD)

model using the same method. The results show that both

models can reproduce the experimental results for the

symmetry energies at low densities, but IQMD is more

appropriate than CMD for nuclear matter above the satu-

ration density. This indicates that IQMD may be a reliable

model for the study of the properties of infinite nuclear

matter.

Keywords Infinite nuclear matter � Symmetry energy �
IQMD model

1 Introduction

The nuclear equation of state (EOS) describes the

properties of a system with a large number of nucleons.

The study this concept is important in both nuclear physics

and nuclear astrophysics [1–6]. The nuclear EOS can affect

the structure of neutron stars and their evolutionary pro-

cess. The behavior of symmetric nuclear matter EOS has

been well studied both theoretically and experimentally.

Moreover, the binding energy of symmetrical nuclear

matter near the saturation density (approximately

0:16 fm�3) is known to be �16 MeV. Almost all the

nuclear dynamics models, including the classical molecular

dynamics (CMD), quantum molecular dynamics (QMD),

Boltzmann–Uehling–Uhlenbeck model (BUU), constrained

molecular dynamics (CoMD), fermionic molecular

dynamics (FMD) and antisymmetrized molecular dynamics

(AMD) models, can reliably describe the properties of ideal

nuclear matter at the saturation density. QMD provides a

good description of the transport process of nuclear colli-

sions in intermediate- and low-energy regions [7–13].

During the past 20 years, studies have also been con-

ducted to simulate nuclear matter via QMD [14, 15]. After

the improvement in QMD, the extension of quantum

molecular dynamics (EQMD) model was developed [16].

The advantage of this model over QMD is that a phe-

nomenological Pauli potential is introduced into the
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effective interactions to approximate the characteristics of

a fermion many-body system, and a friction cooling pro-

cess is added. Compared to QMD, EQMD can simulate the

nuclear system in the ground state more reliably. However,

the applicable energy region of these two models is dif-

ferent. With these improvements, EQMD can simulate the

collective resonance with clusters more reliably near the

ground state [17–21]. These different scopes of application

render QMD more suitable for simulating a nuclear system

at high temperature compared to EQMD. Therefore, the

properties of nuclear matter at high temperature can be

studied using QMD. In some studies, the CMD model was

used to study nuclear matter using the classic potential

form and some useful results have been obtained [22, 23].

It will be interesting to compare these results to that

obtained using QMD.

The report is organized into several sections. In Sect. 2,

we briefly describe the isospin-dependent QMD model, the

boundary condition for infinite nuclear matter, as well as

the potential parameters. In Sect. 3, we present the binding

energies for nuclear matter at different densities, isospin

asymmetry, temperature and the extracted symmetry

energies. Finally, a summary is presented in Sect. 4.

2 Description of IQMD model

IQMD is the isospin-dependent version of QMD that

simulates heavy ion reactions at intermediate energies by

individual events. In IQMD, neutrons and protons are

distinguished. A nucleon is represented by a Gaussian

wave packet of width L,

/iðr~Þ ¼
1

2pLð Þ3=4
exp � r~� r~iðtÞð Þ2

4L
þ i

p~iðtÞ � r~
�h

" #
: ð1Þ

In the ith wave packet, ri represents the position and pi
represents the momentum. The value of L is taken to be

2:16 fm2, which is the widely used value in most QMD

calculations. The direct product of these wave functions is

used as the total wave function of the nuclear system. The

motion of nucleons in the system follows a regular

Hamiltonian relationship,

_ri ¼
oH

opi
; _pi ¼ � oH

ori
: ð2Þ

The distribution function of the nuclear density can be

obtained by summing the integral of the Wigner function of

the momentum for each nucleon,

q r~; tð Þ ¼
X
i

1

2pLð Þ3=2
exp

� r~� r~iðtÞð Þ2

2L

" #
: ð3Þ

The total potential used in IQMD can usually be

expressed as,

U ¼ U
ð2Þ
loc þ U

ð3Þ
loc þ UCoul þ Umd þ Usym þ Usurf ; ð4Þ

where U
ð2Þ
loc , U

ð3Þ
loc , UCoul, Umd, Usym and Usurf are two-body,

three-body, Coulomb, momentum-dependent, symmetry

and surface potentials, respectively. For infinite nuclear

matter studies, the Coulomb and surface potentials are not

considered in the present work. The two-body potential and

three-body potential are of the Skyrme form,

U
ð2Þ
loc ¼ a

2

qh i
q0

; U
ð3Þ
loc ¼ b

1þ c
qh ic

qc0
: ð5Þ

EOS with different compression coefficients can be

obtained by appropriately adjusting a, b and c in the pre-

ceding equations. The formula derived by Arnold et al.

[24] based on an analysis of the p?Ca experimental data

was used as the momentum-dependent potential. The forms

of Umd and Usym are as follows:

Umd ¼
X
i;j;j 6¼i

t0ln
2 1þ e p

*

i � p
*

j

� �2
� � qð r*; tÞ

D E
i

q0
; ð6Þ

Usym ¼ Csym

2q0

X
i;j;j6¼i

tzitzj

4pLð Þ
3
2

e�
r2
ij
4L: ð7Þ

In the preceding equation, t0 ¼ 1:58MeV; e ¼
500 c2=GeV2 and Csym ¼ 32 MeV are the corresponding

parameters. The Pauli potential, which is not included in

the common IQMD, is introduced to simulate fermions

system. The form of the Pauli potential in Ref. [11] is

shown as follows:

UP ¼ Cp

2

�h

q0p0

� �3X
i;j;j6¼i

exp½� ðRi � RjÞ2

2q20
� ðPi � PjÞ2

2p20
�dtitjdsisj ; ð8Þ

where t and s denote the isospin and spin of nucleons,

respectively. The values of the potential parameters are

Cp ¼ 22 MeV, q0 ¼ 0:46 fm and p0 ¼ 6 GeV=c,

respectively.

2.1 Periodic boundary condition for nuclear matter

in IQMD

Periodic boundary conditions are usually used to simu-

late infinite nuclear matter with a limited number of

nucleons. More rigorous periodic boundary conditions are

applied to obtain more reasonable results in this work. In

previous studies, the periodic boundary condition is gen-

erally as described in Ref. [25]. Specifically, a cube with

nucleons is surrounded by 26 cubes of the same size and

the nucleons in the center cube are subjected to the
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interaction of the nucleons in the surrounding 26 cubes.

This treatment has been improved in our study. The cubes

are not fixed. In calculating the interaction of one nucleon,

the center of the center cube will be shifted to this nucleon.

Figure 1 is an illustrative explanation of the method, the

interaction of the ith nucleon and the jth nucleon, which is

independently related to nucleons in their own cube. To be

strictly consistent with this periodic boundary condition, all

the potentials and kinetic energy are treated the same way

after the evolution of each time step. This means that only

the particles in the special cube are considered when cal-

culating these physical quantities for each nucleon.

The introduction of temperature is also an important

improvement. As such, we can simulate nuclear matter

with different excitations. The Fermi–Dirac distribution is

used to describe the momentum distribution of nucleons at

temperature T,

n ekð Þ ¼ g ekð Þ
e
ek�l
T þ 1

; ð9Þ

g ekð Þ ¼ V

2p2
2m

�h2

� �3
2 ffiffiffiffi

ek
p

; ð10Þ

where g ekð Þ denotes the state-density of the system with

kinetic energy ek. li, the chemical potential, can be

obtained by solving the following equation for a fixed

temperature [26],

1

2p2
2m

�h2

� �3
2
Zþ1

0

ffiffiffiffi
ek

p

e
ek�li

T þ 1
dek ¼ qi: ð11Þ

2.2 Parameters of effective potentials

Although IQMD is widely used in the simulation of

heavy ion collision at intermediate and low energies, the

acquired nuclear binding energy has a deviation of 2–

3 MeV from the experimental value [27]. Using the peri-

odic boundary condition and the corresponding treatment

in the evolution process, we determine that the parameters

used for finite nuclei cannot reliably describe the binding

energy of nuclear matter. Taking the basic characteristics

of infinite nuclear matter into account, as demonstrated in

Eq. 12, the two-body, three-body, momentum-dependent,

symmetry and Pauli potentials are used to simulate nuclear

matter using IQMD.

E ¼ Ekh i þ U
ð2Þ
loc

D E
þ U

ð3Þ
loc

D E
þ Umdh i þ Usym

	 

þ UPh i:

ð12Þ

As shown in the following equation in IQMD, c is posi-

tively correlated with the incompressibility coefficients of

the system above the saturation region.

K ¼ 9q2
o2ðE=AÞ
oq2

¼ 9bc c� 1ð Þ
cþ 1

q
q0

� �c

: ð13Þ

Reasonable values are obtained as illustrated in Table 1.

The values are determined separately for each c by repro-

ducing the binding energy and the requirement of zero

pressure for infinite symmetric nuclear matter at the satu-

ration density. We select different c values corresponding

to hard nuclear matter (HM), medium soft nuclear matter

(MM) and soft nuclear matter (SM), and the corresponding

values of K are 413, 276 and 243. These values are used in

subsequent simulations.

3 Results and discussion

3.1 Simulation of nuclear matter

The mass and binding energy are important properties of

nuclei [28, 29]. For infinite nuclear matter, the binding

energy per nucleon under different conditions is also very

important. Using the previously obtained parameters, the

binding energies of nuclear matter at different densities and

Fig. 1 (Color online) A schematic graph of the periodic boundary

condition

Table 1 Parameter set of potentials for simulation

a (MeV) b (MeV) c

HM - 138.2 68.86 2

MM - 230.4 160.74 4/3

SM - 369.51 300.02 7/6
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temperatures are simulated in IQMD. In this study, we

focus on nuclear matter systems with isospins from

Z=A = 0.1, 0.2, 0.3, 0.4 and 0.5, which correspond to the

asymmetry values (N-Z)/A of 0.8, 0.6, 0.4, 0.2 and 0.0. A

total of 1000 nucleons in each cube as well as various

temperatures from the ground state (0 MeV) to 10 MeV,

with a step size of 2 MeV, are used in the simulations. To

accurately represent the effect of density, the densities

from 0.25 to 1.75 times the saturation density are deter-

mined for each cube in intervals of 0.15q0. Various den-

sities are determined by changing the edge length of the

cube. For example, to obtain nuclear matter at the satura-

tion density, the edge length is approximately 18.0517 fm,

for a total of 1000 nucleons.

As shown in Fig. 2, the density dependence of the

binding energy for nuclear matter at a fixed temperature is

similar to a ‘‘[’’-shaped curve with a minimum value near

the saturation density. This result is consistent with the

general concept that the binding energy is positively cor-

related with the temperature of the system. The calcula-

tions were performed using different parameter sets,

including HM, MM and SM. In all these cases, the binding

energy at the saturation density point in the ground state is

consistent with the theoretical value. The calculation

results indicate that with the increase in the incompress-

ibility coefficient, the binding energy curve becomes

steeper. This is consistent with theoretical results, because

the larger the incompressibility coefficient of nuclear

matter, the more rigid it becomes. Due to this property, the

binding energy changes more dramatically when the den-

sity changes.

The density dependence of the binding energy in the

ground state for different isospin asymmetries is shown in

Fig. 3. It is evident that the binding energy difference

between asymmetry 0.6 and 0.8 is significantly larger than

the difference between asymmetries 0 and 0.2. The wave

packet width L should influence the nuclear properties near

to and below the saturation density. However, its effect is

diminished for nuclear matter above the saturation density.

One of the most basic nuclear properties is that nuclei away

from the beta stability line decay easily, and the instability

of nuclei is related to the binding energy in that nucleons

inside the nucleus with small binding energies are more

likely to break through the Coulomb barrier and cause

nuclei decay. These results are also consistent with the

known stability of nuclei. With the increase in isospin

asymmetry, the binding energy becomes positive, which

indicates that it is unbound.

3.2 Symmetry energy

Symmetry energy is an important quantity of asym-

metric nuclear matter and has an important influence on the

stability of nuclei and the evolution of neutron stars [1, 2].

It has been extensively studied in the recent dec-

ades [1–4, 23]. Symmetry energy in medium- and high-

energy heavy-ion collisions can be extracted using the

QMD model. Usually, the symmetry energy is obtained

from theoretical calculations using different models or

interaction potentials. In Ref. [23], the symmetry energy is

determined based on the density dependence of the binding

energy of infinite nuclear matter using molecular dynamics

models. In this study, we investigated symmetry energy at
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Fig. 2 The density dependence of the binding energy at different

temperatures for different isospin asymmetries. The HM parameter

set is used in the IQMD calculation
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different temperatures using the same approach, but within

the framework of IQMD.

The binding energy of infinite nuclear matter is depen-

dent on temperature, density and isospin asymmetry. It can

be expanded with density as [23],

EðT; q; aÞ ¼ E0ðT; aÞ þ E1ðT; aÞqþ E2ðT; aÞq2 þ E3ðT; aÞq3:
ð14Þ

Given that the power series expression for the binding

energy that is expanded based on asymmetry contains only

even items, the coefficients in the preceding equation can

be expressed as follows:

E0ðT; aÞ ¼ E00ðTÞ þ E02ðTÞa2 þ E04ðTÞa4; ð15Þ

E1ðT; aÞ ¼ E10ðTÞ þ E12ðTÞa2 þ E14ðTÞa4; ð16Þ

E2ðT; aÞ ¼ E20ðTÞ þ E22ðTÞa2 þ E24ðTÞa4; ð17Þ

E3ðT; aÞ ¼ E30ðTÞ þ E32ðTÞa2 þ E34ðTÞa4: ð18Þ

The nuclear symmetry energy is defined as,

Eq
sym ¼ o2E

2!oa2
: ð19Þ

It can then be expressed using the coefficients in the

preceding equation,

EsymðT; qÞ ¼ E02ðTÞ þ E12ðTÞqþ E22ðTÞq2 þ E32ðTÞq3:
ð20Þ

These coefficients can be obtained by fitting the binding

energy obtained from the simulation data at different

densities and isospin asymmetries for a fixed temperature.

The symmetry energy depends on the coefficients of the

2nd power items in the equation for the expanded binding

energy expression. The fitting results are listed in Table 2.

The differences between CMD and IQMD for nuclear

matter calculation can be obtained by comparing the results

from IQMD to the various parameter sets (including HM,

MM and SM) and the CMD results in Ref. [23].

In Fig. 4, the results at different temperatures

(T ¼ 0; 2; 4; 6; 8; 10 MeV) that were obtained from IQMD

using the HM parameter set are compared with other

results. The results at T ¼ 1; 2; 3; 4; 5 MeV for CMD are

shown. The rhombuses below the reduced density q=q0 =

0.2 represent the results obtained from the experi-

ments [30–32]. The dotted line (NL2) and the pentagons

around the saturation density are RHF (relativistic Hartree–

Fork) calculation results [33]. Theoretical calculations

(such as NL2) predict that the symmetry energy is nearly 0

MeV at a very low density. However, the experimental

results indicate that it is between 5 MeV and 10 MeV due

to the clustering effect at low densities. In this figure, it is

evident that both the results obtained for IQMD and CMD

are consistent with the experimental results in the low-

density region called the liquid–gas mixture region [23].

The non-sensitivity of the quantum or classic model could

be due to the small quantum effects in this region. In the

high-density region, especially above the saturation den-

sity, the results for IQMD are more consistent with the

RHF predictions compared to CMD. Moreover, the results

for IQMD exhibit a minor difference relative to the RHF

calculations. One obvious difference between IQMD and

CMD is that there is no quantum effect in the latter. The

absence of quantum effects may imply that CMD cannot

reliably describe nuclear matter at higher density. How-

ever, the potential forms used in CMD and IQMD are

different. CMD usually uses relatively simple potentials

that lack three-body potential and momentum-dependent

potential. These differences between the two models may

account for the different results, especially in the higher

density region. Further investigations are required to

achieve an in-depth understanding.
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Fig. 3 The density dependence of the binding energy in the ground

state for different isospin asymmetries. The HM parameter set is used

in the IQMD calculation

Table 2 The extracted symmetry energy coefficients for different

temperatures

T (MeV) E02 E12 E22 E32

0 12.327 94.523 - 247.220 898.790

2 9.774 126.153 - 331.481 996.265

4 8.043 142.286 - 237.960 474.658

6 6.725 186.861 - 619.879 1390.171

8 6.559 167.152 - 424.066 957.258

10 7.077 117.178 137.597 - 463.142
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Figure 5 shows the density dependence of the symmetry

energy for nuclear matter in the ground state for IQMD

with different potential forms. The results indicate that the

parameter sets corresponding to different incompressibility

coefficients have a very small effect on the symmetry

energy. The symmetry energy near the saturation density is

close to 30 MeV, which is confirmed by numerous

theoretical calculations. The symmetry energy for different

parameter sets exhibits different behaviors above the sat-

uration density (density higher than 1.5 q0) region and for a
very low density (below 0.2 q0) region. The symmetry

energy with a high incompressibility coefficient becomes

larger compared to the case of a low incompressibility

coefficient at high density. However, this behavior is

reversed in the low-density region.

4 Summary

In this study, an infinite nuclear matter is simulated

using the periodic boundary condition within the frame-

work of IQMD. The binding energy of nuclear matter at

different densities, isospin asymmetries and temperatures is

obtained. By using the same method described in Ref. [23],

the symmetry energy can be extracted. The results indicate

that IQMD is more suitable for nuclear matter simulation

above the saturation density compared to CMD. However,

in the low-density region, both models can reliably repro-

duce the experimental results. The interaction potentials for

CMD are relatively simple. This may allow the model to

reliably simulate nuclear matter at low density, but the lack

of a momentum-dependent potential and a quantum effect

suggests that the model cannot reliably describe some

characteristics of nuclear matter in the higher density

region. This work demonstrates that IQMD may be an

adequate model for the study of infinite nuclear matter, but

further investigations are required to obtained reliable

results.
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