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Abstract The self-consistent quadruple potential is

deduced within the relativistic mean-field (RMF) frame-

work and substituted into the Hamiltonian, which is cal-

culated using the complex momentum representation

(CMR). Considering even-even titanium isotopes as an

example, this study investigated various properties,

including the resonant states of neutron-rich nuclei in the

RMF-CMR model, and used them to describe the binding

energy. The abrupt decrease in the two-neutron separation

energy (S2n) corresponds to the traditional magic number.

The resonant and bound states are simultaneously exposed

in the complex moment plane, where the continuum is

along the integration contour. The four oblate neutron-rich

nuclei 72�78Ti are weakly bound or resonant because their

Fermi energies are approximately 0 MeV. The root-mean-

square (RMS) radii of these nuclei increase suddenly

compared with those of others (neutron number N\48).

Moreover, 78Ti and 76Ti are determined as drip-line

nucleons by the value of S2n and the energy levels,

respectively. Finally, the weak-bounded character can be

represented by diffuse density probability distributions.

Keywords Resonant states � Self-consistent potential �
Complex momentum representation

1 Introduction

In past decades, the location of the edge of the nuclear

chart has become an important issue in nuclear physics. As

is well known, the neutron-side drip line can be experi-

mentally determined from oxygen isotopes up to Z ¼ 10

[1, 2]. Generally, nuclei that are far from the b stable line

exhibit interesting properties, such as deformation structure

[3], new magic number [4], halo [5, 6], giant halo phe-

nomena [7], and b decay[8], owing to the large N/Z ratio.

The halo of 11Li and deformed halo of 31Ne can be

explained by simultaneously considering the continuum

and resonant states. Therefore, the theory of nuclear

structure is not only appropriate for investigating the bound

states but also for investigating the resonant states and

continuum states.

In recent years, relativistic mean-field theory has

become established [9] because it successfully explains the

bþ/EC decay [10], charge-exchange excitations [11], shell

correction energies [12], nuclear mass precision [13], shape

phase transitions [14, 15] of spherical and deformed nuclei,

hypernuclei [16, 17], nuclear matter [18, 19], and

descriptions of astrophysical r-process simulations

[20, 21]. To date, several methods have been developed to

study the properties of resonant states. Some of these

methods, such as the R-matrix [22], K-matrix [23], and S-

matrix [24, 25], are based on scattering theory. However,

resonant states are dealt within a manner similar to bound

states. For example, by the analytic continuation in the

coupling constant (ACCC) [26] method, resonance states
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become bound states, and the physical quantities can be

obtained from the bound-state solutions through the Padé

approximate (PA) order. Several neutron-rich nuclei have

been investigated using the ACCC method combined with

relativistic mean-field (RMF) theory [27, 28]. The equation

of motion in the real stabilization method (RSM) [29] can

be solved based on a box of finite sizes, and the energy is

stable against changes in the size of the basis or box.

However, this method is not suitable for broad-width res-

onant states. Satisfactory results for spherical nuclei 120Sn

have been obtained by using Green’s function (GF) to

solve the density of states in coordinate space [30, 31]. The

complex scaling method (CSM) [32] is used in atomic and

molecular physics and nuclear physics [33, 34]. Based on

the RMF-CSM method, the resonant states of spherical

[35, 36] and deformed nuclei have been analyzed [37].

Although RMF-RSM, RMF-ACCC, and RMF-CSM are

effective tools for dealing with resonant states, various

limitations still exist, and it is difficult to obtain the reso-

nance state near the threshold of the continuum spectrum

with satisfactory accuracy. Additionally, the result calcu-

lated using the CSM method is affected by the rotation

angle. Recently, because the bound and resonant states can

be shown simultaneously by solving the equation of motion

in complex momentum space, a scheme wherein the

complex momentum representation (CMR) is applied to

the RMF framework was established [38]. Using the RMF-

CMR method, several quantities of the resonance states can

be obtained for the spherical system [39, 40]. Additionally,

the deformed nuclei characteristics have been investigated

using a Woods-Saxon type potential for both nonrela-

tivistic [41, 42] and relativistic cases [43] in a complex

momentum plane. Numerous novel conclusions have been

drawn for typical halo nuclei such as 37Mg, 31Ne, and 19C.

This study considered titanium isotopes as an example and

investigated various properties using the RMF-CMR

method within the self-consistent potential obtained by

iteratively solving the Dirac equation in the RMF frame-

work. The rest of this paper is organized as follows. Sec-

tion 2 presents the derivation of the theoretical formulas.

The numerical details and results are presented in Sect. 3.

Finally, the summary and direction of future work are

presented in Sect. 4.

2 Theoretical framework

To deduce the self-consistent potential as the starting

point, the following Lagrangian of RMF theory is given:

L ¼ �w½iclol �M � grr� gxc
lxl � gqc
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where M denotes the nuclear mass; mrðgrÞ, mxðgxÞ, and
mqðgqÞ represent the masses (coupling constants) of the

respective mesons; g2, g3, c3, and d3 are self-coupling

coefficients.

The corresponding Dirac equation in cylindrical coor-

dinates is used to investigate the characteristics of the

deformed nuclei and is expressed as follows:

ða~ � p~þ bðM þ SÞ þ VÞW ¼ �W: ð2Þ

where a~ and b are Dirac matrices; S and V are the scalar

and vector potential, respectively. The solution of this

equation includes the bound states and continuum with the

following complete condition:

XNb

b

jWbihWbj þ
Z

decjWcihWcj ¼ 1; ð3Þ

where Wb and Wc are the wave functions of the bound

states and continuum, respectively.

Several methods, such as the shooting method [44] and

finite element method [45], have been developed to solve

the Dirac equation. Notably, spurious states can be com-

pletely avoided because the Dirac equation is considered

within momentum space. To investigate the resonant states

submerged in the continuum, the Dirac equation must be

converted into the following complex momentum plane:
Z

dk~
0

hk~jHjk~
0

iwðk~
0

Þ ¼ ewðk~Þ; ð4Þ

with the wave vector k~¼ p~=�h. The wave function is divi-

ded into radial and angular parts:

wðk~Þ ¼wmj
ðk~Þ

¼
X

lj

f ljðkÞ/ljmj
ðXkÞ

gljðkÞ/~ljmj
ðXkÞ

 !
;

ð5Þ

where ~l ¼ 2j� l. The former f and g are the radial com-

ponents, and the angular part is expressed as follows:

/ljmj
ðXkÞ ¼

X

ms

hlm 1

2
msjjmjiYlmðXkÞvms

: ð6Þ
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Here, vms
is the spin wave function with the third compo-

nent of the spin angular momentum ms, and YlmðXkÞ
denotes the spherical harmonics in complex momentum

space.

By substituting Eq. (5) into Eq. (4), the Dirac equation

becomes as follows:

Mf ljðkÞ � kgljðkÞ þ
P
l0j0

R
k02dk0Vþ l0; j0; p; q; l; j;mj; k; k

0� �
f l

0j0 ðk0Þ ¼ ef ljðkÞ;

�kf ljðkÞ �MgljðkÞ þ
P
l0j0

R
k02dk0V� ~0; j0; p; q; ~l; j;mj; k; k

0� �
gl

0j0 ðk0Þ ¼ egljðkÞ;

8
><

>:

ð7Þ

where Vþ and V� are expressed as follows:
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To simplify the calculations, this study adopted the Gauss-

Legendre approximation. Accordingly, the following

transformations can be carried out: fðkaÞ ¼
ffiffiffiffiffiffi
wa

p
kaf ðkaÞ

and gðkaÞ ¼
ffiffiffiffiffiffi
wa

p
kagðkaÞ, where ka is the grid point of the

Gauss–Legendre quadrature. The corresponding mesh

point number (ngl) in the CMR code is 60. The same

number (60) is also set for the grid point of the Gauss

Hermite quadrature (ngh) in the coordinate space of the

RMF framework. Thus, the Dirac equation becomes a

symmetric matrix equation, as follows:

P
b

½Mdabf
ljðkbÞ þ

P
l0j0

ffiffiffiffiffiffiffiffiffiffiffi
wawb

p
kakbV
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0j0 ðkbÞ � kadabgljðkbÞ� ¼ ef ljðkaÞ;

P
b

½�kadabf
ljðkbÞ �MdabgljðkbÞ þ

P
l0j0

ffiffiffiffiffiffiffiffiffiffiffi
wawb

p
kakbV

�ð~l0; j0; p; q; ~l; j;mj; ka; kbÞgl
0j0 ðkbÞ� ¼ egljðkaÞ:

8
><

>:

ð9Þ

At this point, the Dirac equation can be treated by solving

the eigenvalue of a symmetric matrix in Eq. (9). More

details regarding this formulation can be found in the lit-

erature [41, 43].

3 Numerical details and results

Based on the above-mentioned theoretical formula,

various properties of Ti isotopes, such as the binding

energy, single-particle energy level, S2n, RMS radius, and

probability distribution, can be investigated. To study the

characteristics of resonant states, the neutron number of the

Ti isotopes is considered to be up to 56 (78Ti). In this

calculation, the coupled-channel model is adopted and the

PK1 parameter group is selected. The number of coupling

channels (nch) is equal to four. The infinite complex

momentum plane is truncated at Re k ¼ 4:0 fm�1, which is

sufficient for the convergence of the numerical

computation.

Figure 1 shows the calculated binding energy as a

function of the mass number. For comparison, the related

data from AME2020 [46] are also indicated by blue dia-

monds. The results of the experimental data are almost in

agreement, which validates the calculations carried out by

this study. Therefore, the RMF-CMR model can be suc-

cessfully used to describe the stable nuclei among the Ti

isotopes, and the pro model is valid for investigating other

properties of neutron-rich nuclei, even close to the drip

line. Moreover, the binding energy increases slowly as the

neutron number increases, which means that the nucleon

becomes increasingly softer.

The two-neutron separation energy S2n is a physical

quality in nuclear physics and is used for investigating the

shell structure of a nucleon, as shown in Fig. 2. As is well

known, the drip-line nucleon can be predicted by the value

of S2n. As shown in Fig. 2, S2n gradually decreases as the

number of neutrons increases. Specifically, the value of S2n
decreases abruptly when the neutron number N ¼ 40,

which corresponds to the subshell. Notably, the shell gap is

not obvious in 72Ti with the traditional magic number

N ¼ 50. Therefore, it is considered that the large N/Z ratio

is the main contributor. Additionally, it is shown that S2n is

close to the zero-scale line when N[ 50. The value of S2n
is less than 0 MeV when N ¼ 58. Hence, 78Ti is predicted

Fig. 1 (Color online) Binding energies as function of mass number.

The blue diamonds represent the data in AME2020. The black squares

represent the values calculated using RMF-CMR model
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to be the drip-line nucleon for the Ti isotopes. However,

some experimental data do not support the shell structure,

because the neutron number is equal to 40. For 60�64Ti, the

S2n values are significantly different to those of the

RMF?CMR model. The three sets of experimental data

exhibit linear decrease. The two former values are lower by

more than 2 MeV compared with the theoretical calcula-

tion, and the last value is larger by 1.45 MeV. With the

development of the radioactive isotope beam factory, iso-

tones around neutron number 40 were first observed in

2020 [47, 48]. The experimental results revealed a

deformed 62Ti ground state. The Jahn-Teller effect is

related to the increase in the two-neutron separation ener-

gies in the vicinity of 62Ti. The large-scale shell model

calculation reproduced the present measurement and dis-

favored the doubly-magic character of 60Ca.

The single-particle spectrum is an important property for

describing nuclear structures. In accordance with the CMR

method reported in [41, 43], this study tested different

contours, and the same momentum integration contour was

selected for all Ti isotope nuclei. The selected contour is a

triangular contour with the four key points k ¼ 0 fm�1,

k ¼ 0:4� i0:4 fm�1, k ¼ 0:8 fm�1, and kmax ¼ 4:0 fm�1.

To show the resonance states clearly in the triangular

contour, the real axis Re k and imaginary axis Im k are

truncated to 1.2 fm�1 and 0.4 fm�1, respectively.

Figure 3 shows various eigenstates of 72�78Ti in the

complex momentum plane, corresponding to 1
2

þ
, 5
2

þ
, 3
2

þ
, and

1
2

þ
, respectively. The black diamonds indicate the negative-

energy bound states on the vertical axis, owing to the mass-

energy relationship. The blue circles indicate the contin-

uum located on the contour. The red triangles indicate the

positions of the resonant states located in the fourth

quadrant of the complex momentum plane. Owing to the

deformed shape, the self-consistent potential is applied to

obtain the quadruple deformation parameter (b2) tagged in

this figure. Owing to the negative deformation values, the

four neutron-rich nuclei are oblate.

Although not all bound states are drawn, the eigenstates

occupied by the last neutron are presented, and their

eigenenergies indicate that the last neutrons in 72�76Ti are

weakly bounded; therefore, these nuclei become increas-

ingly softer as the number of neutrons increases. As can be

seen, the energy level related to 78Ti is positive, and the

relevant width of 0.052 MeV can be obtained, which means

that the last neutron is resonant and 78Ti should not exist

stably. As shown in Fig. 2, this study predicted that the

drip-line nucleon of Ti is 78Ti. The results of the two

assessments are different but very similar.

To better investigate the exotic structure of the even-

even neutron-rich titanium isotopes, the single-particle

levels of all nuclei (38�N � 56) are shown in Fig. 4 and

are indicated by different colors. The quantum number of

the last neutron of each Ti nucleus is also marked in the

figure. The shell gap (3.562 MeV) of 62Ti between levels 1/

2[301] and 9/2[404] is more significant than that of the

adjacent nuclei supporting the subshell structure (N ¼ 40).

This result is consistent with the description of the two-

neutron separation energy. Additionally, the quadruple

deformation b2 indicates the spherical structure of
62Ti. For

60�70Ti, the energy levels occupied by the last neutron

increase with the isospin. However, the highest energy is

lower than 0 MeV; therefore, these nuclei remain bound.

With the further increase in the neutron number, the shell

structure of 72Ti is considered. Notably, a large shell gap

Fig. 2 (Color online) The two-neutron separation energies (S2n) with
the RMF?CMR model are indicated by a blue circle as a function of

the neutron number N. For comparison, the experimental data are also

indicated by a black square.[46]

Fig. 3 (Color online) The single-particle spectra in 72�78Ti for the

states occupied by the last neutron are presented in the complex

momentum plane. The blue circle, black diamond, and brown triangle

represent the continuum, bound states, and resonant states,

respectively
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does not exist between the 1/2 [440] and 5/2 [413] levels

compared with that of 72Ti. Hence, the traditional magic

number (N ¼ 50) is not clearly shown. For 74Ti and 76Ti,

the Fermi level is �0:400 MeV and �0:371 MeV,

respectively. Therefore, these two nuclei are weakly bound.

Moreover, the 5/2[413], 3/2[422], and 1/2[431] levels

occupied the last neutron of 74�78Ti, and these levels cor-

respond to the 2d5=2 level.

The nuclear radius is also an important parameter for

investigating the characteristics of exotic nuclei. Figure 5

shows the neutron RMS radii and the difference in the radii

between the neutron and proton of titanium isotopes. As

can be clearly seen, the neutron RMS radius increases

monotonously with the isospin. According to the calculated

data, a fitted dashed line is drawn in the top panel when the

neutron number ranges from N ¼ 38 to N ¼ 48. The neu-

tron RMS radius is approximately linear. However, for

neutron-rich nuclei (50 �N � 56 ), the data points of the

neutron RMS radii are above the dashed line and further

away.

The radii differences between the neutrons and protons

are shown in the bottom panel. Similar to the neutron RMS

radii, when the neutron number N is greater than 48, the

properties of the neutron skin are determined by a rapid

increase in the differences. Notably, 72Ti is neutron-rich

and exhibits a certain exotic character, although its magic

number is 50. Thus, several novel points can be observed

with regard to S2n and the radius. The radius increase in
72Ti is attributed to the last energy level 1/2[440], where

the radial density is slightly diffuse. Hence, the neutron

skin phenomenon is particularly evident in 70�78Ti.

The exotic phenomenon is reflected by the energy levels

and RMS radius and is also illustrated by the diffuse spatial

distribution. According to the wave functions obtained

from the Dirac equation, the radial momentum probability

distribution(RMPD) is shown for several states, including

those occupied by the last neutron of 72�78Ti in Fig. 6. To

clarify the RMPD, the horizontal axis is cut at Re k ¼ 2

fm�1 and the RMPD vanishes when Re k is more than 2

fm�1. Different single-particle levels are indicated by dif-

ferent colors. The density distributions of the last neutron

and the other neutrons are expressed by solid and dashed

lines, respectively. The background of the continuum is not

shown in the figure. As can be seen, all states expand

Fig. 4 (Color online) Energy levels as function of neutron numbers

of Ti isotopes. For each nucleus, the energy level of the last neutron is

indicated by the quantum number

Fig. 5 (Color online) Neutron RMS radii and radii difference of

neutron and proton as function of neutron numbers of Titanium

isotopes

Fig. 6 (Color online) Radial-momentum density distribution for

several states of 72�78Ti. The solid and dashed lines indicate the

eigenstates occupied by the last neutron and the other neutrons,

respectively
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widely with an increase in momentum. In this figure, the

blue solid line is the d function, which gives the eigenstate

occupied by the last neutron in 78Ti. In complex momen-

tum space, the radial momentum probability distributions

for both the resonant states and bound states converge.

The density distribution in the coordinate representation,

after the wave functions are transformed into a coordinate

plane, is also considered. In Fig. 7, the radial density dis-

tribution for 72�78Ti is shown as a function of coordinate r.

Similar to Fig. 6, the different colors indicate different

energy levels. The solid lines represent the eigenstates

occupied by the last neutrons of the four nuclei. The three

dashed lines in each panel indicate other lower levels.

Obviously, almost all lines decrease to zero at the edge of

the box (r ¼ 15 fm). However, the blue solid line for the

density distribution of eigenstate 1/2[431] of 78Ti does not

converge at the border, which matches the characteristics

of the resonant states. By combining the energy values

shown in Fig. 4, the diffuse density distribution confirms

that 78Ti is not a stable nucleus. Therefore, 76Ti is the last

stable nucleus in the Ti isotopic chain.

4 Summary and prospective

This study investigated even-even titanium isotopes

using the RMF-CMR method. The deformed self-consis-

tent potential was derived within the RMF framework and

was then used to investigate the resonant states in the CMR

model. First, the binding energies of 52�64Ti are in good

agreement with the data in AME2020. The S2n value

obtained from the binding energy reproduced the magic

number N ¼ 40. However, the traditional magic number

N ¼ 50 shell gap is not obvious. Moreover, the value of S2n
predicts that 78Ti is a drip-line nucleon for Ti isotopes. In

the complex momentum plane, the bound states and reso-

nant states are displayed and distinguished from the con-

tinuum. A subshell structure (N ¼ 40) is observed in 62Ti

based on the large energy gap, and the traditional magic

number (N ¼ 50) disappears owing to the large N/Z ratio in
72Ti. The shape of 62Ti is approximately spherical, and
72�78Ti is obviously deformed. The RMS radii of 60�70Ti

increase linearly, whereas the RMS radii of 72�78Ti

increase abruptly. These energy levels and the RMS radii

indicate that 72�76Ti is weakly bound, while 78Ti is reso-

nant. Finally, the radial density distributions in the complex

momentum plane and coordinate space were presented

based on the calculated wave functions. The radial distri-

bution of the resonant states in 78Ti in the coordinate

representation is slightly diffuse. Based on these two

assessment criteria, this study predicted that the drip-line

nucleus of the Ti isotope is 78Ti or 76Ti.

Satisfactory results were obtained for the titanium iso-

topic chain using the RMF-CMR method, and this is the

first time that the resonant state has been investigated using

the CMR model and self-consistent potential. The devel-

opment of a CMR model is important, and future work will

consider the pairing correlation in this theoretical formal-

ism. Tensor interactions [49] or Jahn-Teller effects may

also help in elucidating the experimental phenomena and

the edge of the nuclear chart.
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