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Abstract A simpler and improved utility approximate

point scattered function for thin-film converters currently

used in neutron photographic devices is proposed as a

correction method to produce clearer, more realistic ima-

ges. The validity of the model was demonstrated through a

simulation experiment. Based on the results, an error

analysis was carried out, certain corrections were made to

the original model, and the final model achieved a very low

relative error in the simulation experiment. The model can

also be optimized for quantitative neutron photographic

analysis using iterative algorithms to obtain realistic neu-

tron photographic images more quickly. At the end of the

article, the model is extended to consider the case of energy

spectrum hardening by introducing a temperature correc-

tion parameter.

Keywords Neutron radiography � Point scattered
function � Image processing

1 Introduction

Neutron radiography is a method for surface or internal

diagnosis of a sample to be measured using the properties

of neutron attenuation and scattering. Compared to other

radiographic techniques, neutrons are more complex

because of the manner in which they interact with the

nucleus, and the macroscopic cross section does not have a

definite relationship with the nuclide species. These prop-

erties provide neutron radiography with an unparalleled

advantage over other radiographic techniques, such that

neutron radiography is currently used in the diagnosis of a

wide variety of industrial materials and is of great impor-

tance in the metal and aerospace industries [1–3]. Simply

put, neutron radiography takes advantage of the transmis-

sion of neutrons and the absorption of neutrons by the

sample being evaluated, among other properties. By com-

paring the imaging of the detector in the presence or

absence of the sample, the physical condition of the sample

can be determined. However, there are inherent errors in

this technique, mainly due to the scattering of neutrons by

the sample, absorption of neutrons by the detector material,

and attenuation of neutrons during transmission. In

response to this problem, two main correction methods

have been proposed: the first is to modify the energy

spectrum of the neutron source to produce more realistic

final detection results [4, 5], and the second is to introduce

various functions to correct for the effect of scattering in

neutron radiography [6, 7]. Energy spectrum correction is

proposed mainly to counter the neutron energy spectrum

hardening problem. This problem becomes more signifi-

cant as the thickness of the sample to be measured

increases to a point at which energy spectrum correction

becomes necessary. However, in a broader context, the
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scattering effect is more direct and important than the

energy spectrum hardening effect. Therefore, this paper

discusses energy spectrum correction as a secondary cor-

rection after scattering correction. For example, the

14 MeV fast neutron radiography (FNR) technique [20],

which has been extensively studied in recent years, has

promising applications with high contrast sensitivity and

other features. However, it has difficulty dealing with the

impact of scattering effects, which makes this technique

much less effective and restricts its use in practical appli-

cations. There are two popular methods for energy spec-

trum correction: the maximum-likelihood expectation-

maximization (MLEM) method and the quantitative neu-

tron photographic analysis (QNPA) method. The MLEM

method is mainly based on least squares and maximum-

likelihood estimations to perform statistical correction [21],

whereas the QNPA method uses the characteristics of

neutron decay to perform iterative correction of the neutron

distribution in order to correct the energy spectrum.

Therefore, this paper discusses energy spectrum correction

as a secondary correction after scattering correction, with

the optimization of the scattering effect as the primary

objective. For the scattering correction, the ‘‘point scattered

function’’ has been proposed [8]. It is essentially the

probabilistic density distribution function of the scattered

neutrons detected by the detector after the neutron beam

passes through the sample to be measured. However, it is

not easy to apply directly because of its complex form and

the many parameters it contains. Therefore, scattering

correction models based on a variety of approximate point-

scattered functions have been proposed [9, 10]. In recent

years, materials science has advanced rapidly, and an

increasing number of neutron detectors can use very thin

detection layers as a converter to optimize neutron radio-

graphy [11–13]. Thus, we propose a new approximation of

the point scattered function called the ‘‘thin-film approxi-

mate point scattered function’’. This new model has a

significant computational advantage and the error is suffi-

ciently low for practical applications. In the following, we

derive the thin-film approximate point scattered function

from the conventional point scattered function and then

perform numerical simulations using software such as

Monte Carlo N-particle transport (MCNP) and Mathemat-

ica to evaluate the accuracy of the model and to perform

error analysis.

2 Thin-film approximate scattering model

2.1 Thin-film approximate point scattered function

We first review the basic theory of the point scattered

function, which is based on four basic assumptions:

1. The scattered neutrons are homogeneous.

2. The neutrons are scattered only once in the sample.

3. The source and scattered neutrons have the same

attenuation coefficient in the sample.

4. The sample width is large enough to ensure that the

scattered neutrons penetrate the bottom of sample (not

the sides) and reach the detector.

These are reasonable assumptions. Because neutrons are

electrically neutral, each should be homogeneous after

scattering. The vast majority of neutrons also scatter only

once in the sample and therefore the need for multiple

scattering corrections is not significant.

Figure 1 shows a schematic of neutron radiography and

the angular response of the detector.

In Fig. 1, r is the coordinate parameter of the detector, d

is the thickness of the detector converter, h is the scattering

angle, D is the distance from the sample to the detector, T

is the thickness of the sample, t is the location where

scattering occurs in the sample, and R and l are both

geometric parameters. The following relationship exists

between the geometric parameters.

cos h ¼ Dþ t

R
; R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t þ Dð Þ2þr2
q

; l ¼ tR

t þ D
ð1Þ

Then, for the detector coordinate r, the incident neutron

flux Usc Eð Þ and the scattered neutron flux of the detector

Ust Eð Þ can be expressed in the following form.

Fig. 1 Schematic diagram of neutron radiography and angular

response of the detector
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dUsc Eð Þ ¼ dUst Eð Þ
4pR2

� e�Rt Eð Þl

dUst Eð Þ ¼ U0 Eð Þ � e�Rt Eð Þ T�tð Þ � Rs Eð Þdt
ð2Þ

here U0 Eð Þ is the neutron flux of the source, Rs Eð Þ and

Rt Eð Þ are the scattering macroscopic cross section and the

absorbing macroscopic cross section of the sample,

respectively. Rdet Eð Þ is the absorption cross section of the

detector material.

We have to take into account the neutron attenuation

effect, where a single neutron is detected with a probability

of

P ¼ 1� e�Rd= cos h: ð3Þ

The neutron flux at the detector surface is

dIdet ¼
Z

E

P � dUsc Eð ÞdE

¼
Z

E

U0 Eð ÞDþ t

4pR2
� e�Rt Eð Þle�Rt Eð Þ T�tð Þ

Rs Eð Þ cos h 1� e�Rdet Eð Þd= cos h
� �

dtdE:

ð4Þ

Then, according to the definition of the point scattered

function we have

PScF rð Þ ¼Idet=

Z

E

P � U0 Eð ÞdE

¼

R

E;t U0 Eð Þ Dþt
4pR3=2 e

�Rt Eð Þ t
tþDRþT�tð Þ 1� e�

Rdet Eð Þ�d
cos h

� �

Rs Eð ÞdtdE
R

E U0 Eð Þ � 1� e�Rdet Eð Þ�dð ÞdE :

ð5Þ

This function is quite complicated and inconvenient to use.

Many studies related to scattering correction have been

conducted to approximate this function.

For a very thin detector, it can be considered that d ! 0.

Because the series expansion of the exponential function

e�Rd ¼ 1� Rd þO 2½ � involves a second-order infinitesi-

mal term O 2½ �, we can use this approximation by consid-

ering that the main and first-order terms occupy 99% of the

exponential function (i.e., d satisfies 1� Rd ¼ 0:99e�Rd).

This implies that the following approximation can be

applied.

1� e�
Rdet Eð Þd
cos h �!

Rdet Eð Þd
cos h

1� e�Rdet Eð Þd �! Rdet Eð Þd
ð6Þ

Using the geometric relations and the adjustment order, and

writing the new function as TPScF rð Þ, we obtain

TPScF rð Þ ¼
R

E;t U0 Eð Þ � Rdet Eð Þ � Rs Eð Þ � g E; tð ÞdtdE
R

E U0 Eð Þ � Rdet Eð ÞdE

g E; tð Þ ¼ 1

4p
ffiffiffi

R
p e�Rt Eð Þ tR

tþDþT�tð Þ:

ð7Þ

The integral in the numerator of Eq. (7) with respect to t

can be written as

F E; rð Þ ¼
Z T

0

f E; r; tð Þdt

¼
Z T

0

1

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffi

R r; tð Þ
p e�Rt Eð Þ tR r;tð Þ

tþD þT�tð Þdt:
ð8Þ

This integral can be calculated numerically using the

Newton-Cotes method after the associated parameters are

given. Finally, the thin-film approximation of the model is

TPScF rð Þ ¼
R

E U0 Eð Þ � Rdet Eð Þ � Rs Eð Þ � F E; rð ÞdE
R

E U0 Eð Þ � Rdet Eð ÞdE :

ð9Þ

here the integral of E is related to the specific energy

spectrum.

2.2 Pre-processing of the model

To better apply this model, we need to pre-process the

model, as described in this section. We focus on Eq. (8)

and apply the Newton-Cotes method to obtain a numerical

solution [14] using

F E; rð Þ � h

3
f E; 0ð Þ þ f E; Tð Þð

þ4 �
X

m

n¼1

f E; 2n� 1ð Þh½ �

þ 2 �
X

m�1

n¼1

f E; 2nh½ �Þ;

ð10Þ

where h represents the step size and m is obtained by

solving the following equation.

2n� 1ð Þhm ¼ T ;m ¼ hm½ � ð11Þ

here x½ �represents the Greatest Integer Function, which

returns the value of the greatest integer, which is less than

or equal to x. The error that results from Eq. (10) is given

by the following equation.

Error xð Þ ¼ Th4

180

o4

ot4
f E; nð Þ; n 2 0; Tð Þ ð12Þ

Equation (10) can be calculated very quickly once the

determined thickness T of the sample and the absorption

cross section Rt Eð Þ are known.
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In addition, the integration of TPScF rð Þ is difficult.

Therefore, the approach we adopt is to divide the integra-

tion interval into many small intervals as follows.

TPScF rð Þ ¼
PEm

i¼0 U0 Eið ÞRdet Eið ÞRs Eið ÞF Ei; rð Þ
PEm

i¼0 U0 Eið ÞRdet Eið Þ
ð13Þ

here E 2 E0;Emð Þ is the range of values of the energy

spectrum of the neutron source.

Thus, we consider the model from a numerical per-

spective, making it less abstract and more computable in

concrete terms. Next, we use examples to demonstrate the

validity of the model and then perform an error analysis.

3 Application example

3.1 Numerical simulation of scattering correction

for water and polyethylene

We construct a simple neutron radiography experiment.

The neutron converter is made of 100 lm-thick 6Li mate-

rial, and cylindrical metallic aluminum with a radius of

0:6 cm and a height of 1:1 cm is used as the sample, which

is located 0:8 cm away from the detector. The experimental

setup is shown in Fig. 2.

As the neutron source in the experiment, we use thermal

neutrons ranging in energy from 0.01 to 1 eV and whose

energy spectrum satisfies Maxwell’s spectrum. The neutron

distribution on the converter can be obtained by importing

the relevant parameters into MCNP. The results are rep-

resented as density maps for PScF rð Þ and TPScF rð Þ, in
Fig. 1.

In the figure, r indicates the distance from the detection

point to the center of the detector plane. Figure 3a repre-

sents the simulation results using PScF rð Þ as a point scat-

tered function, and Fig. 3b represents TPScF rð Þ for

comparison purposes. The red areas in Fig. 3 indicate

heavy neutron scattering, whereas the blue areas indicate

very light neutron scattering. The boundary of the red area

lies roughly at 0:6 cm, which is generally in line with the

actual condition of the sample. Note that the boundaries of

the red areas in each figure are not particularly clear. The

causes behind this are the idealization of the neutron

energy spectrum and the haphazard nature of the scattering

in the sample. However, there are well-established methods

to solve this problem, mainly by correcting the energy

spectrum and by using computer algorithms to make the

edges clearer, thus making neutron imaging more repre-

sentative of the actual experimental conditions [15, 16].

Comparing Fig. 3a with b, it can be seen that TPScF rð Þ
gives an overall smaller result than PScF rð Þ, which indi-

cates that an overall error exists between them. The Rela-

tive Error Function is therefore defined as

r rð Þ ¼ TPScF rð Þ � PScF rð Þj j
PScF rð Þ : ð14Þ

For the experiment described in Fig. 2, the image of the

relative error function is mapped in Fig. 4

This result indicates that the error is very small in the

central area of the screen and is larger along the edge areas.

The average error over the entire detection screen is

approximately 0.306. However, this model is valid because

of the similarity between Fig. 3a, b, so, we further review

the validity of the model through error analysis below.

3.2 Error analysis

The error function presented in Fig. 4 resembles an

exponential function in the radial direction, so we can

Fig. 2 Neutron radiography experiment setup

Fig. 3 (Color online) Results of a PScFðrÞ and b TPScFðrÞ for the
simulation experiment

Fig. 4 (Color online) Results of the relative error distribution

between PScF rð Þ and TPScF rð Þ
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introduce an exponential function to adjust for the error.

First, we define

NPScF rð Þ ¼ TPScF rð Þ þ Ce�ar ð15Þ

as the new approximate point scattered function. By fitting

the relative error data, the values of the parameters C, a

can be obtained, and then we have

NPScF rð Þ ¼ TPScF rð Þ þ 8:7646� 10�5e0:3980r: ð16Þ

Then, to study the error relative to the original scattered

function, the distribution is plotted in Fig. 5.

The figure indicates that the relative errors are at a very

low level in most regions, and a maximum value of 17%
and a mean value of 2.5% exist across the entire region.

This result indicates that a further improvement can be

made to the approximation model, which validates that

NPScF rð Þ is a very effective point scattered function for

the thin-film approximation.

4 Neutron imaging correction

4.1 Quantitative neutron photographic analysis

method

Owing to the nature of the interaction between neutrons

and matter, the results of neutron imaging are often very

inaccurate in actuality. We can reduce the error by using

more advanced experimental equipment, and/or we can

improve the imaging technique using algorithms to correct

an image. One such method, the Quantitative Neutron

Photographic Analysis Method uses algorithms to improve

imaging technology.

Quantitative neutron photographic analysis uses the

exponential neutron decay pattern,

Isample i; jð Þ ¼ Io i; jð Þe� RAT i;jð Þð Þ; ð17Þ

where I is the intensity of the neutron, (i, j) is the prime

point in the image, and RA is the thickness of the sample.

The distribution of substances can be determined using

Eq. (17).

T i; jð Þ ¼ �
ln

Isample

Io

� �

RA
ð18Þ

This is the principle behind quantitative neutron photo-

graphic analysis method.

Numerous experimental studies have shown that quan-

titative neutron photographic analysis is influenced by

three main factors.

(1) Collimation Ratio

The collimation ratio is the ratio of the distance from the

neutron source to the sample with respect to the diameter of

the output aperture. Because neutrons are electrically

neutral, they cannot be made parallel by focusing the

neutron beam through the electromagnetic field, and

therefore, it is not possible to achieve full collimation of

the neutron beam using a collimator.

(2) Scattered Neutrons

The presence of substances with high scattering cross

section (e.g., water and polyethylene) in the sample can

cause a large number of scattered neutrons to reach the

detector, thus distorting and blurring the neutron image.

The solution is generally to increase the distance between

the sample and the detector.

(3) Neutron Energy Spectrum

Because incident neutrons are not mono-energetic and

neutrons having different energies interact with matter

having different cross sections, the images and results

obtained using a single cross section parameter can pro-

duce large errors. In addition, the energy spectrum of the

neutrons scattered by the sample may have changed from

that of the neutron source owing to attenuation during

propagation.

The focus of this study is the correction of neutron

images by applying a correction for scattered neutrons. To

further investigate the optimization of the proposed model

with respect to neutron imaging, the current iterative

algorithm for the quantitative analysis of scattered samples

is presented in Fig. 7.

In the algorithm, Isu is the normalized neutron intensity,

Isc is the scattered neutron distribution function, and k is the

number of iterations. The criterion equation
P

i

P

j Ikþ1
su i; jð Þ � Iksu i; jð Þ

�

�

�

�

P

i

P

j I
k
su i; jð Þ 6 e ð19Þ

is used to select a convergence coefficient e that terminates

the iterative calculations. The above criterion actually

represents the relative change in the transmitted neutron

intensity calculated for two adjacent iterations. As the
Fig. 5 (Color online) Relative error distribution between PScF rð Þ and
NPScF rð Þ
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algorithm converges, the value of the change should

become increasingly smaller, gradually converging toward

zero. This algorithm has been tested in a large number of

neutron scattering experiments and is highly reliable. This

iterative algorithm can be applied to the thin-film point

scattering function model developed above.

4.2 Optimization algorithm based on thin-film

approximation models

It should be noted that in the iterative algorithm (Fig. 7),

PScF rð Þ is calculated based on the sample thickness, which

is later brought into the calculation of the neutron intensity

prior to the iterative calculations. However, if we use

NPScF rð Þ instead of PScF rð Þ, the iterative convergence

can be greatly accelerated, as NPScF rð Þ is equivalent to an

approximate numerical integration of PScF rð Þ. When we

applied the iterative algorithm to the experiments in

Sect. 3.1; using this substitution only three iterations were

required to obtain satisfactory results, as indicated in

Fig. 6.

The results obtained show the reliability and validity of

the iterative algorithm on the one hand, and the faster

correction of imaging results using NPScF rð Þ instead of

PScF rð Þ on the other. The iterative calculation using

PScF rð Þ requires five iterations to converge to something

closer to actuality and takes approximately three times as

long to run as the calculation using NPScF rð Þ. Comparing

result (a) using the NPScF rð Þ function with result (b) using

the conventional PScF rð Þ, it can be observed that (b) pro-

duces poor imaging results, is slower to converge, and

exhibits greater distortion at the edges, whereas (a) pro-

duces good imaging results and slight distortion at the

edges.

We followed up with similar simulations for trapezoidal

objects and cones and found that using NPScF rð Þ instead of
PScF rð Þ for iterative calculations not only improved the

simulation, but also improved the speed of the algorithm.

Moreover, in recent years, a ‘‘3D detector’’ has been

introduced for use in neutron photographic techniques

[18, 19]. It adds 3D microstructures such as trenches or

holes to a planar detector and fills them with a neutron

converter, which can significantly improve the detection

efficiency. For this class of detectors, the model proposed

in this paper is also applicable, and together with the

algorithm in Fig. 7, yields optimized results. However, the

relationship between the geometric parameters of the pla-

nar detector (Fig. 1) must be recalculated. That is, to apply

the proposed model to the 3D detector, the relationship

between geometric parameters must be solved again. A

mathematically feasible approach is to use the symmetry of

the 3D detector microstructure to solve by parts. For

example, if the 3D microstructure is axisymmetric, then it

can be solved by the radius with the center of symmetry

being the center of a circle, determining the geometric

relationship at a fixed radius, and then solving using the

method given in Sect. 2.

4.3 Effects of energy spectrum hardening

For the thermal neutron spectra considered in this study,

the cross sections interacting with matter approximately

obey the 1/v law. As neutrons penetrate the sample, low-

energy neutrons decay more rapidly than high-energy

neutrons, ultimately increasing the proportion of higher-

energy neutrons in the neutron energy spectrum, a phe-

nomenon known as energy spectrum hardening.

The current solution to this problem is to define an

‘‘effective neutron cross section to correct for the energy

spectrum. Considering that the macroscopic cross section is

no longer a constant, the neutron transmittance is no longer

simply exponential in relation to the thickness of the
Fig. 6 (Color online) Scattering imaging results using (a NPScF rð Þ,
and b PScF rð Þ)
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sample, even in the absence of scattered neutrons. There-

fore, the energy response of the detector should also be

considered. We can define an effective cross section based

on the ratio of the incident neutron intensity to the trans-

mitted neutron intensity as

Isu
Io

¼ e�Reff Tð Þ�T ; ð20Þ

where �Reff Tð Þ represents the effective cross section for a

sample of thickness T.

The intensity of the neutrons detected by a detector is

typically expressed by the following equation:

Io ¼
Z

E

U Eð Þ 1� e�Rdet Eð Þ�d
� �

dE; ð21Þ

and the transmitted neutron intensity is

Isu ¼
Z

E

U Eð Þe�R Eð Þ�T 1� e�Rdet Eð Þ�d
� �

dE: ð22Þ

According to the 1/v law, which is approximately satisfied

by thermal neutrons, the conventional neutron cross section

can be expressed as

R Eð Þ ¼ Rth

ffiffiffiffiffiffi

Eth

p
ffiffiffiffi

E
p ; ð23Þ

where Eth � 0:025eV is the energy of a thermal neutron.

Considering the detector energy response as a whole,

e Eð Þ ¼ 1� e�Rdet Eð Þ�d � Rdet Eð Þ � d, and combining the

above equations yields

Reff Tð Þ ¼ � 1

T
ln

R

E U Eð Þe�Rth

ffiffiffiffi

Eth
p
ffiffi

E
p

e Eð ÞdE
R

E U Eð Þe Eð ÞdE

0

@

1

A: ð24Þ

However, owing to the difficulties of performing integra-

tion operations and in obtaining relevant data, use of a

simplified approximation of the above equation is desir-

able. The approach taken in [17] is to apply a linear fit, but

we believe that the error in doing so would be very large.

Instead, we can adopt a numerical integration approach, as

Fig. 7 Neutron radiography quantitative analysis iterative algorithm flow chart
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described in Sect. 2.2 to approximate the above equation.

Again applying the Newton-Cotes method, let

Reff Tð Þ �

1

T
ln

4 �
Pm

n¼1U 2n� 1ð Þhð Þe�Rth

ffiffiffiffi

Eth
p
ffiffi

E
p

e 2n� 1ð Þhð Þ þ 2 �
Pm�1

n¼1 U 2nhð Þe�Rth

ffiffiffiffi

Eth
p
ffiffi

E
p

e 2nhð Þ
4 �

Pm
n¼1 U 2n� 1ð Þhð Þe 2n� 1ð Þhð Þ þ 2 �

Pm�1
n¼1 U 2nhð Þe 2nhð Þ

0

@

1

A;

ð25Þ

where h is the set step size, and note that UðEÞ ¼ 0 at both

E ¼ 0 and E ¼ 1. With the introduction of the effective

cross section, the use of an effective cross section to correct

the energy spectrum can make the decomposition lines of

the spectrum more visible, so that the edges of the sample

or large variations in density are more clearly reflected in

the image.

However, it would be preferable to make certain mod-

ifications to NPScF rð Þ, i.e., Eq. (15), to achieve an

improved energy spectrum correction.

Maxwell’s spectrum can be formally defined as

U Eð Þ ¼ aE exp �E=bð Þ, and the hardening of the energy

spectrum is essentially an excess retention of fast neutrons

and an excess depletion of slow neutrons, and is therefore

reflected in an increase in the parameter b. Considering the

specific form of Maxwell’s spectrum, an increase in

parameter b is equivalent to an increase in the background

temperature. Thus, we can perform the following trans-

formations to account for these factors.

U Eð Þ �! Uk Eð Þ ¼ 2pn

pkTð Þ3=2

ffiffiffiffi

2

m

r

Ee
� E

k Tþkð Þ ð26Þ

The temperature-corrected energy spectrum is then used in

the step calculations. Parameter k can then be determined

by fitting the specific energy spectrum to Eq. (26).

Substituting the corrected energy spectrum into Eq. (13)

and replacing the mean scattering cross section with the

effective scattering cross section in Eq. (25) yields

TPScF rð Þ ¼
PEm

i¼0 Uk Eið ÞRdet Eið ÞReff Eið ÞF Ei; rð Þ
PEm

i¼0 Uk Eið ÞRdet Eið Þ
:

ð27Þ

Subsequently, we can correct for the error by applying

error analysis, as discussed in Sect. 3.2, by choosing a

suitable exponential function based on the symmetry of the

spatial distribution.

5 Conclusion

In this study, an approximate point scattered function is

investigated for the correction of neutron photographic

imaging. The modeling is carried out in Sect. 2.1, whereas

Sect. 2.2 explains how the algorithm is used to carry out

the calculations.

In the simulation experiment described in Sect. 3, the

results shown in Fig. 3 demonstrate the validity of the

model. The model was then corrected for the relative error

results shown in Fig. 4. This correction is reflected in the

addition of an exponential function to adjust for the error

(see Eq. 15), and the parameters are determined using the

fitting method to finally obtain Eq. (16) to produce satis-

factory simulation results. Figure 5 shows the validity of

the correction, indicating a mean relative error of 2.5% for

the entire neutron converter.

In Sect. 4, we apply the model to the popular quantita-

tive neutron photographic analysis algorithm and find that

replacing the conventional point scattered function with the

proposed approximate point scattered function results in

better neutron imaging, faster convergence of the algo-

rithm, and a significant reduction in the number of itera-

tions. In addition, we investigated the effect of energy

spectrum hardening on neutron photographic imaging,

concluding that energy spectrum hardening is equivalent to

increasing the background temperature in Maxwell’s

spectrum, and therefore, a temperature correction param-

eter can be introduced (Eq. 26). After replacing the mean

scattering cross section with the effective scattering cross

section and including the temperature correction, a new

point scattering function is given by Eq. (27). Finally, the

error analysis method applicable to the proposed model is

discussed.
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