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Abstract Relativistic heavy-ion collisions create hot

quark–gluon plasma as well as very strong electromagnetic

(EM) and fluid vortical fields. The strong EM field and

vorticity can induce intriguing macroscopic quantum phe-

nomena such as chiral magnetic, chiral separation, chiral

electric separation, and chiral vortical effects as well as the

spin polarization of hadrons. These phenomena provide us

with experimentally feasible means to study the nontrivial

topological sector of quantum chromodynamics, the pos-

sible parity violation of strong interaction at high temper-

ature, and the subatomic spintronics of quark–gluon

plasma. These studies, both in theory and in experiments,

are strongly connected with other subfields of physics such

as condensed matter physics, astrophysics, and cold atomic

physics, and thus form an emerging interdisciplinary

research area. We give an introduction to the aforemen-

tioned phenomena induced by the EM field and vorticity

and an overview of the current status of experimental

research in heavy-ion collisions. We also briefly discuss

spin hydrodynamics as well as chiral and spin kinetic

theories.

Keywords Heavy-ion collision � Chiral magnetic effect �
Spin polarization � Quark–gluon plasma

1 Introduction

It is well known that the strong interaction binds quarks

and gluons together to form hadrons such as protons and

neutrons. The contemporary theory of strong interaction is

governed by quantum chromodynamics (QCD), which is

an SU(3) quantum gauge theory. The non-Abelian nature of

QCD has important consequences such as color confine-

ment at a low-energy scale and asymptotic freedom at a

high-energy scale. Color confinement means that at low-

energy scales, the color carriers (i.e., quarks and gluons)

are always confined in color singlet hadrons; thus, no iso-

lated quark and gluon can be observed. However, when the

energy scale grows (e.g., when the temperature or the

baryon density of the hadronic matter is increased), QCD

undergoes a deconfinement phase transition, and quarks

and gluons are liberated from the hadrons. When the

energy scale is very high, the coupling constant of QCD

becomes small and the system goes into the perturbative

regime of QCD. In this regime, the coupling constant

decreases with increasing energy scale, a phenomenon

known as asymptotic freedom. Reliable perturbative cal-

culation can apply in this regime.

In reality, the conditions for the deconfinement phase

transition are difficult to achieve. Moreover, the confine-

ment energy scale of QCD is approximately KQCD� 200

MeV, which, in terms of temperature, is approximately

Tc�KQCD� 1012 K. This high temperature may have once

existed in the early universe (e.g., according to modern

cosmology, this occurred immediately following the Big
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Bang) and can currently only be realized experimentally on

earth by relativistic heavy-ion collisions. Current operating

facilities of heavy-ion collisions include the relativistic

heavy-ion collider (RHIC) at Brookhaven National Labo-

ratory in the USA and the Large Hadron Collider (LHC) at

the European Organization for Nuclear Research (CERN).

RHIC has been operational since 2000 and its current top

colliding energy for Au ? Au collisions is
ffiffi

s
p ¼ 200 GeV.

LHC has been in operation since 2010 and its current top

colliding energy for Pb ? Pb collisions is
ffiffi

s
p ¼ 5:02 TeV.

In these colliders, two counterpropagating beams of ions

are accelerated to ultrahigh speed to make them collide.

The large kinematic energies of the ions accumulate at the

colliding point so that the transient energy density can be

sufficiently high to achieve the deconfinement phase tran-

sition. The deconfined quark–gluon matter produced from

this phase transition is typically known as quark–gluon

plasma (QGP). The data collected at RHIC and LHC have

indicated strong evidence of the existence of QGP and also

revealed numerous extraordinary properties of QGP. Here,

we list a few; more discussions can be found in Ref. [1].

The QGP is considered to be the ‘‘most perfect fluid’’

because the ratio of its shear viscosity to its entropy density

is the smallest among those of all the known fluids,

including the helium superfluid. The QGP can strongly

quench the energetic jets (i.e., a particle or a collimated

shower of particles of high transverse momenta), a phe-

nomenon known as jet quenching, which indicates that the

energetic jets interact strongly with the constituents of

QGP. The color force between two heavy quarks may be

screened in QGP, similar to the usual Debye screening of

the electric charges in electromagnetic (EM) plasmas. This

enables heavy quarkonia, such as the J=W, to be easily

dissociated in QGP, leading to a suppression in the final

measured yields.

In addition to the abovementioned phenomena, in recent

years, researchers have realized that relativistic heavy-ion

collisions can also generate strong EM fields and fluid

vorticity. More importantly, under these strong EM fields

and vorticity, numerous intriguing macroscopic quantum

phenomena may occur. These phenomena provide us

opportunities to study the nontrivial chiral properties of

quark–gluon matter, particularly those related to quantum

anomaly, as well as the spin dynamics of QGP. Moreover,

these phenomena are closely related to other subfields of

physics, such as particle physics, condensed matter phy-

sics, astrophysics, and cold atomic physics, and thus give

rise to a new interdisciplinary research area. Some review

articles are already available, including Refs. [2–9]. In the

following section, we introduce the EM field and vorticity

that occur in heavy-ion collisions.

2 EM field and vorticity

Let us consider a noncentral collision between two

nuclei. The collision geometry is depicted in Fig. 1. The z

direction is along the motion of the projectile, the x

direction is along the impact parameter b (from the target

to the projectile); and the y direction is along ẑ� x̂. The x-z

plane is the reaction plane. As the nucleus is positively

charged, its motion generates an electric current that gen-

erates a magnetic field. At the moment of collision, because

of geometric symmetry, a magnetic field perpendicular to

the reaction plane is produced at the collision center

(x ¼ 0). Let us estimate the strength of this magnetic field

by using the Biot–Savart formula. For a Au ? Au collision

at
ffiffi

s
p ¼ 200 GeV with b ¼ 10 fm, we have

eBy � �2ZAuc
e2

4p
vz

ðb=2Þ2
� �10m2

p � �1019 Gauss; ð1Þ

where vz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð2mN=
ffiffi

s
p Þ2

q

� 0:99995 is the velocity of

the nucleus in the laboratory frame in which mN is the

nucleon mass, c ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
z

p

� 100 is the Lorentz factor,

and ZAu ¼ 79 is the proton number of the Au nucleus.

This is a huge magnetic field, considerably larger than

the squared masses of the electron and light quarks (u, d

quarks), and thus may induce significant quantum effects in

systems composed of electrons and light quarks. Moreover,

this is the strongest known magnetic field in the current

universe; it is several orders stronger than the surface

magnetic fields of neutron stars, including magnetars

(eB� 1014 � 1015 Gauss) [10]. The result in Eq. (1) is very

rough. More advanced simulations can be performed using

transport models such as HIJING, AMPT, UrQMD

[11–26]. In such simulations, one can determine the posi-

tions and momenta of each charged particle before and

after the collision and then use, for example, the Lienard–

Wiechert formula to calculate the EM fields. The possible

quantum correction to the Lienard–Wiechert formula can

be estimated (which was found to be insignificant) [3, 16].

Many aspects of the EM field were studied through this

approach, such as the event-by-event fluctuations of the

Fig. 1 (Color online) Geometry of a typical noncentral collision. The

figure was modified from https://urqmd.org
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strength and orientation of the EM fields [13, 15, 16],

azimuthal correlation between the EM field and matter

geometry [16, 17], EM fields in different collision systems

[18, 22], and influence of the charge distribution of

nucleons [16, 17] (please see the reviews [3, 4]). In Fig. 2,

we show the impact parameter dependence of the EM fields

computed using the HIJING model for Au ? Au and Pb ?

Pb collisions at RHIC and LHC energies, respectively. It is

seen that the strength of the fields is roughly proportional to

the collision energy
ffiffi

s
p

[15].

Let us consider once again a noncentral collision of

energy
ffiffi

s
p

and impact parameter b. The system possesses

an angular momentum

Jy � �
Ab

ffiffi

s
p

2
; ð2Þ

where A is the mass number of the nucleus. For RHIC Au

? Au collisions at
ffiffi

s
p ¼ 200 GeV and b ¼ 10 fm, we

obtain jJyj � 106�h. Compared to the total spin of the pro-

duced hadrons (e.g., for a typical number of produced

hadrons of 1000, the total spin would be � 103�h),this is a

large angular momentum. After the collision, a part of this

angular momentum is transferred to the produced QGP. As

the equation of state of the QGP is very soft, this part of the

angular momentum does not cause the rigid rotation of the

QGP but rather induces local fluid vortices. The strength of

a fluid vortex is described by the vorticity. In nonrela-

tivistic hydrodynamics, the vorticity is defined by

x ¼ 1

2
$� v; ð3Þ

where v is the flow velocity. From this definition, it is clear

that the physical meaning of the vorticity is the local

angular velocity of the fluid cell. In relativistic hydrody-

namics, according to different physical contexts, different

vorticities can be defined. The commonly used ones are the

kinematic, temperature, and thermal vorticities. The

kinematic vorticity is a natural generalization of the non-

relativistic vorticity:

xl ¼ 1

2
�lmqrumoqur; ð4Þ

where ul ¼ cð1; vÞ is the flow four velocity. In many sit-

uations, it is more convenient to use its tensorial repre-

sentation xlm ¼ ð1=2Þðomul � olumÞ, which is related to xl

by xl ¼ �ð1=2Þ�lmqrumxqr. The temperature vorticity is

defined as

xl
T ¼

1

2
�lmqrumoqðTurÞ; ð5Þ

where T is the temperature. The special property of the

temperature vorticity is that, for an ideal neutral fluid, it

satisfies the Carter–Lichnerowicz equation xT
lmu

m ¼ 0,

which yields two interesting consequences [27, 28]. One

consequence is the relativistic Helmholtz–Kelvin theorem

stating that the flow circulation, defined as

lðsÞ ¼
H

Tuldxl, is a co-moving invariant of the fluid,

dl=ds ¼ 0. Another consequence is the conservation of

Txl
T, olðTxl

TÞ ¼ 0. The conserved charge HT ¼
ð1=2Þ

R

d3xT2c2v � $� v defines the relativistic fluid

helicity, which measures the degree of linkage of the

vortex lines. The thermal vorticity in tensorial form is

defined as

-lm ¼
1

2
½omðbulÞ � olðbumÞ�; ð6Þ

where b ¼ 1=T is the inverse temperature. The importance

of thermal vorticity relies on the fact that it characterizes

the global equilibrium of a rotating fluid and determines the

spin polarization of the constituent particles in the fluid at

the global thermal equilibrium [29, 30]. We will discuss the

spin polarization in detail in Sect. 5.

In Fig. 3, we present the numerical results of the non-

relativistic and relativistic kinematic vorticities in Au ? Au

collisions at
ffiffi

s
p ¼ 200 GeV based on a HIJING simulation

Fig. 2 (Color online) EM field versus the impact parameter in heavy-

ion collisions (note that m2
p=e � 3:3� 1018 Gauss). The figure is

reproduced from Ref. [15]

Fig. 3 (Color online) Impact parameter dependence of the nonrel-

ativistic and relativistic kinematic vorticities in Au ? Au collisions.

The figure is from Ref. [28]
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[28]. The results are averaged over the reaction region and

over 105 events (please refer Ref [28] for more details). As

seen in Fig. 3, the vorticities grow with b at b\2RA (where

RA is the radius of the nucleus) simply because the total

angular momentum of the system increases and then

decreases at b� 2RA because of the shrinking of the

reaction region. Numerical results show that the vorticity

can be large (with a peak value of jhxyij � 10 MeV � 1021

s�1). This is the strongest vorticity we have ever known.

For this reason, we sometimes call QGP as the ‘‘most

vortical fluid’’ [31]. In Fig. 4, we show numerical results

for the time evolution of the thermal vorticity in Au ? Au

collisions for
ffiffi

s
p ¼ 19:6; 62:4; and 200 GeV obtained

using the AMPT model [32]. It is natural that the vorticity

decays in time because of the fire-ball expansion. However,

surprisingly, the vorticity decreases when
ffiffi

s
p

increases;

this is a relativistic effect that we will discuss later. The

numerical simulations for the vorticities can also be found

in Refs. [27, 28, 32–38].

3 Chiral anomaly and transport phenomena

What are the consequences of strong EM fields and

vorticity in heavy-ion collisions? During the past decade,

many discussions have addressed this question and con-

siderable interesting effects have been studied. Among the

most intriguing effects are the quantum phenomena that are

closely related to the spin dynamics of quarks. For massless

fermions, these phenomena are also deeply related to the

chiral anomaly of QCD and quantum electrodynamics

(QED) and can be called anomalous chiral transports

(ACTs). For a massive case, the spin polarization of

hyperons by vorticity is a remarkable example. Of course,

in general, both ACTs and spin polarization could occur

with both massless and massive particles, but they manifest

mostly with massless and massive particles, respectively.

In this section, we focus on ACTs. The noticeable exam-

ples of ACTs are the chiral magnetic effect (CME), chiral

vortical effects (CVEs), chiral separation effect (CSE), and

chiral electric separation effect (CESE). We give a peda-

gogical discussion of the underlying mechanisms of the

ACTs [39, 40].

Consider a massless Dirac fermion of charge e[ 0 in a

strong constant magnetic field along the z direction. This is

the usual Landau problem in quantum mechanics. The

energy spectrum can be obtained by solving the Dirac

equation, and the result is presented as Landau levels,

E2
n ¼ p2

z þ 2neB; n ¼ 0; 1; 2; . . .; ð7Þ

where n labels the Landau levels. The lowest Landau level

(LLL), which corresponds to n ¼ 0, is special; see Fig. 5

(left). First, the LLL is gapless, whereas all the higher

Landau levels are gapped by
ffiffiffiffiffiffiffiffiffiffi

2neB
p

. Thus, for large eB,

we need to consider only the LLL. Second, the spin

of LLL is fully polarized, that is, the LLL is nondegenerate

in spin. All the states of the LLL are of spin-up type. In a

many-body picture, this means that the LLL fermions

are all of spin-up type. Third, the dynamics of the LLL

fermion is 1 ? 1 dimensional because the transverse

motion is frozen and En¼0 is independent of B. We define

the chirality for each LLL fermion according to its

momentum direction relative to its spin direction. If pz is

parallel to the spin, we call it a right-handed (RH) fermion;

if pz is opposite to its spin, we call it a left-handed (LH)

fermion. In this situation, the numbers of RH and LH

fermions are conserved separately (i.e., olJ
l
R=L
¼ 0 with

J
l
R=L
¼ ð1=2Þ �wclð1	 c5Þw, or equivalently olJ

l
V=A
¼ 0,

where the vector and axial currents are defined as

J
l
V=A
¼ J

l
R 	 J

l
L).

Now suppose an electric field is imposed in the same

direction as the magnetic field; see Fig. 5 (right). Near the

level crossing node pz ¼ 0, the downward moving particles

can be easily flipped by the electric field to move upward,

and thus some LH fermions are tuned to RH fermions. This

is a typical spectral flow phenomenon. Therefore,

NV ¼ NR þ NL, the total number of RH and LH fermions,

is still conserved, whereas the difference NA ¼ NR � NL is

not. We can calculate the time derivative of NA in the

following manner. Let p
R=L
F denote the Fermi momenta of

the RH and LH fermions. We have

Fig. 4 (Color online) Time evolution of the thermal vorticity in Au ?

Au collisions for several different collision energies. The figure is

from Ref. [32]
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NR=L ¼ V
p

R=L
F

2p
eB

2p
; ð8Þ

where eB=ð2pÞ is the transverse density of state and V is

the volume of the system. The electric force gives

_p
R=L
F ¼ 	eE. Thus,

dNR=L

dt
¼ V

_p
R=L
F

2p
eB

2p
¼ 	V

eE

2p
eB

2p
; ð9Þ

or equivalently, dNV=dt ¼ 0 and dNA=dt ¼ Ve2EB=ð2p2Þ.
In differential forms, they yield olJ

l
V ¼ 0 and

olJ
l
A ¼

e2

2p2
E � B: ð10Þ

This is the well-known chiral or axial anomaly [41, 42].

We note that although we obtain Eq. (10) by considering

the strong magnetic field so that only the LLL is occupied,

the result is actually true for an arbitrary magnetic field, as

the higher Landau levels are degenerate in chirality and do

not contribute to Eq. (10).

With the previous preparation, we now remove the

electric field and calculate the RH and LH currents along

the magnetic field; see Fig. 6. A current is equal to the

carrier density times the velocity of the constituent

particles. For massless particles, the velocity is the speed of

light such that

JR=L ¼ 	nR=L ¼ 	
p

R=L
F

2p
eB

2p
; ð11Þ

where the minus sign is necessary because LH fermions

move opposite to the direction of the magnetic field. We

can rewrite Eq. (11) as

JV ¼
pR

F � pL
F

2p
eB

2p
¼ lA

2p2
eB; ð12Þ

and

JA ¼
pR

F þ pL
F

2p
eB

2p
¼ lV

2p2
eB; ð13Þ

where we have defined the vector and axial chemical

potentials as lV=A ¼ ðpR
F 	 pL

FÞ=2. The current (12) is the

CME current [43, 44], and the current (13) is the CSE

current [45, 46], which appears even when pR
F ¼ pL

F . The

CME exhibits very special properties. First, it is a macro-

scopic quantum effect. Second, its occurrence requires P

and CP violation in the medium. Third, the generation of

the CME current is time reversal even, i.e., no associated

entropy production occurs. Thus, the CME current is a type

of superconducting current. We also must emphasize that

the CME conductivity is fixed by the chiral anomaly and is

thus free of renormalization.

In classical physics, the Larmor theorem establishes that

the motion of a charged particle of mass m in a magnetic

field is equivalent to the motion in a rotating frame with

frequency eB/(2m). This suggests the existence of analo-

gous effects to CME and CSE but induced by rotation or

vorticity. Consider a massless particle in a rotating frame.

The particle feels a Coriolis force F ¼ 2p _x� xþ Oðx2Þ,
where x is the rotating frequency. We have assumed that x
is so small that we neglect the centrifugal force, which is

Oðx2Þ. As the Coriolis force is very similar to the Lorentz

force (replacing eB by 2px), we can consider the ‘‘Landau

level problem’’ in the rotating frame. Let us again consider

only the LLL and consider a many-body system co-rotating

Fig. 5 (Color online) (Left)

Lowest Landau level in a strong

magnetic field. (Right) The

electric field induces spectral

flow and results in a chiral

anomaly

Fig. 6 (Color online) Arising of the chiral magnetic and separation

effects
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with the frame. Compared to the magnetic case, the only

difference here is that the expression for the density is

modified: nR=L ¼ ð2pÞ�2 R p
R=L

F

0
dpz2pzx ¼ ðpR=L

F Þ
2x=ð2pÞ2.

Now the currents read as

JV ¼ nR � nL ¼
lVlA

p2
x; ð14Þ

JA ¼ nR þ nL ¼
l2

V þ l2
A

2p2
x: ð15Þ

These are the vector and axial CVEs [47–50]. A more

rigorous consideration shows that an additional term,

namely T2x=6 exists in JA, which may be related to the

global gravitational anomaly [51, 52].

In Fig. 2, we see that, in addition to the strong magnetic

field, heavy-ion collisions also create a strong electric field

because of the fluctuation of the proton distribution. In

geometrically asymmetric collisions such as Cu ? Au

collisions, a strong electric field can also exist that points

from the Au to the Cu nucleus with a strength comparable

to the magnetic field [18, 53, 54]. The electric field can also

lead to anomalous transport (i.e., the CESE [55]; see also

the derivation in holographic models [56, 57] and discus-

sion in Weyl semimetal [58]). The CESE is not directly

related to the chiral anomaly and its appearance requires

both P and C violations. The CESE represents an axial

current along the direction of the electric field. Its

expression for two flavor QCD up to leading-log accuracy

is given by [59]

JA � 14:5163TrðQeQAÞ
lVlA

T2

eT

g4 lnð1=gÞE; ð16Þ

where Qe and QA are the charge and axial matrices in flavor

space, and g is the strong coupling constant. Of course, in

addition to the CESE, the electric field induces the Ohm

current JV ¼ rE, where r is the electric conductivity,

which, for QGP, is actually very high, meaning that the

QGP is a good conducting matter [60].

Interesting collective modes emerge from the coupled

evolution of the axial and vector charges through CME and

CSE, vector CVE and axial CVE, or CESE and the usual

Ohm’s law. For example, the continuity equations for

vector and axial charges can be written in terms of RH and

LH charges:

otJ
0
R=L þ $ � JR=L ¼0: ð17Þ

Substituting the CME and CSE expressions and consider-

ing small fluctuations in J0
R;L and lR;L, we obtain

otdJ0
R þ

e2

4p2v
B � $dJ0

R ¼0; ð18Þ

otdJ0
L �

e2

4p2v
B � $dJ0

L ¼0; ð19Þ

where v ¼ oJ0
R=olR � oJ0

L=olL is the number susceptibil-

ity, and we keep only linear terms in fluctuations. These

two equations express two collective, gapless, wave modes,

which are called chiral magnetic waves (CMWs) [61].

Similarly, if we consider the CESE and Ohm’s law, we can

find new collective modes, chiral electric waves, and axial

or vector density waves [55]. If we consider the vector and

axial CVEs, we can find chiral vortical waves (CVWs) [62]

described by otdJ0
R=L
	 vCVWozdJ0

R=L
¼ 0 with vCVW ¼

lV0x=ð2p2vÞ being the propagating velocity of the CVWs.

Note that, different from the CMWs, the occurrence of

CVWs requires background vector density (characterized

by lV0). Finally, we summarize the ACTs (and the usual

Ohm’s law) in Table 1.

4 ACTs in heavy-ion collisions

ACTs have attracted considerable attention in many

subfields of physics, including nuclear physics, particle

physics, astrophysics, condensed matter physics, atomic

physics, and quantum optics. For heavy-ion collisions, in

particular, ACTs provide a valuable means to detect the

possible P and CP violations of QCD at high temperatures.

It is a well-known experimental fact that the strong inter-

action is P and CP invariant in vacuum, although QCD

itself permits the existence of P and CP violating h term.

This lacks a natural explanation and is one of the main

puzzles in contemporary physics. It has been proposed that

in a high-temperature environment produced by heavy-ion

collisions, metastable domains leading to P and CP viola-

tions could be produced through, for example, sphaleron-

induced transition between gauge field vacua of different

topological winding numbers [63–65]. In these domains,

the interaction between gluons and quarks (through triangle

anomaly) can induce chirality imbalance in quarks, which

can be characterized by the parameter lA. Thus, the EM

fields or vorticity exerting to these domains cause the

CME, CVE, and CESE. Therefore, the detection of ACTs

is highly demanded in heavy-ion collisions.

4.1 Experimental search of CME

Because the magnetic field is roughly perpendicular to

the reaction plane, the CME would drive a current that

finally causes a charge separation with respect to the

reaction plane. However, the production of lA has strong

spatial fluctuation (among the metastable P-violating

domains) and event-by-event fluctuation such that the

event-averaged CME-induced charge separation vanishes.

What can be observed is the fluctuation of the charge

separation. This can be done by designing appropriate
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hadronic observables. One commonly used observable is

the c correlation introduced by Voloshin [66]:

cab 
 hcosð/a þ /b � 2WRPÞi; ð20Þ

where a; b ¼ 	 denote the charge signs, /a and /b are the

corresponding azimuthal angles, WRP is the reaction plane

angle, and h� � �i is the event average. It is easy to see that a

charge separation with respect to the reaction plane results

in positive cþ� and c�þ (denoted as cOS) and negative cþþ
and c�� (denoted as cSS). In real experiments, one addi-

tional reference hadron (of arbitrary charge) is required to

determine WRP. Therefore, Eq. (20) is practically a three-

particle correlation.

The correlation cab was first measured by the STAR

Collaboration at RHIC for Au ? Au collisions at
ffiffi

s
p ¼ 200

GeV [67, 68]; see Fig. 7. The same quantity was also

measured by: (1) ALICE Collaboration at LHC for Pb ?

Pb collisions at
ffiffi

s
p ¼ 2:76 TeV [69, 70], (2) CMS Col-

laboration at LHC for Pb ? Pb collisions at
ffiffi

s
p ¼ 5:02 TeV [71, 72], and (3) STAR Collaboration for

Au ? Au collisions at different beam energies down to
ffiffi

s
p
¼ 19:6 GeV [73]. For mid-central collisions, these

measurements show positive cOS and negative cSS with

features consistent with the expectation of CME. However,

non-CME background effects exist in the c correlation,

noticeably, the transverse momentum conservation (TMC)

and local charge conservation (LCC). Before a convincing

means of subtracting these backgrounds can be obtained,

we cannot claim an observation of the CME. The TMC

induces a back-to-back correlation to cab [74, 75], which

can be subtracted by making a difference Dc 
 cOS � cSS,

as the TMC is charge blind. The LCC is more difficult to

subtract [76, 77], which gives a finite contribution to Dc,

namely DcLCC / Mv2=N, where M is the number of

hadrons in a local neutral cell, N is the multiplicity, and v2

is the elliptic flow.

The main challenge remaining with the experiments is

to disentangle the elliptic-flow-driven background effects

and the magnetic-field-driven CME signal. One important

experimental progress is the measurement of the c corre-

lation in small systems such as p(d) ? A collisions. In p(d)

? A collisions, although the magnetic field could be large,

its orientation is not correlated to the participant plane (or

v2 plane). Thus, the magnetic field is not expected to drive

a strong c correlation measured with respect to the v2 plane.

Therefore, the p(d) ? A collisions can serve as a baseline

for the background contributions. The recent results from

CMS [71, 72] and STAR [78] Collaborations showed that

the c correlation in p(d) ? A collisions is comparable to or

even larger than that in A ? A collisions at the same

energy and multiplicity. This suggests that the c correlation

contains a large portion of background contribution for

peripheral A ? A collisions; see additional discussions in

Refs. [7, 71, 72, 78].

Another important experimental progress, namely the

isobar collision was made in 2018 at RHIC. In this

experimental program, two sets of collisions are operated,

one for 96
44Ru ? 96

44Ru and the other for 96
40Zr ? 96

40Zr

[22, 23, 23, 79–84]. It is expected that these two collisions

with the same beam energy and same centrality will pro-

duce roughly equal elliptic flow but a 10% difference in

magnetic fields. If Dc contains a contribution from CME,

we should see a difference in Dc between Ru ? Ru and Zr

? Zr collisions. To quantify the sensitivity of the isobar

collisions, let us define the relative difference of the

eccentricity R�2
¼ 2ð�RuþRu

2 � �ZrþZr
2 Þ=ð�RuþRu

2 þ �ZrþZr
2 Þ

(note that v2 is usually proportional to �2). Similarly, we

can define RBsq
to quantify the relative difference in the

projected magnetic field squared Bsq 
 hðeB=m2
pÞ

2

cos½2ðWB �WRPÞ�i (with WB being the azimuthal angle of

the magnetic field) [16, 17] and RS to quantify the relative

difference in the corrected c correlation S ¼ NpartDc (where

Npart / N is the participant number used to compensate for

the dilution effect). Because R�2
, RBsq

, and RS are small, we

can take a linear approximation to link them, that is,

RS ¼ ð1� bgÞRBsq
þ bgR�2

. The quantities R�2
and RBsq

can

be easily obtained from theoretical simulation. We can then

obtain RS as a function of the background level bg through

this relation. In Fig. 8, we show the numerical results for

R�2
and RS for bg ¼ 2=3 with 400 million events for each

collision type [22]. In this situation, the significance level

of the discovery of the CME signal reaches 5r for cen-

trality region 20–60%. In the 2018 experiment, the total

number of collision events was 6.3 billion [85] and a 5r
significance level of the discovery of CME could be

Table 1 Anomalous chiral

transports
eE eB x

JV r lA

2p2

lVlA

p2

JA / lVlA

T2
r

lV

2p2
T2

6
þ l2

V þ l2
A

2p2

Collective mode Chiral electric wave Chiral magnetic wave Chiral vortical wave
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reached even for bg � 88% or a 3r significance level for

bg � 93% in centrality region 20–60%.1 Currently, the

STAR Collaboration is conducting a blind analysis of the

isobar data, and we are really looking forward to their

results.

Recently, other methods have been proposed for the

purpose of disentangling the CME signal and the back-

grounds. They include the pair invariant mass dependence

of the c correlation [86, 87], a comparative measurement of

the c correlation with respect to reaction and participant

planes [87, 88], the signed balance functions [89], and the

charge-sensitive in-event correlations [90]. A detailed

discussion can be found in the cited studies.

4.2 Experimental search of other ACTs

The chiral magnetic wave can transport both the vector

and axial charges and can lead to an electric quadrupole in

the QGP with more positive charges on the tips of the

fireball and more negative charges in the equator of the

fireball [91, 92]. Therefore, hydrodynamic expansion of the

fireball drives a larger v2 for negative charges (for example,

p�) than the positive charges (for example, pþ) [92–96].

The difference Dv2 ¼ v2ðp�Þ � v2ðpþÞ is proportional to

the net charge asymmetry Ach ¼ ðNþ � N�Þ=ðNþ þ N�Þ;
this is because the CSE is proportional to lV . This charge

dependence of v2 was measured by the STAR Collabora-

tion [97] at RHIC and by ALICE Collaboration [98] and

CMS Collaboration [99] at LHC. The data show an elliptic-

flow difference Dv2 linear in Ach with a positive slope

whose centrality dependence is consistent with the expec-

tation of the CMW. However, we should emphasize that,

similar to the measurement of the c correlation, non-CMW

background effects exist, that contribute to Dv2

[15, 100–106]. A conclusive claim about the experimental

results for the CMW search can be made only after we can

successfully subtract the background effects, which we are

unable to do now.

In heavy-ion collisions, the transverse space-averaged

vorticity at the mid-rapidity region is roughly perpendicu-

lar to the reaction plane. Therefore, similar to the CME

case, the vector CVE induces a baryon number separation

with respect to the reaction plane. We can use a correlation

similar to the c correlation for CME to detect the vector-

CVE-induced baryon number separation (i.e.,

gab ¼ hcosð/a þ /b � 2WRPÞi, where a; b ¼ 	 denote

baryons or anti-baryons and /a;b is the corresponding

azimuthal angle). However, similar to what occurs with the

CME search, it would be challenging to subtract the pos-

sible background contributions as with the transverse

momentum conservation and local baryon number con-

servation in the g correlation. The implication of the CVW

in heavy-ion collisions is that it could induce a baryon

quadrupole in the QGP in such a manner that more baryons

and anti-baryons are distributed on the tips and in the

equator of the fireball, respectively. After the collective

expansion of the fireball, the baryons (for example, K)

would have smaller v2 than the anti-baryons ( �K) with the

difference being proportional to the net baryon asymmetry

AK
	 ¼ ðNK � N �KÞ=ðNK þ N �KÞ; see Fig. 9 for a theoretical

simulation of v2ð �KÞ � v2ðKÞ versus pt [62]. As the pro-

duced K and �K are considerably rarer than p	, the detec-

tion of this difference is statistically more challenging than

v2ðp�Þ � v2ðpþÞ. We expect that phase II of the RHIC

beam energy scan program would provide a new possibility

for the search of CVE and CVW [107].

Fig. 7 (Color online) Correlation cab measured by the STAR

Collaboration at RHIC. The figure is from Ref. [67]

Fig. 8 (Color online) Relative difference in eccentricity R�2
and

corrected c correlation RS for background level bg ¼ 2=3 in isobar

collisions with 400 million events for each collision type. The

figure is from Ref. [22]

1 We thank G. Wang for discussion on this topic.
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The non-central Cu ? Au collisions may be used to test

the CESE, as they generate a persistent electric field ori-

entating from the Au to Cu nuclei [18]. As illustrated in

Fig. 10, the CESE induces an axial charge separation along

the impact parameter direction (e.g., RH and LH chiralities

on the near-Cu and near-Au sides, respectively), the CME

in turn induces a charge separating pattern as shown in the

last step (which is superposed by an Ohm-current-induced

in-plane charge separation). A possible observable for this

special quadrupolar pattern of charge distribution can be

the charge dependence of the event planes, namely a finite

DW ¼ hjWþ2 �W�2 ji increasing with the centrality, where

W	2 is the event plane reconstructed from positively/nega-

tively charged hadrons [108]. Another possible observable

is the f correlation [108], fab ¼ hcos½2ð/a þ /b � 2WRPÞ�i.
However, we should note that as the CESE is proportional

to lVlA=T2, which is small for typical heavy-ion collisions,

the test of CESE requires numerous collision events.

5 Spin polarization in heavy-ion collisions

A remarkable effect of vorticity is that it could polarize

the spin of the constituent particles [109–112]. This is

simply due to the quantum mechanical spin–orbit coupling.

The motion of the fluid cell with finite vorticity generates

an orbital angular momentum that can be transferred to the

spin degree of freedom of the particles that constitute the

fluid. If the system attains thermal equilibrium, we can use

statistical mechanics to estimate the spin polarization. The

density operator is q̂ ¼ Z�1 exp �bðĤ � Ŝ � xÞ
� �

, where x

is the nonrelativistic vorticity, Ĥ the spin-unpolarized

Hamiltonian, Ŝ the spin operator (with the orbital-angular-

momentum part being absorbed in the bĤ term), and Z the

partition function. The spin polarization is given by

P ¼ Tr½Ŝq̂�=s, where s is the spin quantum number. For

fermions of spin 1/2, we have Ŝ ¼ r=2 with r the Pauli

matrices, and thus, P ¼ x=ð2TÞ þ oðx=TÞ. The more rig-

orous derivation shows that, for spin-1/2 fermions, the spin

four-vector is given as [30, 113–115]

Slðx; pÞ ¼ � 1

8m
ð1� nFÞ�lmqrpm-qrðxÞ þ Oð-2Þ; ð21Þ

where nFðp0Þ with p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ m2
p

is the Fermi–Dirac

distribution function and -qrðxÞ is the thermal vorticity.

For K and �K hyperons, s ¼ 1=2, and we have approxi-

mately 1� nF � 1, as they are heavy. In the rest frame of

the particle, S�l ¼ ð0; S�Þ, where S� can be obtained by

using Lorentz transformation,

S� ¼ S� p � S
p0ðp0 þ mÞ p: ð22Þ

Thus, we obtain the polarization vector in the rest frame of

the particle as

P� ¼ S�

s
: ð23Þ

In the following, without confusion, we simply use P to

denote the polarization vector in the rest frame.

Before discussing the experimental measurements and

numerical computations, let us explain the relation and

distinction between the spin polarization of hyperons and

ACTs in heavy-ion collisions. The ACTs are closely rela-

ted to the chiral anomaly of QCD and/or QED, which is

critical in modern physics. Detecting the ACTs also pro-

vides strong evidence for chiral symmetry restoration in the

hot QGP. However, the underlying mechanism of the spin

polarization is not related to the chiral anomaly but to

quantum mechanical spin-orbit coupling. Importantly, spin

polarization measurements provide a new probe for the

QGP, that is, the spin probe, which is complementary to the

usual probes using, for example, the charges. The ACTs

and spin polarization of hyperons are also closely related to

each other. First, they all represent the responses of the hot

medium to the external vortical or EM field. In fact, as we

will see in the following, the spin polarizations of K and �K
are not identical, which probably reflects the response to

the magnetic field. Second, as we discussed in Sect. 3,

using QED as an example, the chiral anomaly is also

understood as a type of spin polarization; the spin is fully

polarized in the LLL, which is responsible for the chiral

anomaly. Therefore, the ACTs and spin polarization of

hyperons provide different angles to observe how the spin

degree of freedom in the medium responds to the vortical

and EM fields. Thus, we discuss them together in this

article.

Substituting the theoretically calculated thermal vortic-

ity shown in Fig. 4 into Eqs. (21)–(23), we can obtain the y

component of the spin polarization. This reflects the global

angular momentum of the collision system and is called the

Fig. 9 (Color online) Splitting of v2 between K and �K induced by the

chiral vortical wave. The figure is from Ref. [62]
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global spin polarization; see Fig. 11 for global spin

polarization of K and �K (in short, ‘‘K polarization’’) [32].

In addition, the experimental data from the STAR Col-

laboration are also shown [31, 116]. We find that the the-

oretical results fit the data very well. We note that similar

calculations were performed by using either transport or

hydrodynamic models, and good matches with the exper-

imental data were seen in all those calculations

[32, 117–124]. From Fig. 11, we can see two special fea-

tures of the global K polarization. One is that the global K
polarization (as well as the vorticity) is smaller for larger
ffiffi

s
p

. This contradicts our intuition because the total angular

momentum of the system should be greater for larger
ffiffi

s
p

.

This is a relativistic effect: with increasing collision

energy, the created hot matter at mid-rapidity behaves

increasingly boost-invariant along the beam direction, thus

supporting gradually less vorticity at mid-rapidity [28, 33].

However, for a very-low-energy collision, the system may

be nonrelativistic and the initial vorticity, which well

reflects the angular momentum retained in the mid-rapidity

region, would increase with
ffiffi

s
p

[38]. The other feature is as

follows: despite a big error bar, the experimental data show

that K spin polarization is less than �K spin polarization.

Some possibilities for this difference have been recently

discussed [122, 125–127]. For example, as the Zeeman

coupling between the magnetic field and spin depends on

the magnetic moment of the particle, �K, which has a pos-

itive magnetic moment, is more easily polarized than K,

which has a negative magnetic moment.

Recently, the STAR Collaboration published the mea-

surements of differential spin polarization, namely the

dependence of K polarization on the kinematic variables

such as the azimuthal angle and transverse momentum

[116, 128]. In describing the differential spin polarization,

the theoretical calculations thus far have been unsatisfac-

tory. In particular, the calculations based on hydrodynamic

and transport models show that Pyð/Þ (/: azimuthal angle)

at mid-rapidity increases when / grows from 0 to p=2.

However, the experimental data show the opposite; see

Fig. 12 [32]. Similarly, for noncentral collisions, a nonzero

longitudinal K polarization Pzð/Þ is observed in experi-

ments (where this polarization vanishes when integrated

over all the angles /), indicating a / dependence that is

also qualitatively opposite to the theoretical calculations of

thermal vorticity [32, 129, 130]; see Fig. 13. Expressed in

formula as

dPy;z

d/
¼ Py;z þ 2f2y;z sin½2ð/�WRPÞ�

þ 2g2y;z cos½2ð/�WRPÞ� þ � � � ;
ð24Þ

the second-order harmonic coefficient f2z (and g2y)

has the opposite sign in current theoretical calculations

and in experimental data (i.e., f ther
2z \0; gther

2y \0 while

f
exp
2z [ 0; g

exp
2y [ 0). This is a huge puzzle. We call it the

Fig. 10 (Color online) Quadrupolar pattern of charge distribution

induced by the CESE and CME in Cu ? Au collisions. The figure is

from Ref. [55]

Fig. 11 (Color online) Global K polarization at mid-rapidity in Au ?

Au collisions. The figure is from Ref. [32]

Fig. 12 (Color online) K polarization along the y direction as a

function of the azimuthal angle at mid-rapidity. The figure is from

Ref. [32]
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‘‘spin sign problem.’’ To resolve the spin sign problem,

some important issues should be carefully re-examined. (1)

Approximately 80% of the measured K and �K are from

decays of other higher-lying hadrons. During these decays,

it is possible (e.g., in R0 ! Kþ c) that the spin-polariza-

tion direction of the daughter K is flipped as compared with

the parent particle. Recent studies have shown that these

decay contributions, despite suppressing � 10% of the

primary K polarization, are insufficient to resolve the spin

sign problem [131, 132]. (2) Possible initial local spin

polarization or an initial flow profile that can lead to finite

local vorticity have not been encoded in hydrodynamic and

transport models. It is a crucial future task to perform a

numerical test of these possible initial conditions. (3)

Formula (21) is derived based on the assumption that both

momentum and spin degrees of freedom are at global

equilibrium. This is a strong assumption that may not

conform with a realistic case in heavy-ion collisions. Apart

from global equilibrium, spin polarization is no longer

enslaved to thermal vorticity and should be treated as an

independent dynamical variable. Developing new theoret-

ical framework that is beyond the global equilibrium

assumption is very urgent. These frameworks, in both

hydrodynamic and kinetic setups, have considerably pro-

gressed recently. We will discuss the hydrodynamic and

kinetic frameworks with spin as a dynamical variable in the

following sections. (4) Understanding the polarization

dynamics is important. Recent studies include Refs.

[133–137]. (5) Other issues that may influence the K
polarization should also be explored (e.g., hadronic mean-

fields [122], chiral-anomaly-induced effects [138, 139],

other possible spin chemical potentials [140–142], and the

gluonic contribution). Testing complementary observables

to measure the vorticity is also helpful (e.g., the /- and

K�0-spin alignment [143], the CVEs and CVW, and the

recently proposed vorticity-dependent hadron yields

[144]).

To conclude this section, we explain how the special

pattern of the thermal vorticity shown in Fig. 13 emerges.

Although in Sect. 2 we discussed the fact that the global

angular momentum of the collision system is the cause of

vorticity, it is not the only cause. There are many other

sources of vorticity. One important source is the inhomo-

geneous expansion of the fireball. Because in the non-

central collisions, the fireball is almond shaped, the gra-

dient of pressure would more strongly drive the fireball

expanse along the reaction plane, and this is why we

observe positive elliptic flow v2. In this type of expansion,

we can easily imagine that a vortical structure with four

vortices in four quadrants of the x-y plane (z ¼ 0) would

appear. Of course, the temperature is also inhomogeneous

and its gradient also contributes to the thermal vorticity,

which together with the gradient of the velocity field gives

the pattern shown in Fig. 13.

6 Spin hydrodynamics

Many attempts have been made to solve the spin sign

problem. However, thus far, no satisfactory solution has

been found. From a theoretical point of view, a key step

forward would be to develop new theoretical frameworks

to describe the spin polarization beyond the global equi-

librium assumption. One promising framework is hydro-

dynamics, which very effectively describes the bulk

evolution of the fireball in heavy-ion collisions, with the

dynamical spin degree of freedom encoded. This type of

framework is the spin hydrodynamics in which the spin

polarization density (or equivalently the spin chemical

potential) is treated on the same level as temperature T and

flow velocity ul [145–149].

In first-order spin hydrodynamics, the energy-momen-

tum and spin current tensors are given by

Tlm ¼ eulum � PDlm þ rlmg þ rlmf þ 2q½lum� þ /lm;

Rl;ab ¼ ulSab;
ð25Þ

in which we have chosen the Landau–Lifshitz frame. Here,

e is the energy density, P is the pressure, rlmg ; rlmf are shear

and bulk viscous tensors, ql and /lm ¼ /½lm� are related to

the spin degree of freedom and represent the strength of the

torque on the temporal and spatial components of the spin

current tensor. The constitutive relations are given as [148]

Fig. 13 (Color online) Longitudinal thermal vorticity -xy in the x-y

plane (z ¼ 0) in a non-central heavy-ion collision. The figure is from

Ref. [32]
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rlmg ¼ 2gohl? umi; ð26Þ

rlmf ¼ fhDlm; ð27Þ

ql ¼ kðDul þ bol?T � 4XlmumÞ; ð28Þ

/lm ¼ 2cðo½l?um� þ 2Xlm
? Þ; ð29Þ

where X½ab� ¼ ðXab � XbaÞ=2 is anti-symmetrization in

indices a; b; Xhabi ¼ ðXab þ XbaÞ=2� Xl
lD

ab=3 is trace-

less symmetrization in indices a; b; h ¼ olul is the

expansion rate; Dlm ¼ glm � ulum is the spatial projection;

D ¼ u � o is the co-moving time derivative; o
l
? ¼ Dlmom is

the spatial derivative; Xlm is called the spin chemical

potential in which Xlm
? ¼ DlqDmrX

qr. Here, g; f; k; andc are

the transport coefficients, which must be semi-positive. We

call them the shear viscosity, bulk viscosity, boost heat

conductivity, and rotational viscosity, respectively [148]. A

recent attempt at calculating the spin-related transport

coefficient is given in Ref. [150]. The hydrodynamic

equations are as follows:

olTlm ¼ 0; ð30Þ

olR
l;ab ¼ 4q½bua�2þ /ba: ð31Þ

To make the aforementioned equation close, we also need

the equation of state, which links e;P; Sab.

In practical use, the aforementioned first-order theory

has non-physical modes at the ultraviolet region, which

violates the relativistic causality and leads to numerical

instability. This problem stems from the constitutive rela-

tions Eqs. (26)–(29) that represent simple proportionality

between the responses of the fluid (i.e., the LHSs) and the

corresponding forces (i.e., the RHSs). The simplest means

of overcoming this drawback of first-order hydrodynamics

is to amend Eqs. (26)–(29) to the Israel–Stewart form:

sgðDrlmg Þ? þ rlmg ¼ 2gohl? umi; ð32Þ

sfðDrlmf Þ? þ rlmf ¼ fhDlm; ð33Þ

skðDqlÞ? þ ql ¼ kðDul þ bol?T � 4XlmumÞ; ð34Þ

scðD/lmÞ? þ /lm ¼ 2cðo½l?um� þ 2Xlm
? Þ; ð35Þ

where ð� � �Þ? means taking the components transverse to ul

(e.g., ðDrlmg Þ? ¼ Dl
qD

m
rDrqrg ). In these equations,

rlmg ; rlmf ; ql; and/lm are treated as dynamical variables as

well. Therefore, we also need additional initial conditions

for them in practical use. They relax to the constitutive

relations Eqs. (26)–(29) after a time scale much greater

than the relaxation times sg; sf; sk, and sc. In this manner,

we obtain a set of closed, numerically stable, and hydro-

dynamic equations. The next step is to develop a numerical

application to heavy-ion collisions; Hopefully, it can pro-

vide us with valuable insights into the spin sign problem.

7 Chiral and spin kinetic theories

In addition to hydrodynamics, kinetic theory is another

commonly used method to study many-body systems in

and out of equilibrium. Let us start with a short review of

classical kinetic theory.

7.1 Classical kinetic theory

Classically, kinetic theory is built based on a single

particle distribution function, which is a scalar function

defined in the phase space. The physical meaning of the

single particle distribution, which we denote as f ðt; x; pÞ, is

the number of particles with a specific space location x and

momentum p at time t. The kinetic equation determines the

time evolution of f ðt; x; pÞ and was first proposed by

Boltzmann in the following form:

ot þ u � ox þ F � op
� �

f ðt; x; pÞ ¼ Cðt; x; pÞ; ð36Þ

where u 
 p=m is the single particle velocity with particle

mass m, F is the external force, and Cðt; x; pÞ is the col-

lision term, which is a functional of f. The LHS of the

aforementioned equation is the evolution of f due to

streaming in the phase space with the existence of the

external force field. In other words, the particle at the phase

space point ðx; pÞ moves with the velocity _x ¼ u and the

momentum-space velocity _p ¼ F at time t, which leads to

the change in the distribution function f ðt; x; pÞ. RHS

denotes the collision effects among particles that can

change the momentum (and possibly also the location) of

the particle under study.

Considering the special relativity, we can generalize

Eq. (36) into a relativistic kinetic equation [151]. We adopt

the Minkowski metric glm ¼ diagf1;�1;�1;�1g and the

convention c ¼ e ¼ kB ¼ 1, and we define the eight-di-

mensional phase space coordinates as (x, p), where x ¼
xl ¼ ðt; xÞ and p ¼ pl ¼ ðp0; pÞ, with p0 being the energy

coordinate. Particles satisfy the following on-shell condi-

tion p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 � m2
p

. Defining the distribution function

f(x, p) in the eight-dimensional phase space, we write the

relativistic kinetic equation in the form

ulolf ðx; pÞ þ Flop
lf ðx; pÞ ¼ Cðx; pÞ ð37Þ

where ul 
 pl=p0 is the single particle four velocity and

Fl ¼ ðF0;FÞ is the four external force. The external force

is called mechanical if it satisfies the condition Fl ¼ _pl,

which leads to the condition plFl ¼ 0 according to the on-

shell condition. Furthermore, we obtain F0 ¼ F � p=p0. In
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the following discussion, we always assume Fl to be

mechanical. Substituting the solution of F0 into Eq. (37)

and using the chain rule

op0

op

o

op0
þ o

op
! o

op
ð38Þ

we reproduce the form of the LHS of Eq. (36) in the

nonrelativistic kinetic representation.

The relations between physical quantities and the dis-

tribution function are readily obtained. The most elemen-

tary quantity is the particle density nðt; xÞ, which is

expressed as nðx; tÞ 

R

d3p

ð2pÞ3 f ðx; pÞ. The particle three

current is defined as jðx; tÞ 

R

d3p

ð2pÞ3 uf ðx; pÞ. Combining

the particle density and the three current, we obtain the four

current as jlðt; xÞ 
 ðn; jÞ. In relativistic kinetic theory, the

covariant four current can be written concisely as follows:

jlðxÞ ¼
Z

d4p

ð2pÞ3
dðp0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 � m2
p

Þulf ðx; pÞ ð39Þ

where the delta function ensures that the particles are on-

shell. Next, we consider the energy-momentum tensor.

Classically, the energy-momentum tensor can be explained

as the covariant current of the four momentum and thus

reads as

TlmðxÞ ¼
Z

d4p

ð2pÞ3
dðp0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 � m2
p

Þulpmf ðx; pÞ: ð40Þ

The energy-momentum tensor is symmetric because the

four velocity is proportional to the momentum ul ¼ pl=p0.

The entropy density is defined as

s ¼ �
R

d3p

ð2pÞ3 f ðx; pÞ ln f ðx; pÞ � 1½ �. Similarly, we define

the covariant entropy current as

sl ¼ �
Z

d4p

ð2pÞ3
dðp0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 � m2
p

Þulf ðx; pÞ ln f ðx; pÞ � 1½ �:

ð41Þ

The entropy current satisfies the second law of thermody-

namics (the Boltzmann H-theorem) olsl� 0, where the

equality holds in the global equilibrium state.

7.2 Wigner function in non-relativistic physics

When quantum mechanics is in action, the aforemen-

tioned kinetic theory must be modified. Quantum kinetic

theory can be built based on the Wigner function method

[152]. The Wigner function is the quantum correspondence

of the classical distribution function first proposed by

Wigner in 1932. In quantum mechanics, the properties of a

particle are described by the wave function uðt; xÞ. The

dynamics of a non-relativistic particle is governed by the

Schrödinger equation:

iotu ¼ �
o2
x

2m
uþ Vu: ð42Þ

where V ¼ Vðt; xÞ is the external potential. After the sec-

ond quantization, we define the Wigner function as

Wðt; x; pÞ ¼
Z

d3yeip�yhu�þu�i ð43Þ

where u�þ 
 u�ðxþ y
2
; tÞ, u� 
 uðx� y

2
; tÞ and h� � �i

refers to the ensemble average. Note that the Wigner

function is real.

The dynamics of the Wigner function are derived from

the Schrödinger equation (42). Define x	 
 x	 y
2
. We

obtain

ot þ
1

m
p � ox

� �

Wðt; x; pÞ

¼ i

Z

d3yeip�yh Vðxþ; tÞ � Vðx�; tÞ½ �u�þu�i;
ð44Þ

where we have integrated by parts. Next, we suppose that

the gradient of the potential V is small so that we can make

a gradient expansion. At the first order in ox, we have

Vðxþ; tÞ � Vðx�; tÞ ¼ y � oxVðx; tÞ and thus Eq. (44) redu-

ces to

otW þ
p

m
� oxW � oxV � opW ¼ 0: ð45Þ

We thus identify the Wigner function as the single particle

distribution function f ðt; x; pÞ ¼ Wðt; x; pÞ and identify the

external force F ¼ �oxVðx; tÞ. Thus, Eq. (45) is reduced to

the classical kinetic equation (36) without the collision

term. To obtain the collision term, we must start with an

interacting theory rather than the Schrödinger equation.

The Wigner function method is particularly useful in per-

forming the semiclassical approach to the quantum kinetic

theory of spinful particles. Therefore, we next discuss

quantum kinetic theory as related to spin-1
2

particles.

7.3 Kinetic theory for spin-1
2
fermions

With the aforementioned warmup preparation, we now

consider the Dirac fermions. We not only introduce the

Wigner function for the spinor field [153] but also review

the derivation of the kinetic theory available in curved

spacetime and the external EM field for Dirac fermions

[115, 154–157]. In quantum field theory in Minkowski

spacetime, the spin-1
2

particle is described by the Dirac field

wðxÞ, which is in general a four-component spinor field.

We must establish a local flat frame to introduce the spinor

into curved spacetime. This is naturally done by using the

vierbein field e
l
â , which can be considered as a coordinate
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transformation between the general coordinate of the

spacetime manifold and the local flat Minkowski coordi-

nate. We use (un)hatted Greek indices to denote local flat

(curved) spacetime coordinates. In addition,rl denotes the

covariant derivative with respect to the diffeomorphism

and glm denotes the curved spacetime metric. The Levi-

Civita symbol is �lmab ¼ �l̂m̂âb̂=
ffiffiffiffiffiffiffiffiffiffiffiffi

�gðxÞ
p

with �0̂1̂2̂3̂ ¼
��0̂1̂2̂3̂ ¼ 1 and g ¼ det ðglmÞ. The dynamics of the Dirac

field obey the Dirac equation

½i�hclðrl þ iAl=�hÞ � m�wðxÞ

¼ �wðxÞ ½i�hðr l � iAl=�hÞcl þ m� ¼ 0 ;
ð46Þ

where the Dirac matrices satisfy cl; cmf g ¼ 2glm, rlw ¼
ðol þ ClÞw with the spin connection Cl ¼ � i

4
rabgarek̂b

ðoler
k̂
þ Cr

lme
m
k̂
Þ and the spin matrix rab ¼ i

2
½ca; cb�, Al is

the U(1) gauge potential, and �wðxÞ 
 wyðxÞc0̂.

Next, we establish the phase space in curved spacetime

to introduce the Wigner function and the kinetic theory.

We use the cotangent vector pl to denote the momentum in

curved spacetime with yl as its conjugate variable. Thus,

the momentum space is the cotangent space of the space-

time manifold at a given point. The local inner product of

the momentum space and the spacetime manifold consti-

tute the phase space, which is the cotangent bundle [158].

fylg constitutes the tangent space at a given point of the

spacetime manifold, and the tangent bundle is locally the

inner product of the tangent space and the spacetime

manifold. We introduce the horizontal lifts of the covariant

derivative in the cotangent bundle Dl ¼ rl þ Ck
lmpko

m
p and

the tangent bundle Dl ¼ rl � Ck
lmy

mo
y
k. With the hori-

zontal lift, we can verify that Dlpm ¼ Dlym ¼ 0.

The covariant Wigner operator under the U(1) gauge,

local Lorentz transformation, and diffeomorphism are

defined as [157]

Ŵðx; pÞ ¼
Z

ffiffiffiffiffiffiffiffiffiffiffiffi

�gðxÞ
p

d4ye�ip�y=�hq̂ðx; yÞ; ð47Þ

with q̂ðx; yÞ 
 �wðx; y=2Þ � wðx;�y=2Þ and wðx; yÞ 

ey�DwðxÞ , where Dl also contains the U(1) gauge field

when acting on a charged spinor: Dlwðx; yÞ ¼ ðrl�
Ck
lmy

mo
y
k þ iAl=�hÞwðx; yÞ. The Wigner function is defined

by replacing the operator q̂ðx; yÞ with the ensemble average

qðx; yÞ 
 hq̂ðx; yÞi in Eq. (47). The dynamics of the

Wigner function with full quantum corrections are derived

with the help of the Dirac equation (46), which can be

solved by the expansion method with respect to �h with the

power counting scheme pl ¼ Oð1Þ and yl� i�holp ¼ Oð�hÞ
[157]. Up to Oð�h2Þ, the dynamic equation reads as [157]

cl
�

Pl þ
i�h

2
Dl

�

� m

	 


W

¼ i�h2

32
cl
�

Rlmab þ i
�h

6
op � rRlmab

�

h

ompW ; rab
i

;

ð48Þ

with

Pl ¼ pl �
�h2

12
ðrqFlmÞompo

q
p þ

�h2

24
Rq

rlmo
r
po

m
ppq þ

�h2

4
Rlmo

m
p;

Dl ¼ rl þ ð�Flk þ Cm
lkpmÞokp �

�h2

12
ðrqRlmÞoqpo

m
p

� �h2

24
ðrkR

q
rlmÞompo

r
po

k
ppq þ

�h2

8
Rq

rlmo
m
po

r
pDq

þ �h2

24
ðrarbFlm þ 2Rq

almFbqÞompo
a
po

b
p ;

ð49Þ

where Rlm ¼ Rq
lqm is the Ricci tensor. We find that the

spacetime curvature comes at Oð�h2Þ at least. The Wigner

function for the Dirac field is a 4� 4 matric, which is

different from the scalar case discussed in the previous

subsection. Thus, the relation between the Wigner function

and the semiclassical distribution function is less obvious

in the spinor case. Equation (48) holds 16 scalar equations

if we separate its matrix components, which can be

decomposed into hermitian and antihermitian parts further.

Thus, we decompose the Wigner function based on

Clifford algebra: W ¼ 1
4
½F þ ic5P þ clVl þ c5clAl

þ 1
2
rlmSlm�, where c5 ¼ ð�i=4!Þelmqrclcmcqcr and all the

Clifford coefficients are real. Furthermore, Eq. (48) can be

decomposed into dynamic equations for the Clifford

coefficients. The Clifford coefficients are not independent.

We choose the independent variables as Vl and Al. The

physical meanings of Vl and Al are the vector current

density and the axial current density in the phase space,

respectively, where the latter is also related to the canonical

spin current density in phase space. Therefore, the vector

current, axial current, and canonical spin current are,

respectively, given by Jl 
 h �wclwi ¼
R

p
Vl, J

l
5
h �wclc5wi

¼
R

p
Al, and Sk;lm
h�h

4
�wfrlm;ckgwi¼��h

2

R

p
�klmrAr with

R

p


R

d4p

ð2pÞ4
ffiffiffiffiffiffiffiffiffi

�gðxÞ
p . In the limit �h!0, the vector Vl is pro-

portional to the momentum pl, which is in accordance with

Eq. (39). However, the axial vector Al has different forms

in the massless and massive cases because spin is parallel

(or anti-parallel) to the momentum for a massless particle

and is perpendicular to the momentum for a massive par-

ticle. Although spin is not an independent variable in the

massless case, it induces a Berry curvature, which leads to

nontrivial topological effects and results in the chiral

kinetic theory. While in the massive case, spin becomes an
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independent variable, which induces two new degrees of

freedom (i.e., the orientation of the spin vector). The

complete set of kinetic equations in the massive case is thus

composed of four equations. We call this theory the spin

kinetic theory. Let us discuss the chiral and spin kinetic

theories separately in the following sections.

7.3.1 Chiral kinetic theory

For massless fermions, in the classical limit, not only Vl
but also Al is parallel to the momentum, and up to Oð�hÞ,
they read as

V;Að Þl¼ 4p
�

pl f ; f5ð Þ þ �hRlm
n Dm f5; fð Þ

� �

dðp2Þ
þ �heF

lm
pm f5; fð Þd0ðp2Þ

�

;
ð50Þ

where f ¼ f ðx; pÞ and f5 ¼ f5ðx; pÞ are two scalar coeffi-

cients, Rlm
n ¼ 1

2p�n �
lmqrpqnr is the spin tensor for chiral

fermions with nl being a unit time-like frame vector, and

the delta function dðp2Þ imposes the mass-shell condition at

a classical limit. Comparing the vector and axial currents

for massless fermions with Eq. (39), we find that the two

scalar functions f and f5 represent the semiclassical vector

distribution function and axial distribution function,

respectively. The second term in Eq. (50) is called the side-

jump term, which ensures the total angular momentum to

be conserved during collisions of two massless fermions

[159], whereas the last term comes from the interaction

between the spin and external EM field.

We define the right- and left-hand distribution functions

as fR=L ¼ 1
2
ðf 	 f5Þ. The kinetic equations for fR and fL are

derived as [157]

0 ¼ dðp2 
 �hFabR
ab
n Þ

	

plD
lfR=L

	 �h

p � n
eFlmn

lDmfR=L 	 �hDl Rn
lmD

mfR=L


 �




;

ð51Þ

where the mass-shell condition is corrected by the inter-

action between spin and the external EM field at Oð�hÞ. The

flat spacetime version of the aforementioned chiral kinetic

equation has been under intensive investigations recently

[159–174], which can be written in the following form (for

right-hand particles only) after p0 being integrated out:

0 ¼
��

1� �hðB � pÞ
2jpj3

�

ot þ
�

v� �h

2jpj3
½ðE�r�pÞ � p�

� �hB

2jpj2
�

� r þ
�

ðE�r�pÞ þ v� B

� �h

2jpj3
ððE�r�pÞ � BÞp

�

� rp

�

fR; ð52Þ

where we have chosen nl ¼ ð1; 0; 0; 0Þ, �p 
 p0 ¼ jpj �
�hB�p
2jpj2 as the particle energy and v 
 o�p

op
as the effective

velocity. We find that a phase space correction factor

1� �hB � bð Þ exists, where b ¼ p

2jpj3 is the Berry curvature.

The dispersion relation is also corrected by the Berry

curvature at Oð�hÞ. The three components for the right-hand

particles take the form

JR ¼
Z

d3p

ð2pÞ3
�

v� �hB

2jpj2
� �h

2jpj3
E� p

þ �h

2jpj3
�pp�r

�

fR:

ð53Þ

Similarly, the kinetic equation and current for left-hand

particles can be readily derived.

The kinetic theory in curved spacetime can be used to

study the rotating frame. We consider the frame as rotating

with the angular velocity X in the inertial frame, and we

choose the frame vector nl ¼ ð1; x�XÞ. The kinetic

equation reads as [157]
"

ð1þ 2�hX � bÞ o
ot
þ
n

ev þ 2�hjpjðev � bÞX
o

� o
ox

þ 2jpjðev �XÞ � o
op

#

fR ¼ 0;

ð54Þ

where ev ¼ o~�p=op and ~�p ¼ jpj � �h
2
p̂ �X. We find the

correspondence between the rotation velocity and magnetic

field in e�p (thus in evp) is jpjX$ B, whereas other place is

2jpjX$ B. The current is

JR ¼
Z

p

	

evp þ 2�hjpjðevp � bpÞX



fR þ OðX2Þ : ð55Þ

The equilibrium state can be derived from the kinetic

equation (51). We suppose the local equilibrium distribu-

tion functions depend on a linear combination of the col-

lisional conserved quantities: the particle number, energy

and momentum, and angular momentum. Therefore, we

have f LE
R=L ¼ nFðgR=LÞ with gR=L ¼ p � bþ aR=L 	 �hRlm

n xlm,

where the coefficients bl; a’s, and xlm depend only on x; bl

is time-like; and nF is supposed to be the Fermi–Dirac

distribution function. The global equilibrium condition is

derived as [157]

rlbm þrmbl ¼/ðxÞglm;

r½lbm� � 2xlm ¼ 0;

rlaR=L ¼Flmb
m;

ð56Þ

where /ðxÞ is an arbitrary function that arises as a result of

the conformal invariance in the massless case. We define

the four velocity of the fluid as Ul 
 Tbl with T being the
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temperature, and the chemical potential lR=L 
 �TaR=L.

Substituting the global equilibrium condition into Eqs. (53)

and (55) and considering also the current of left-hand

particles, we derive the CME and CSE as

J ¼ �hl5

2p2
B; J5 ¼

�hl
2p2

B; ð57Þ

where l ¼ 1
2
lR þ lLð Þ and l5 ¼ 1

2
lR � lLð Þ, and the CVEs

J ¼ �h

p2
ll5 X;

Jl5 ¼ �h
ðl2 þ l2

5Þ
2p2

þ T2

6

� �

X:

ð58Þ

We should note that the results for the CME and CVE cur-

rents are independent of the choice of the frame vector nl.

7.3.2 Spin kinetic theory

For massive fermions, the particle spin is perpendicular

to its momentum up to Oð�hÞ. The expressions of the vector

and the axial vector are as follows:

Vl ¼ 4p

�

plfdðp2 � m2Þ þ m�heF
lm
hmfAd

0ðp2 � m2Þ

þ �h

2m
�lmqrpmDq hrfAð Þdðp2 � m2Þ

�

;

ð59Þ

Al ¼ 4p
�

mhlfAdðp2 � m2Þ þ �heF
lm

pmfd
0ðp2 � m2Þ

�

;

ð60Þ

where f ¼ f ðx; pÞ and fA ¼ fAðx; pÞ are two scalar functions

and hl is the unit spacelike spin vector that is perpendicular

to momentum plhl ¼ 0. We define f	 
 1
2

f 	 fAð Þ, which

satisfy the following relation:

4pmf	dðp2 � m2 
 �hRab
S FabÞ ¼Tr Wðx; pÞP	ðhÞ½ �; ð61Þ

where Rlm
S ¼ 1

2m
�lmqrhqpr is the spin tensor for massive

fermions and P	ðhÞ 
 ð1=2Þð1	 c5clh
lÞ is the spin pro-

jection operator [175]. Thus, the physical meanings of f	
are the semiclassical distribution functions that describe the

spin-up and spin-down states with respect to hl. The

kinetic equations for f	 are derived as [115]

0 ¼ dðp2 � m2 
 �hRab
S FabÞ

�
�	

plDl 	
�h

2
Rlm

S rqFlm � pkRk
qlm

� �

oqp




f	

þ �h

2
ðfþ � f�Þ rqFlm � pkRk

qlm
� �

oqpR
lm
S

h

� 1

2m
~F

vr
op

v p � Dhr � Frkh
k� �

�
�

:

ð62Þ

The evolution equation for the spin-direction vector hl is

given by [115]

0 ¼ dðp2 � m2Þ
	

fAp � Dhl � fAFlmhm þ hlp � DfA

� �h

4m
�lmqapa rrFmq � pkR

k
rmq

� �

orpf

� �h

2m
~F
lv
op

vðp � Df Þ



:

ð63Þ

We emphasize that the third term on the right-hand side is

actually Oð�hÞ order. From the kinetic equations, we can

extract the Mathisson–Papapetrou–Dixon equations as

Dpl

Ds
¼Flk pk

m
	 �h

2m
Rab

S rlFab � pkR
k
qab

� �

; ð64Þ

D�hRlm
S

Ds
¼ 2

1

m
F ½lr �hRm�r

S þ 2p½l
dxm�

ds
; ð65Þ

where s is the proper time along the trajectory of the par-

ticle and dxl=ds ¼ pl=m. The previous two equations

describe the spin dynamics for a single particle in curved

spacetime and the external EM field.

We can derive the equilibrium state for massive fer-

mions using the same method as in the massless case.

Supposing f LE
	 ¼ nFðg	Þ with g	 ¼ p � bþ a	 	 �hRlm

S xlm

and substituting it into Eq. (62), we verify that the fol-

lowing conditions make Eq. (62) hold:

rlbm þrmbl ¼ 0;

r½lbm� � 2xlm ¼ 0;

aþ � a� ¼Oð�hÞ;
rla	 ¼Flmb

m;

ð66Þ

where we use bqrqFlm ¼ F q
m rlbq � F q

l rmbq [151].

Furthermore, we find the following solutions of a	 and hl

satisfy the spin evolution equation (63) [115]:

aþ ¼ a�;

hl ¼ � 1

2mC
�lmqrpmr½qbr�;

ð67Þ

where C2 ¼ 1
2
r½lbm�KlqKmrr½qbr� with Klm ¼ glm � plpm

m2 .

Thus, the particle spin is polarized along the thermal vor-

ticity at global equilibrium. The spin polarization per par-

ticle in the phase space is defined by Sl ¼ Al=ð4pf Þ.
Substituting the global equilibrium conditions (66) and

(67), we obtain

S
l
GE ¼

�h

4
�lmqrpmr½qbr�½1� nF �dðp2 � m2Þ

þ �heF
lm

pmd
0ðp2 � m2Þ;

ð68Þ

which, after integrating p0 over 0 to1, yields formula (21)

for s ¼ 1=2 and with the contribution from the EM field

added. (Note that in Eq. (21), the approximation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ m2
p

� m is used as m for K hyperon, for example, is

large.) More details on collisionless spin kinetic theory in
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flat space are provided in Refs. [176–179]. Discussions on

the collision terms in CKT and SKT are found in Refs.

[150, 165, 167, 180–182].

8 Summary

We discussed some intriguing properties of the strong

EM fields and vorticity in heavy-ion collisions. We pro-

vided a heuristic introduction to the anomalous chiral

transport phenomena and spin polarization in heavy-ion

collisions. We briefly reviewed the recent progress in both

theory and experiments toward understanding these novel

quantum phenomena in heavy-ion collisions. The ACTs

could be used to detect the nontrivial topological structure

of the QCD gauge sector and the possible P and CP vio-

lations of strong interaction in a high-temperature envi-

ronment. The spin polarization of hadrons provides us a

probe to the (local) rotating properties and to the spin

dynamics of the quark–gluon matter. This opens a door to a

new era of subatomic spintronics.

Some challenges remain. Noticeably, the experimental

observables for the ACTs (e.g., the CME) contain strong

background contributions, which call for more efforts and

new ideas from both the theoretical and experimental sides

to be resolved. The experimental data for the azimuthal-

angle dependence of spin polarization show a qualitatively

opposite trend as compared to the thermal vorticity based

on theoretical calculations, which gives rise to a spin sign

problem. It is promising that new theoretical frameworks

with spin as an independent dynamical variable may pro-

vide important insight into the spin sign problem. Pre-

sently, two of these frameworks, namely spin

hydrodynamics and spin kinetic theory, are progressing

rapidly, and hopefully in the near future, the numerical

simulations based on them could be achieved.
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