
Topology optimization of on-chip integrated laser-driven particle
accelerator

Yang-Fan He1,2 • Bin Sun1,2,3 • Ming-Jiang Ma4 • Wei Li1,2 • Qiang-You He1,2 •

Zhi-Hao Cui1,2 • Shao-Yi Wang1,2 • Zong-Qing Zhao1

Received: 8 April 2022 / Revised: 26 July 2022 / Accepted: 31 July 2022 / Published online: 22 September 2022

� The Author(s), under exclusive licence to China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the

Chinese Academy of Sciences, Chinese Nuclear Society 2022

Abstract Particle accelerators are indispensable tools in

both science and industry. However, the size and cost of

conventional RF accelerators limits the utility and scope of

this technology. Recent research has shown that a dielectric

laser accelerator (DLA) made of dielectric structures and

driven at optical frequencies can generate particle beams

with energies ranging from MeV to GeV at the tabletop

level. To design DLA structures with a high acceleration

gradient, we demonstrate topology optimization, which is a

method used to optimize the material distribution in a

specific area based on given load conditions, constraints,

and performance indicators. To demonstrate the effective-

ness of this approach, we propose two schemes and design

several acceleration structures based on them. The opti-

mization results demonstrate that the proposed method can

be applied to structure optimization for on-chip integrated

laser accelerators, producing manufacturable structures

with significantly improved performance compared with

previous size or shape optimization methods. These results

provide new physical approaches to explore ultrafast

dynamics in matter, with important implications for future

laser particle accelerators based on photonic chips.

Keywords Laser-driven particle acceleration � Dielectric
grating accelerator � Inverse Smith–Purcell effect �
Topology optimization

1 Introduction

A particle accelerator is a device that accelerates

charged particles (such as protons and electrons). The input

energy that induces acceleration is achieved by applying an

electric field. The field provides kinetic energy to the

particles such that they can reach speeds at a significant

fraction of the speed of light. Originally invented for sci-

entific research, particle accelerators now play an impor-

tant role in improving health and prosperity. They are

relevant to our daily lives in a variety of applications,

including cancer treatment, material analysis, and removal

of harmful microorganisms from food and water [1–5].

Radio frequency (RF)-powered devices are the traditional

choice for acceleration elements [5–8]. However, their

large size, high input power requirements, and expensive

infrastructure limit their utility and accessibility to the

wider scientific community. This has promoted the explo-

ration of more compact and economical alternative tech-

nologies. In recent years, dielectric laser accelerators have

attracted significant interest as a method for accelerating
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charged particles driven by solid-state lasers [9–17]. The

use of infrared lasers to power particle accelerators fabri-

cated using optical-scale lithography is a developing area

of research, in which evanescent acceleration modes within

dielectric structures can synchronize charged particles.

This enables a more compact accelerator design and a

much higher acceleration gradient compared to RF accel-

erators, which provides the opportunity to achieve higher

acceleration gradients and reduce cost and size simulta-

neously (see [18] and the references therein).

A dielectric laser accelerator (DLA) aims to reduce the

dimensions associated with RF accelerators by using a

near-infrared (NIR) ultrafast femtosecond laser to drive

dielectric structures and to provide a higher acceleration

gradient. Additionally, dielectric materials such as silicon

and silicon dioxide can survive at energy levels one to two

orders of magnitude higher than the metals used in RF

accelerators [19, 20]. Theoretically, the DLA can provide

acceleration gradients in excess of GV/m [21–24] com-

pared to the 30-100 MV/m achieved by RF accelerators,

which are limited because of the need to avoid material

damage. In various experiments, an acceleration gradient

of nearly 1 GV/m has been achieved (see [25] and the

references therein). Compared with other advanced accel-

eration techniques, DLA currently provides the highest

gradient among non-plasma accelerators. Because dielec-

tric laser accelerators consist of dielectric structure devices

and are driven at optical frequencies, cascade acceleration

can be easily integrated on-chip [26, 27]. To make DLA

competitive with larger devices, the Accelerator on a Chip

International Program (ACHIP) [28], which is working

toward building miniature particle accelerators on a chip

using advanced laser and nanofabrication technology, has

divided research topics in this field into several branches

for detailed study; however, as stated in [29], the nanos-

tructures of DLA are particularly important, and different

nanostructures can be expected to have very different

effects on particles driven by the same field distribution.

Most optimization studies and experiments in the field

of DLA are based on grating structures [29]. Additionally,

related theories have been gradually developed to explain

the acceleration phenomenon. However, these relevant

theories either do not consider how the structural parame-

ters affect the particle dynamics or are limited to the

grating structure and how its local parameters affect the

particle dynamics [29]. In general, past research has

focused on shape and size optimization, with examples

shown in Fig. 1a and b. Obviously, the results obtained in

this manner are limited by the initial architecture, and the

results obtained are a subset of various possibilities

depending on the structure used. A pioneering study on

topology optimization ( Fig. 1c) of DLA structures was

performed using adjoint methods by Hughes et al. [30].

When using the adjoint method for topology optimization,

the adjoint source must be given [31, 32]. In principle, the

adjoint source is the first derivative of the objective func-

tion with respect to the design parameters. This means that

there are situations in which this derivative cannot be

solved for, so it is not possible to provide an accurate

accompanying source for simulation purposes. In other

words, it may be difficult to use adjoint methods to

implement the inverse design of arbitrary objective func-

tions. Additionally, to produce structures that can be

practically fabricated, a mathematical method that can

generate additional binary structure distributions is needed.

Therefore, an effective method for designing an accelera-

tion structure that can be manufactured is highly desirable.

This study was inspired by the utilization of a self-gui-

ded derivation technique used in artificial intelligence to

compute gradients for an arbitrary objective function, and

applies a hyperparameter control function distribution to

guide the generation of a more binary structure distribution

to achieve more general topology optimization. In this

paper, we outline in detail how topology optimization can

be used to achieve the inverse design of DLA structures.

The remainder of this paper is organized as follows. In

Sect. 2, we first outline methods for simulating the physical

phenomena associated with DLA, and then demonstrate the

optimization principle for realizing a DLA structure using

automatic derivation techniques. Finally, we present a

control method that can realize a manufacturable structure.

In Sect. 3, the validity of the proposed method is verified

first, two optimization schemes that can be used in DLA

are discussed, and design demonstrations of these two

optimization schemes are provided.

a) b) c)

Size

optimization

Shape

optimization
Topology 

optimization

Fig. 1 (Color online) Three means of optimization: a size optimiza-

tion, which takes the structural shape or the shape of the hole as the

optimization object to adjust the size; b shape optimization, looking

for new concave-convex distributions on the existing structure;

c topology optimization, which can obtain the optimal distribution in

the material design space
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2 Theoretical descriptions

All macroscopic electromagnetism, including the prop-

agation of light in a photonic crystal, is governed by

Maxwell’s four macroscopic equations. In SI units, we seek

vector fields D;E;B;H : X ! R3 such that the Maxwell

equations

r � B ¼ 0;

r � D ¼ q;

hold for a given J : X ! R3 and q : X !R. We call E the

electric field, D electric displacement field (or electric flux

density), H magnetic field intensity, B magnetic flux den-

sity, and J and q electric current intensity and electric

charge density, respectively. Although the results obtained

by analytically solving Maxwell’s equations have theoret-

ical significance, when combined with the research object

of this study, it is very difficult to obtain their analytical

solutions. Therefore, only numerical solutions of Max-

well’s equations are considered in this study, which can be

divided into two categories: time domain (TD) methods

and frequency domain (FD) methods. The most famous

time domain method is the finite difference time domain

(FDTD) [33], which is usually suitable for solving for the

transient change process under external excitation. The

frequency domain method is based on time harmonic dif-

ferential and integral equations to study the steady-state

field distribution after infinite time under a time-harmonic

excitation. Considering the small memory and low time

consumption requirements, this study uses the finite-dif-

ference frequency-domain (FDFD) approach to solve for

the field distribution of the structure at a given frequency

(x) for a DLA coupled with non-magnetic materials under

normal conditions. For mathematical convenience, we

employ the standard trick of using a complex-valued field

and taking the real part to obtain the physical fields. This

allows us to write a harmonic mode as a spatial pattern (or

‘‘mode profile’’) multiplied by a complex exponential as

follows.

Eðr; tÞ ¼ EðrÞe�ixt and Hðr; tÞ ¼ HðrÞe�ixt

We assume that all fields have the e�ixt dependence, with

x being the angular frequency. Through the curl operation,

Maxwell’s equations can be expressed as

1

l
r�r� EðrÞ � x2�EðrÞ ¼ ixJðrÞ; ð1Þ

where EðrÞ is a complex vector representing the (unknown)

electric field distribution in the domain. Generally, ignor-

ing higher-order relationships, a dielectric medium with

permeability l ¼ l0lr and permittivity � ¼ �0�r is con-

sidered, where l0 is the vacuum permeability, and �0 is the

vacuum permittivity. The working principle of FDFD

[34, 35] is to represent the electric field, dielectric constant

distribution, and source on the Yee grid [33], and then

represent the r�r� operator as a finite-difference dif-

ferential matrix eA. In the discrete case, Eq. (1) can be

written in matrix form as

½eA� x2�0e�r�EðrÞ ¼ eS; ð2Þ

where eA is a matrix that performs the finite difference

derivative 1
l
r�r�, and does not depend on our per-

mittivity distribution. e�r is a diagonal complex-valued

matrix and each element along the diagonal corresponds to

the relative permittivity of a cell in our domain. eS is a

complex vector that represents the distribution of the

driving current source. In practice, when applying the

FDFD method, we first construct the matrix

e/ ¼ 1
l
r�r��x2�0e�r and the source vector eS and then

solve for the electric field
g

E ¼ e/�1
eS using an iterative or

direct method. Because the fundamental features of DLA

appear in the simplified 2D analysis, the full-field variation

with z is not considered for the time being. This means that

oE=oz ¼ 0 and oH=oz ¼ 0: ð3Þ

In 2D problems, the electric and magnetic fields can be

separated into two orthogonal modes: TM and TE , where

the TM mode can be fully described by Hz and the TE

mode by Ez, as shown in Fig. 2. It is worth mentioning that

the simulation area of the DLA cannot be infinite, that is,

the simulation boundary must be truncated, and the com-

monly used condition is the perfect matching layer and

periodic boundary (see [36] and the references therein).

The process will be discussed in more detail in Sect. 3 for

specific examples.

To implement topology optimization, the DLA structure

is divided into three parts: laser injection region (LIR),

optimization design region (ODR), and particle injection

channel region (PICR), as shown in Fig. 3a. To obtain the

device structure under the optimal objective function nðxiÞ
value, a straightforward idea is to mesh the design area

such that the permittivity value in each grid is selected at

random as 0 or 1, where 0 represents vacuum and 1 rep-

resents the permittivity constant of the material, and then

change the permittivity value state of one grid, run the

simulation with the permittivity value of the other grid

unchanged, record the objective function nðxÞ value and

repeat the calculations until all the combined results are

traversed, and finally select an optimal structure from all

simulation results, as shown in Fig. 3b.

However, this enumeration method will become difficult

to implement in practice because even when enumerating

only 10 grids in the optimization design region, it must be
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run 210 times. This also means that with further refinement

of the grid in the optimization design region, the number of

calculations will increase exponentially. In other words, the

idea is straightforward, but not practical. Therefore, we use

the gradient of the objective function to update and opti-

mize the parameters to minimize the objective function

nðxiÞ. To make the computation of the derivative of the

objective function nðxiÞ with respect to the design variables

more flexible and extensive, we employ an automatic

derivation technique. Automatic derivation is a method that

lies between symbolic derivation and numerical derivation

(it is a numerical calculation method that calculates an

approximation of the derivative). In general, automatic

derivation is the application of a symbolic derivation to the

most basic operations, such as constant, power function,

exponential function, logarithmic functions, trigonometric

function, and other basic function. The value of the inde-

pendent variable is substituted to obtain its derivative

value, which is retained as an intermediate result. Then, the

derivative value of the entire function is calculated

according to the derivation results of these basic operation

units. The difference between automatic derivation and

symbolic derivation is that instead of computing the ana-

lytical solution, the chain rule is used to decompose the

complex function into individual units, differentiate these
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a) b)

Fig. 2 (Color online) Fundamental features of DLA used in the

simplified 2D analysis, in which the full-field variation with z is not
considered. In 2D problems, the electric and magnetic fields can be

separated into orthogonal TM and TE modes, where the TM mode

can be fully described by Ez, and the TE mode can be fully described

by Hz. The field distribution of the TM (TE) mode is discretized onto

a square Yee grid, as shown in a and b
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y
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Fig. 3 (Color online) In our topology optimization method, the DLA

structure is divided into three parts: laser injection region (LIR),

optimization design region (ODR) and particle injection channel

region (PICR), as shown in a. The permittivity function of the design

area is randomly distributed as 0 (white block) or 1 (dark block),

where 0 represents vacuum, and 1 represents the permittivity function

of the material, as shown in b
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small units, and finally combine them to obtain the solution

to the full derivative.

The objective function nðxiÞ is divided into multiple

computing units obtained according to the order of com-

putation, which we call a computation graph, which is a

directed acyclic graph that charts the flow of data, as shown

in Fig. 4. The purpose is to find the derivative

rnðxiÞ ¼ ½on=ox1 ; on=ox2�, so we apply the chain rule to

the first term, on=ox1, which yields

on
ox1

¼ on
ox6

 

ox6
ox5

ox5
ox3

ox3
ox1

� �

þ ox6
ox4

ox4
ox3

ox3
ox1

� �

!

; ð4Þ

or

on
ox1

¼
 

on
ox6

ox6
ox5

� �

ox5
ox3

þ on
ox6

ox6
ox4

� �

ox4
ox3

!

ox3
ox1

: ð5Þ

We require only one forward sweep to obtain the result.

The calculation graph from left to right corresponds to

Eq. (4) from inside to outside. If we use the chain rule in

another way, such as using Eq. (5), the method needs to

first calculate the rightmost derivative and then calculate

the derivative to its left in turn. Therefore, not only a for-

ward propagation, but a reverse sweep is required. In

automatic derivation, the first method is called the forward

mode and the second is called the reverse mode. An

automatic differentiation library allows the user to compute

the exact Jacobian dxi=dxj for any i, j using the rules of

differentiation and some knowledge of the partial deriva-

tives of each operation (see [37, 38] and the references

therein). When the objective function is convex, the solu-

tion of the gradient descent method is globally optimal.

However, in general, the objective function is often not a

convex function; therefore, it cannot be guaranteed that its

solution is the global optimal solution. To prevent the

solution from falling into a local optimum, adaptive

moment estimation [39] is used in our study.

To obtain a device that can actually be manufactured or

meaningful, we need to modify the equipment parameter-

ization to encourage the use of more binary features in the

optimization, because if the optimized equipment is simply

represented as a set of data, the eigenvalues during opti-

mization will change constantly, and the final output may

not produce a device that can be manufactured. In general,

we can modify the parameters into the following form:

f ðlrÞ ¼ HHðl1;l2Þ; ð6Þ

Hðl1;l2Þ ¼l1H
�1 þ ðl2 � l1Þ;H ¼ H1 ¼

1

1þ e�ax
;

Hðl1;l2Þ ¼
 

l1 þ l2
2

!

H�1 þ
 

l2 � l1
2

!

;H ¼ H2 ¼
1� e�ax

1þ e�ax
:

8

>

>

>

>

<

>

>

>

>

:

ð7Þ

where H is a common s-shaped function, as shown in

Fig. 4. We demonstrate two specific modification methods

involving H1 and H2, respectively, where H1 is a ‘‘Sig-

moid-like function’’, and H2 is a ‘‘Tanh-like function’’, and

a represents the hyperparameters. SH1 and SH2 are the

regions corresponding to the non-extremum points of the

function, and the size of either region can be controlled by

introducing hyperparameters, that is, the function can be

made more binary by introducing certain hyperparameters

a. Alternatively, Heaviside’s step function (j, Eq. (8)) with
projection significance can be used.

j ¼ tanhðsrÞ þ tanhðsðlðrÞ � rÞÞ
tanhðsrÞ þ tanhðsð1� rÞÞ ð8Þ

Here, r is the projection threshold (when the value is less

than r, and the Heaviside function (j) projects the value of

1

1

2
3

3
4 6

Objective function computational graph (OFCD)

2

5

4

5

Fig. 4 (Color online) An objective function is divided into a

calculation graph consisting of multiple calculation units obtained

according to the calculation order. This directed acyclic graph charts

the flow of data
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Fig. 5 (Color online) We show two specific modification methods

using H1 and H2, where H1 is a ‘‘Sigmoid function,’’ and H2 is a

‘‘Tanh function.’’ SH1 and SH2 are the regions corresponding to the

non-extreme points of the function, and the size of this region can be

controlled by introducing one or more hyperparameters. That is, the

function can be made more binary by introducing certain hyperpa-

rameters a
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the unit in the 0 direction. In contrast, when the density of

the unit is greater than r, the Heaviside function projects

the value of the unit in the direction of 1), where s is a set

of hyperparameters that controls the steepness around the

threshold parameter r. In the actual process, convolution

filtering is required to smooth the edges of the design

structure [32].

3 Results and discussion

The two important parameters (� and l in Eq. (1)) that

affect the electromagnetic distribution can be written in the

following form:

�r ¼
e11 e12 e13
e21 e22 e23
e31 e32 e33

0

B

@

1

C

A
; lr ¼

l11 l12 l13
l21 l22 l23
l31 l32 l33

0

B

@

1

C

A
: ð9Þ

Now, consider a material that consists of infinite columns

in the x3-direction modeled by a permittivity such that (x1,

x2) 7! �(x1, x2). We assume an isotropic linear dielectric

medium with permeability l ¼ l0lr and permittivity

� ¼ �0�r. However, only isotropic non-magnetic materials

are considered in this study, which are the preferred

materials for chip accelerators. Their properties can be

described by

eij ¼
�r; i ¼ j

0; i 6¼ j

(

and lij ¼
1; i ¼ j

0; i 6¼ j:

(

ð10Þ

The coordinate system used for DLA optimization is shown

in the figure; therefore, the TE mode should be used to

realize particle acceleration. At this time, the electromag-

netic distribution of the system can be calculated using

Eq. (11).

ðrE
x e

�1
22 rH

x þrE
y e

�1
11 rH

y þ x2=c2ÞHz ¼ ixJðzÞ

rH
y Hz ¼ ix�0e11Ex ;rH

x Hz ¼ ix�0e22Ey

ð11Þ

The terms rE
x and rE

y are banded matrices that calculate

first order spatial derivatives of the electric fields across the

grid. As a quick example of these matrices, they were

computed for a small two-dimensional grid composed of

3� 3 cells. Using periodic boundary conditions, the matrix

derivative operators rE
x and rE

y for this simple case are

rE
x ¼ 1

4y

�1 1

� 1 1

Ux � 1 0

� 1 1

� 1 1

Ux � 1 0

� 1 1

� 1 1

Ux � 1

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

rE
y ¼ 1

4x

�1 1

� 1 1

� 1 1

� 1 1

� 1 1

� 1 1

Vy � 1

Vy � 1

Vy � 1

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

where 4xðyÞ denotes the FDFD Yee grid size along the

x(y) direction, Ux ¼ expðikblochx Þ, Vy ¼ expðikblochy Þ, and
kblochxðyÞ denotes the phase across the periodic boundary in

the x(y) direction. Similarly, the terms rH
x and rH

y cal-

culate first order spatial derivatives of the magnetic fields

across the grid. The derivative operators for the electric and

magnetic fields are different because of the staggered nat-

ure of the Yee grid (Fig. 2). However, they are related

through

rH
x ¼ �ðrE

x Þ
HT; rH

y ¼ �ðrE
y Þ

HT:

The ‘‘HT’’ superscript indicates a Hermitian transpose

operation. For the TE mode, averaging is needed for �11
and �22. All involved matrices are sparse; therefore, we can

apply sparse matrix techniques to save computation time

and memory.

The acceleration gradient (or the particle energy gain

per unit length) is an important figure of merit. For a laser

operating in normal incidence mode (laser propagating in

the y direction), phase velocity matching between the

particle and the electromagnetic fields is established by

introducing a spatial periodicity in our structure having a

period of bk along the x direction, where k is the laser

wavelength. The acceleration gradient function NgainðEÞ
can be calculated using a periodic structure as follows.
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NgainðEyÞ ¼
1

k

Z �k=2

k=2
Ey x; y; t ¼ y

bc

� �

dy

Here, we focus only on the relationship between the per-

mittivity distribution (�r) and the energy gain (NgainðEÞ).
In other words, this is exactly the same case for nonmag-

netic materials mentioned earlier. As described in Sect. 2,

we must compute NgainðEÞ for �r as a derivative of

oNgainðEÞ
o�r

¼ Real 2
oNgainðEÞ

oE

oE

o�r

( )

; ð12Þ

where NgainðEÞ is equivalent to the objective function

(nðxiÞ) mentioned previously. oNgainðEÞ=o�r is an impor-

tant parameter that indicates how to change �r to increase

NgainðEÞ. Two optimization schemes for maximizing the

acceleration gradient function NgainðEyÞ are presented

below.

Case 1: Considering the energy conversion rate, the

acceleration gradient should be higher than the peak value

of the incident electric field as much as possible. This

means that the ‘‘conversion factor’’ (C) given by dividing

the acceleration gradient by the peak amplitude of the

incident electric field needs to be optimized. This quantity

will reveal the maximum conversion rate that the structure

can achieve. Using mathematical language, we express this

principle as

maximum C ¼
NgainðEÞ

E0

;

where E0 is the initial injection electric field, which should

be less than the material damage threshold

(Ematerial damage).

Case 2: Specifically considering the protection or reuse

of the structure, the optimal energy gain should be selected

so that the acceleration gradient is as high as possible

without causing damage to the structure. This implies that

the value of the maximum electric field in the structure

must be determined so that it cannot exceed the local peak

laser fluence at the damage threshold. Therefore, another

relevant quantity to maximize is the ‘‘acceleration factor’’

(v) given by the acceleration gradient divided by the

maximum electric field magnitude in the system. This

amount ultimately limits the amount of acceleration gra-

dient that can be achieved so that the damage threshold is

not exceeded. Using mathematical language, we express

this principle as

maximum v ¼
NgainðEÞ
Emax

;

subject to Emax\Ematerial damage:

ð13Þ

Here, Emax is the maximum value of the electric field

magnitude vector in the optimization design region (ODR)

and Ematerial damage is the material damage threshold

expressed in terms of the electric field. The damage

threshold of the DLA structure can be improved by the

choice of material.

The results of ‘‘Case 1’’ are shown in Figs. 6 and 7.

The parameter settings in Fig 6 are the same as those in

[30], in which the purpose is to test the solver and opti-

mization scheme involved in this study. To accomplish

this, a plane wave (E0 is the initial injected electric field) is

introduced into the DLA chip from the left side using the

periodic condition. The laser wavelength (k) used in the

simulations is 2000 nm. The normalized velocity (b) of the
injected electrons is 0.5, and the square grid size (DxðyÞ)
used in the simulation is 20 nm. The material used in the

optimization process is fused silica (SiO2), the index is

n ¼ 1:45, that is, e11 ¼ e22 ¼ 2:1). The cross-sectional area

utilized for the optimization design region is 5bk � k, and
the particle injection channel region is 5bk � 1

5
k. An

acceleration gradient function (NgainðEÞ) of 0.32E0 (C =

0.32) can be achieved by optimizing the maximum con-

version factor (C). The results of the gradient calculation

and structure optimization are consistent with those in Ref.

G
ri
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n

u
m

b
e

r
G

ri
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n
u

m
b

e
r

Grid number

Fig. 6 (Color online) The parameter settings are the same as those

used in Ref. [30], The material used in the optimization process is

fused silica (SiO2). A plane wave (E0 is the initial injected electric

field) is introduced into the chip from the left side using the periodic

condition. The laser wavelength (k) is 2000 nm, The normalized

velocity (b) of the injected electrons is 0.5, e11 ¼ e22 ¼ 2:1, the

square grid size (DxðyÞ) used in the simulation is 20 nm, and the

achieved gradient is 0.32E0 (C = 0.32)
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[30] (the achieved gradient is 0.31E0). As calculated based

on [30], Fig. 6 corresponds to an acceleration gradient of

1.37 GV/m. It can be observed from Fig. 6 that the struc-

tural design given by the optimization results tends to

include mirrors on both sides of the structure. By observing

the normalized electric field diagram in the y direction (Ey/

jE0j), it can be observed that for higher acceleration gra-

dients, it is useful to use dielectric mirror resonance to

enhance the field in the gap.

The parameters in Fig. 7 are the same as those used in

Ref. [29], and the purpose is to highlight the advantage of

using the topology optimization method. A plane wave (E0

is the initial injected electric field) is introduced into the

DLA chip from the left side using the periodic condition.

The material used in the optimization process is crystal

quartz, the index is n ¼ 1:55, i.e., e11 ¼ e22 ¼ 2:4. The

cross-sectional area utilized for the optimization design

region is 4bk � k, and the particle injection channel region

is 4bk � 1
4
k. The acceleration gradient function (NgainðEÞ)

of 3.1E0 (C = 3.1) is achieved by optimizing the maximum

conversion factor (C). In Ref. [29], the gradient achieved

was 0.49E0 (C = 0.49). Therefore, the topology-optimized

structures achieve an approximately six-fold improvement

in the acceleration gradient. It is worth noting from Fig. 7a

that the optimized structure at this time deviates signifi-

cantly from the intuitive physical structure. Although the

structure differs greatly from the intuitive structure, it can

be observed from the normalized electric field (Ey/jE0j) in
the y-direction, as shown in Fig. 7b, that the topologically

optimized DLA structure has an obvious standing wave
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Fig. 7 (Color online). Topology optimization results of DLA

structure using ‘‘Case 1’’ scheme. The parameters used are the same

as those used in [29]. A plane wave (E0 is the initial injected electric

field) is introduced into the chip from the left side using the periodic

condition. The laser wavelength (k) is 800 nm, the normalized

velocity (b) of the injected electrons is 0.99, and the square grid size

(DxðyÞ) used in the simulation is 8 nm
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Fig. 8 (Color online) Topology optimization results of DLA structure using ‘‘Case 2’’ scheme. The parameter settings used are the same as those

used in [29]
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field distribution in the particle injection channel region

(PICR), which benefits the acceleration of charged particles

significantly.

The results of ‘‘Case 2’’ are shown in Fig. 8. The

parameters used are the same as those used in Ref. [29].

The purpose is to point out that the method using automatic

derivation can optimize the objective function more flexi-

bly than the adjoint method, because in the ‘‘Case 2’’

scheme, the max function (Emax) is not differentiable,

which is a case when it is impossible to directly provide the

accurate adjoint source. The cross-sectional area utilized

for the optimization design region is 4bk � k, and the

particle injection channel region is 4bk � 1
4
k. An accel-

eration gradient function (NgainðEÞ) of 1:4E0 (C = 1.4) is

achieved by optimizing the maximum conversion factor

(C). In Ref. [29], the gradient achieved is 0.49E0 (C =

0.49). Therefore, the topology-optimized structures show

an approximately three-fold improvement in the accelera-

tion gradient compared to previously established structures.

As in Fig. 8 a, it can also be clearly observed that the

optimized structure is very different from the intuitive

physical structure. According to the normalized electric

field (Ey/jE0j), Fig. 8b indicates that the electric field

intensity of the topologically optimized DLA chip is weak.

For comparison, we calculated the normalized maximum

electric field (Emax/jE0j) shown in Figs. 7a and 8a, and the

results indicate that under the same parameters, the maxi-

mum electric field strength in the ‘‘Case 2’’ optimized

structure is only one-fifth of the maximum electric field

strength in the ‘‘Case 1’’ optimized structure. Therefore, it

can be shown that when the ‘‘Case 2’’ scheme is imple-

mented, the electric field intensity in the structure is

reduced, which means that the structure is less likely to

suffer damage.

The optimization results show that the optimized

structures obtained by the two schemes (‘‘Case 1’’, and

‘‘Case 2’’) are significantly different from the intuitive

structures, and it is difficult to explain these results using

physical intuition. It is worth noting that in the comparison

between ‘‘Case 1’’ and ‘‘Case 2,’’ the structures obtained

by the two optimization schemes are completely different.

If v is used as the evaluation index, the result for the

acceleration gradient function in Fig. 7 is three times that

in Fig. 8. If C is used as the evaluation index, the result for

the acceleration gradient function in Fig. 8 is twice that of

Fig. 7. The acceleration gradients of the two schemes are

different, but they are significantly improved when com-

pared to the grating structure [29]. A phenomenological

explanation is that in the y-direction of the topologically

optimized DLA structures (Figs. 7b and Fig. 8b), the

electric field (Ey/jE0j) exhibits a distinct standing wave

field pattern in the particle injection channel region (PICR),

which is very favorable for the acceleration of charged

particles. This also indicates that the DLA optimized by

either of these two schemes can pass more particle beams,

which undoubtedly can increase particle excitation (by

appropriately increasing the width of the particle injection

channel region). Although increasing the width of the

particle injection channel region (PCIR) reduces the

acceleration gradient of the DLA, the optimized structures

obtained by these two schemes provide an intrinsic accel-

eration gradient that is several times greater than that

achieved by the grating-structured accelerator [29].

4 Summary

The topology optimization algorithm presented in this

study can realize the optimization of any objective func-

tion, and the obtained structure also has a high-contrast

binary structure. The advantage of this method is that the

structure can be designed according to the expected goal,

so that the optimal geometry can be found more intelli-

gently without tedious adjustment of the associated

parameters. By changing the material parameterization

function, we can transition to shape optimization or size

optimization. We study the acceleration structure of an

accelerator based on the high-gradient and compact char-

acteristics of the DLA. The two design schemes presented

ignore the influence of Ex that the particle feels. However,

the effect of Ex will lead to the deflection of accelerated

particles over long distances; therefore, it may require that

the design include other structures embedded in the junc-

tion of the accelerating structure to focus the beam in order

to prevent the effect of Ex in the material.

In future work, our goal is to design a complete

dielectric laser accelerator that supports larger sizes and

increased focus effects. To achieve simple manufacturing,

we may need to add more constraints to the current

parameterization.

This technique is also applicable to the design of other

dielectric-based accelerator structures. This is based on the

inverse Cherenkov Effect of acceleration. As such, our

work provides an opportunity to significantly increase the

energy gain of DLAs, which is crucial for the practical

application of these exciting micro accelerators.
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