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Abstract
This study proposes a novel feature extraction approach for radionuclide identification to increase the precision of identifi-
cation of the gamma-ray energy spectrum set. For easier utilization of the information contained in the spectra, the vectors 
of the gamma-ray energy spectra from Euclidean space, which are fingerprints of the different types of radionuclides, were 
mapped to matrices in the Banach space. Subsequently, to make the spectra in matrix form easier to apply to image-based 
deep learning frameworks, the matrices of the gamma-ray energy spectra were mapped to images in the RGB color space. 
A deep convolutional neural network (DCNN) model was constructed and trained on the ImageNet dataset. The mapped 
gamma-ray energy spectrum images were applied as inputs to the DCNN model, and the corresponding outputs of the convo-
lution layers and fully connected layers were transferred as descriptors of the images to construct a new classification model 
for radionuclide identification. The transferred image descriptors consist of global and local features, where the activation 
vectors of fully connected layers are global features, and activations from convolution layers are local features. A series of 
comparative experiments between the transferred image descriptors, peak information, features extracted by the histogram 
of the oriented gradients (HOG), and scale-invariant feature transform (SIFT) using both synthetic and measured data were 
applied to 11 classical classifiers. The results demonstrate that although the gamma-ray energy spectrum images are com-
pletely unfamiliar to the DCNN model and have not been used in the pre-training process, the transferred image descrip-
tors achieved good classification results. The global features have strong semantic information, which achieves an average 
accuracy of 92.76% and 94.86% on the synthetic dataset and measured dataset, respectively. The results of the statistical 
comparison of features demonstrate that the proposed approach outperforms the peak-searching-based method, HOG, and 
SIFT on the synthetic and measured datasets.

Keywords  Radionuclide identification · Feature extraction · Transfer learning · Gamma energy spectrum analysis · Image 
descriptor

1  Introduction

Nuclear science and technology are rapidly developing and 
have been applied in various fields, having increasingly 
important roles in the sphere of scientific research and pro-
duction [1–3]. Simultaneously, menacing nuclear weap-
ons and radioactive contamination by nuclear industrial 
accidents present long-term and significant consequences 
for the environment, ecology, and biological health [4–6]. 
The detection and identification of radionuclides are cru-
cial tasks under such circumstances [1, 7]. It is important 
to develop effective algorithms for the detection and iden-
tification of radionuclides with stronger discrimination and 
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high accuracy. One of the most critical steps in radionu-
clide identification is the feature extraction from gamma-ray 
energy spectra, which is a complicated task owing to the 
background conditions, energy resolution of the radiation 
detector, calibration shift, characteristic peak overlap, source 
strength, and shielding status [8, 9].

Feature extraction methods of traditional radionuclide 
identification algorithms can be summarized as searching 
for characteristic energy peaks from the gamma-ray energy 
spectra and matching them with peaks in the radionuclide 
library [2, 4, 8–11], which are usually based on physical 
rules and do not require a training process. Another classi-
cal approach is the template matching method, for which the 
main idea is establishing a template library of the gamma-
ray energy spectra in advance and matching the entire spec-
trum or transformation of the spectrum with the template 
in the library [12, 13]. These methods are highly operator-
dependent, and their limitations are magnified when char-
acteristic peaks are overwhelmed by background noise or 
several interfering peaks are extracted.

With the development of artificial intelligence, radionu-
clide identification has gradually become a widely studied 
classification problem [14–16]. The main idea of classifi-
cation methods applied in radionuclide identification is to 
extract features from gamma-ray energy spectra of known 
types, and train classification models using extracted fea-
tures; then, the trained model is applied to estimate the 
probability of existing radionuclides of unknown types [17]. 
Numerous feature extraction algorithms have been used for 
radionuclide identification, such as the Karhunen-Loeve 
transform (K-L transform) [18], principal component anal-
ysis (PCA) [13, 19], singular value decomposition (SVD) 
[20], wavelet [21, 22], discrete cosine transform (DCT) 
[23], and sparse representation [24]. Subsequently, classi-
fication methods such as Bayesian [23, 25], extreme gra-
dient boosting tree [26], back propagation neural network 
[17], artificial neural network (ANN) [27, 28], fuzzy logic 
[29], long short-term memory (LTSM) [30], convolutional 
neural network (CNN) [31], and deep convolutional neu-
ral network (DCNN) [32, 33] were applied for radionuclide 
identification. The key factor for the success of these meth-
ods is the extraction of strong discriminative features. The 
limitation of the aforementioned features is that only the 
relative relationship between the corresponding counts of 
the front and rear energy addresses is considered, and errors 
may increase owing to the non-smoothness of the low-count 
spectra [34–36].

Recent studies have shown that image descriptors trans-
ferred by CNNs and DCNNs provide a stable and reliable 
performance for image classification problems [37–44]. 
Hu et  al. [37] reported that features transferred from 
CNNs were sufficiently generalized to high-resolution 
remote sensing image datasets and were more expressive 

than low-level and mid-level features. Babenko et al. [38] 
experimentally determined that the activation of the top 
layers of CNNs is competitive despite being trained for 
unrelated classification tasks such as ImageNet. Moreover, 
Gong et al. [39] transferred the outputs of the last fully 
connected layer of a DCNN as an image descriptor, and 
Razavian et al. demonstrated that features transferred from 
convolution layers can provide useful global descriptors 
of specific image regions [40–44]. Liu et al. [44] demon-
strated that convolution layers have excellent generaliza-
tion and efficiency and that transferring convolution layer 
features can achieve an advanced performance.

This study constructed a novel feature extraction 
method from gamma-ray energy spectra for radionuclide 
identification. First, the gamma-ray energy spectra are 
transformed from a vector to matrix and then to image 
form. Feature transferring is then performed using a 
DCNN model. The transferred image descriptors consist 
of the activations from the convolution layers and activa-
tion vectors of the fully connected layers. To verify the 
effectiveness of the proposed method, 11 classical clas-
sification methods were employed to perform a statistical 
comparison, and the results demonstrate that the proposed 
method significantly outperforms the peak-searching-
based method, histogram of oriented gradients (HOG), 
and scale-invariant feature transform (SIFT).

The following two main contributions are presented in 
this study:

•	 A novel pre-process method of the gamma-ray energy 
spectra is proposed. The vectors of the gamma-ray energy 
spectra are mapped to matrix form, and further mapped 
to image form. This form conversion can improve the 
utilization of spectral information and serve as the basis 
for extracting essential features and constructing a more 
discriminative classifier.

•	 Exploring and verifying the application of image descrip-
tors transferring from a DCNN model in the field of radi-
onuclide identification. Experimental results demonstrate 
that image descriptors can effectively extract the essen-
tial features of the gamma-ray energy spectrum images. 
Local image descriptors transferred from higher convolu-
tion layers can provide more discriminative descriptors, 
and global image descriptors transferred from the first 
fully connected layer has the strongest semantic informa-
tion among the fully connected layer.

The remainder of this study is organized as follows. In 
Sect.  2, we introduce the proposed feature extraction 
approach for radionuclide identification. Section 3 presents 
a series of experiments using both synthetic datasets and 
measured datasets from real laboratory environments and 
offers a comparative analysis. Section 4 concludes the study.
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2 � Method

The proposed method consists of the following two major 
steps: (a) Mapping the vectors of the gamma-ray energy 
spectra from a Euclidean space to matrices in a Banach 
space, and then mapping the matrices to images in the RGB 
color space. (b) Constructing a DCNN model trained on 
ImageNet and transferring the corresponding activation vec-
tors of fully connected layers and activations of convolution 
layers as global and local features of the gamma-ray energy 
spectrum images. Fig. 1 presents the procedure of the pro-
posed method.

2.1 � Data mapping

In this subsection, the essential features of the different radi-
onuclides are extracted from a novel perspective.

Gamma rays are the products of the de-excitation pro-
cess of atomic excitation and manifest as short-wavelength 
electromagnetic radiation. The essence of gamma rays is 
a stream of particles, which are gamma photons. Gamma 
photons are uncharged particles, and their interaction with 
matter is a random event. Collecting gamma photons using 
a general signal acquisition device is complex, whereas col-
lecting electrical signals is relatively easy; the amplitude 
of the electrical signal is proportional to the photon energy 
value. Gamma photons can be converted into electrical sig-
nals for signal processing to be collected by a nuclear radia-
tion detector. The principle of this process is that photons 
emitted by the radioactive source interact with the atoms 
of the medium in the detector to produce charged particles. 
The detector collects the particles, converts them into elec-
trical signals, and detects nuclear signals by measuring the 
electrical signals. The counts distributed with the energy 
value of the particles can be obtained by scaling the pulse 
amplitude by the energy; the energy spectrum is the curve of 

the distribution of the counts with the energy of the particles. 
As the fingerprints of radionuclides, the energy spectrum 
contains the distinguishable information of different radio-
nuclides [2–4, 6].

For nuclear events, the count and time of events are ran-
dom within a certain time interval. In radiation detection, 
the number of nuclear events measured over a certain period 
(e.g., detector counts) is also random. Because radioactive 
decay is a random process, each observation can be consid-
ered as a random experiment, and the count per unit time can 
be regarded as a random variable that obeys the Poisson or 
Gaussian distributions. For a spherical space with a single 
point source as the center of the sphere and a certain radius, 
the process of generating gamma photons by radioactive 
decay is random and continuous, and photons are uniformly 
emitted in all directions in space.

The gamma-ray energy spectrum s is a broad stationary 
random vector in Euclidean space, s =

{
sk
}
∈ Hl . For the 

convenience of subsequent expressions, let k = 0, 1,⋯ , l − 1 , 
where sk is the k+1-th count of photons distributed over the 
energy value, sk ∈ ℕ . As previously indicated, the photons 
generated by radioactive decay are uniformly emitted in all 
directions in spherical space with a single point source as 
the center of the sphere and a certain radius. Therefore, sk 
ideally positively correlates with the duration of the meas-
urement, as formulated by Eq.  (1).

where t is the duration of the measurement and �k is a param-
eter over the k+1-th count value affected by the background 
noise of the environment, the measuring angle and distance, 
and the intensity of the radiation source.

Considering s as a Markov chain or Markov process, 
which is a stochastic model describing a sequence of pos-
sible events in which the probability of each event depends 
only on the state attained in the previous event, sk is only 

(1)sk = �k ⋅ t,

Fig. 1   (Color online) Block diagram of the proposed method. Map-
ping the vectors of the gamma-ray energy spectra from a Euclidean 
space to matrices in a Banach space, then to images in an RGB color 
space. Constructing a DCNN model trained on ImageNet and trans-

ferring the corresponding activation vectors of the fully connected 
layers and activations of the convolution layers as global and local 
features of the gamma-ray energy spectrum images, which are subse-
quently used for classification
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related to sk−1 . In vector-based feature extraction methods, 
only part of the information of s is considered, that is, the 
relative relationship between the corresponding counts of 
the front and rear energy addresses. This is not conducive 
to mining the mutual relationship between non-adjacent sk , 
which will cause difficulties in extracting discriminative and 
effective features.

Every radioactive decay produces photons of different 
energy values, and the photon counts of a certain energy 
obey the Poisson or Gaussian distributions. Thus, the total 
count of photons generated by radioactive decay per unit 
time also obeys the Poisson or Gaussian distributions. Let 
a and b be the gamma-ray energy spectra obtained by using 
different measurement durations in a measurement scenario 
with a fixed background noise, using a specified detector 
to measure the specified radioactive source at a fixed loca-
tion and orientation. Therefore, as previously indicated, a 
and b are vectors from the same H , a ∈ Hl and b ∈ Hl . The 
corresponding durations of the measurement are ta and tb , 
respectively.

where the measuring conditions, that is, the background 
noise of the environment, measuring angle and distance, and 
intensity of the radiation source, are unchanged during the 
measurement, and we can assume that �(a)

k
= �

(b)

k
 . Assuming 

that the measurement time is sufficient, ak
bk

 converges in prob-
abil i ty to ta

tb
 ;  that  is ,  for ak  and bk  ,  ∀𝜀 > 0 , 

P
(|||

ak

bk
−

ta

tb

||| ≥ �

)
= 0 (when photons are uniformly emitted 

in all directions).
To efficiently transfer discriminative information for 

identification from the gamma-ray energy spectra, mapping 
the gamma-ray energy spectra from a vector form in H to 
a matrix form in Banach space B , the mapping f  can be 
formulated by Eq.  (4).

where P =
(
pij
)
m×n

∈ Bm×n , m × n = l . For the conveni-
ence of subsequent expressions, let i = 0, 1,⋯ ,m − 1 and 
j = 0, 1,⋯ , n − 1 , where pij represents the element in the 
i+1-th row and j+1-th column in the matrix. The relation-
ship between sk and pij is represented by Eq.  (5).

where k = 0, 1,⋯ , l − 1.
From the matrix perspective, there are more elements 

adjacent to pij . When extracting features from gamma-
ray energy spectra, not only is the relative relationship 

(2)ak = �
(a)

k
⋅ ta,

(3)bk = �
(b)

k
⋅ tb,

(4)P = f (s)

(5)pij = p⌊k∕n⌋, mod (k,n) = sk

between the corresponding counts of the front and rear 
energy addresses considered, but also the relative relation-
ship between the upper and lower counts and the diagonal 
counts, which can be easily used and is more conducive 
to mining the internal and mutual relationships between 
elements in P.

To apply P as the input of a DCNN model and transfer 
image descriptors as features of the gamma-ray energy spec-
tra, it is essential to map P to the image form. Mapping g 
maps P from the matrix form in B to the image form in the 
RGB color space J , can be formulated by Eq.  (6).

where Q =
(
qij
)
m×n

∈ Jm×n , m × n = L . For the conveni-
ence of subsequent expressions, let i = 0, 1,⋯ ,m − 1 , 
j = 0, 1,⋯ , n − 1 , where qij represents the element in the 
i+1-th row and j+1-th column in the matrix. P is normal-
ized before the mapping process, which can be formulated 
using Eq.  (7).

where pmax = maxi,j
{
pij
}
 , pmin = mini,j

{
pij
}
.

Equation (6) maps the element values of Q onto the cor-
responding pixels of an image with specified colors. Each qij 
corresponds to a rectangular area in the image, and the values 
of qij are indices in the Parula color map [45] that determine 
the color of each patch. Equation (6) maps the smallest value 
in Q to the first entry in the Parula color map and maps the 
largest value in Q to the last entry in the Parula color map. 
All intermediate values of Q are linearly scaled to the Parula 
color map in the ascending order. The relationship between 
the values of the elements in Q and the colors of the corre-
sponding pixels in the Parula color map is shown in Fig. 2.

a and b are two gamma-ray energy spectra obtained for 
different measurement durations under the same measure-
ment conditions, and Qa = g(f (a)) and Qb = g(f (b)) are the 
images of a and b , respectively, under mapping f ∗ g which 

are defined as previously mentioned. For ∀q(a)
ij

∈ Qa , q
(a)

ij
 and 

ta are related, as shown in Eq.  (8).

where k = i × m + j and

Obviously,

(6)Q = g(P)

(7)qij =
pij − pmin

pmax − pmin

,

(8)q
(a)

ij
=

p
(a)

ij
− p

(a)

min

p
(a)
max − p

(a)

min

=
s
(a)

k
− s

(a)

min

s
(a)
max − s

(a)

min

,

s(a)
max

= max
k�=0,1,…,l−1

{
s
(a)

k�

}
= max

k�=0,1,…,l−1

{
�
(a)

k�

}
× ta,

s
(a)

min
= min

k�=0,1,…,l−1

{
s
(a)

k�

}
= min

k�=0,1,…,l−1

{
�
(a)

k�

}
× ta.
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Similarly, for ∀q(b)
ij

∈ Qb , we have

This is because the measuring conditions, that is, the back-
ground noise of the environment, the measuring angle, and 
distance are unchanged between Qa and Qb . If Qa and Qb 
were from the same radioactive source, then �(a)

k
=�(b)

k
.

Based on the aforementioned analysis, the effects of dif-
ferent measurement durations on Qa and Qb can be ignored 
under the same measurement conditions. More explicitly, 
the mappings of the gamma-ray energy spectra in the RGB 
color space from the same radionuclide would present nearly 
identical images in an ideal situation, which can reduce the 
intraclass differences caused by different measuring dura-
tions. Even in a real measuring situation, the information 
processing of mapping the gamma-ray energy spectra from 
a Euclidean space to a Banach space and then to an RGB 
color space remains to have a strong applicability and can 
reduce intraclass differences, thereby helping to extract the 
essential features from the gamma-ray energy spectra of dif-
ferent radionuclides.

2.2 � Feature transferring

In this subsection, a DCNN model was constructed and 
trained on the ImageNet dataset. The mapped gamma-ray 
energy spectrum images were applied as inputs to the DCNN 

q
(a)

ij
=

�
(a)

i×m+j
−mink�=0,1,…,l−1

{
�
(a)

k�

}

maxk�=0,1,…,l−1

{
�
(a)

k�

}
−mink�=0,1,…,l−1

{
�
(a)

k�

} .

q
(b)

ij
=

�
(b)

i×m+j
−mink�=0,1,…,l−1

{
�
(b)

k�

}

maxk�=0,1,…,l−1

{
�
(b)

k�

}
−mink�=0,1,…,l−1

{
�
(b)

k�

} .

model, and the corresponding activation vectors of fully con-
nected layers and activations from convolution layers were 
transferred as descriptors of images to construct a new clas-
sification model for radionuclide identification.

VGG is a widely used convolutional neural network 
(CNN) model proposed by Karen Simonyan and Andrew 
Zisserman at the University of Oxford [46]. The VGG has 
various configurations; instance, VGG-11, VGG-16, VGG-
19, etc. Of all the configurations, VGG-16 was identified as 
the best-performing model on the ImageNet dataset. The 
basic building block of VGG can be summarized as a stack 
of multiple (usually one, two, or three) convolution layers 
with a filter size of 3 × 3, one stride, and one padding, fol-
lowed by a max-pooling layer of size 2 × 2. Different config-
urations of this stack were repeated in the network to achieve 
various depths. The number associated with each configu-
ration is the number of layers with the weight parameters. 
The convolution stacks are followed by three fully connected 
layers, two with a size of 4096, and the last one with a size 
of 1000. The last layer is the output layer with a Softmax 
activation. A size of 1000 refers to the total number of pos-
sible classes in ImageNet. In the method proposed in this 
study, the structure of the VGG consists of U convolution 
layers, V max-pooling layers, and N fully connected layers. 
The convolution layers use convolution kernels to convolve 
the input image, and the results of the convolution constitute 
the feature maps of the input image; thus, the local features 
of the image are extracted after the convolution layers. The 
max-pooling layers are arranged after the convolution lay-
ers, and the maximum values of the corresponding posi-
tions in the feature maps are calculated. This can reduce the 
dimension of the extracted feature information to make the 
feature maps smaller, simplify the computing complexity 
of the network, and avoid overfitting. The U convolution 
layers can be divided into M groups using the max-pooling 

Fig. 2   (Color online) Relation-
ship between the elements 
and the colormap. The Parula 
colormap is a three-column 
array with 64 rows, where each 
row in the array defines one 
color using an RGB triplet, i.e., 
contains the red, green, and 
blue intensities for a specific 
color. Each row in the matrix 
defines one color using an RGB 
triplet. The intensities are in the 
range [0,1], where a value of 0 
indicates no color and a value of 
1 indicates full intensity
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layers as separations. The fully connected layers map the dis-
tributed feature representation learned from the convolution 
layers and max-pooling layers to the sample marker space, 
the essence of which is to perform a weighted sum of the 
features to integrate the local features and output them as a 
value to reduce the influence of the local feature position on 
the classification.

The convolution layers and max-pooling layers have 
parameters such as the height of the convolution kernel, 
width of the convolution kernel, number of input channels, 
number of output channels (number of convolution ker-
nels), padding, and stride. The padding parameter refers to 
the boundary padding of the original matrix with ′0′ before 
the convolution; thus, the convolution kernel can extend to 
the pseudo-pixels beyond the edge when scanning the input 
image, thereby avoiding the loss of edge information. The 
stride parameter refers to the length of each movement of the 
convolution kernel, and the stride size affects the efficiency 
of the model. Each convolution kernel strictly has a bias 
parameter. To simplify the calculation, the bias is omitted 
in the following calculation.

For the convolution layers, the height and width of the 
convolution kernel are represented as hconv

k
 and wconv

k
 , respec-

tively; the number of input and output channels are repre-
sented as cconv

i
 and cconv

o
 , respectively; and the parameters of 

the padding and stride are represented as padconv and strconv . 
The number of neurons in the fully connected layer is rep-
resented by cfco .

The size of the input image is represented as cim
i

× hi × wi , 
and the size of the output image is represented as 
cim
o

× ho × wo , where cim
i

 , hi , wi , and cim
o

 , ho , wo represent the 
channel, height, and width of the input and output images, 
respectively. The height and width of the output image of 
the convolution and max-pooling layers can be formulated 
as Eqs.  (9) and (10).

where Eqs. (9) and (10) can be generalized to the max-pool-
ing layers to calculate the height and width of the convo-
lution kernels. cconv

i
 of a convolution layer depends on the 

channel of the input image, and cconv
o

 of a convolution layer 
depends on the number of convolution kernels.

VGG is training on the ImageNet dataset to obtain the clas-
sification model PM. ImageNet is an image database organ-
ized according to the WordNet hierarchy, in which hundreds 
or thousands of images depict each node of the hierarchy. 
The dataset has been instrumental in advancing computer 
vision and deep learning research [47]. Let S be a set of the 
gamma-ray energy spectra in Euclidean space, S ⊆ Hl , s be 
the gamma-ray energy spectrum, s ∈ S . s is converted into Q 

(9)ho =⌊hi − hk + 2 × pad⌋∕str + 1,

(10)wo =⌊wi − wk + 2 × pad⌋∕str + 1,

using Eqs.  (4) and (6), and Q is applied as an input to the PM 
to transfer features. Generally, PM will only have one final 
output, and the corresponding activation vectors of the fully 
connected layers and activations are transferred from the con-
volution layers in the process as the image descriptors of Q.

The convolution kernel of PM corresponds to a receptive 
field, and a small part of the image (local receptive area) is 
used as the input of the lowest convolution layer, which makes 
each neuron output by the convolution layer only experience 
the local image area and does not need to experience the global 
image. This operation is equivalent to passing through a digital 
filter to obtain the most salient features of the observed data. 
In the fully connected layers, different local features from the 
convolution layers are synthesized through the weight matrix 
to form a representation of the global information. Therefore, 
the transferred activation vectors of the fully connected layers 
are regarded as global feature representations for the gamma-
ray energy spectrum images, and the transferred activation 
maps from the convolution layers are regarded as local fea-
tures describing particular gamma-ray energy spectrum image 
regions.

Specifically, the activated maps transferred from the convo-
lution layers, that is, the set of feature maps transferred from 
the i-th group of convolution layers of PM, is denoted as ci , 
i ∈ [1, 2,⋯ ,M] , which is essentially a set of multiple square 
matrices. ci contains d(i) feature maps, where d(i) depends on 
the number of convolution kernels in one of the convolution 
layers in the i-th group of convolution layers. The size of the 
feature map is ho × wo , where ho and wo can be calculated 
using Eqs. (9) and (10). ci can be written as:

To convert the set of feature maps into a set of feature vec-
tors, which can be further used for classifier training, the 
conversion operation can be formulated as follows:

where GAP
(
ci
)
 is the global average pooling on the set of 

feature maps, and ave
(
c(i)

)
 is the average operation on all 

elements of the feature maps, where

The transferred local features of Q are expressed by 
Eq.  (11).

ci =
{
c
(i)

1
, c

(i)

2
,… , c

(i)

d(i)

}
.

GAP
(
ci
)
=
(
ave

(
c
(i)

1

)
, ave

(
c
(i)

2

)
,… , ave

(
c
(i)

d(i)

))
,

ave
�
c(i)

�
= ave

⎛⎜⎜⎜⎝

⎡⎢⎢⎢⎣

c
(i)

1,1
⋯ c

(i)

1,wo

⋮ ⋱ ⋮

c
(i)

ho,1
⋯ c

(i)

ho,wo

⎤⎥⎥⎥⎦

⎞⎟⎟⎟⎠
.

(11)F
(Q)

L
=
{
GAP

(
ci
)}

, i ∈ [1, 2,⋯ ,M]



A novel approach for feature extraction from a gamma‑ray energy spectrum based on image descriptor…

1 3

Page 7 of 17  158

where GAP
(
ci
)
 is a vector of length d(i) and F(Q)

L
 is a set of 

multiple GAP
(
ci
)
 , i ∈ [1, 2,⋯ ,M] , which are essentially the 

local image descriptors of Q transferred from PM.
The transferred activation vectors of the fully con-

nected layers, that is, the feature vectors transferred from 
the j-th fully connected layer of PM, are denoted as f j , 
j ∈ [1, 2,⋯ ,N] , whose length is the same as the number of 
neurons in the j-th fully connected layer cfco  . The transferred 
global features of Q are expressed by Eq.  (12).

where F(Q)

G
 is a set of multiple f j , which are the global image 

descriptors of Q transferred from PM. Table 1 summarizes 
the overall flow of the algorithm.

2.3 � Illustration

In this subsection, we present a simple example of the pro-
posed method. For illustration, we selected two synthetic 
gamma-ray energy spectra s1 and s2 of 60Co . The essence of 
s1 and s2 are two vectors in Euclidean space Hl , where l = 
4096. The simulation settings of s1 and s2 are essentially the 
same, and the only difference is the total number of simu-
lated particles, which is equivalent to the difference in the 
measurement duration. The number of simulated particles 
correlates with the duration of the measurement because the 
process of generating gamma photons by radioactive decay 
is random and continuous, and photons are uniformly emit-
ted in all directions in space. The simulated particle num-
bers corresponding to s1 and s2 are represented as t1 and t2 , 
where t1 is five hundred thousand and t2 is two hundred and 
fifty thousand. To illustrate the difference between the two 
spectra more vividly, we plot s1 and s2 in Fig. 3, where the 
blue spectrum is the description of s1 , and the red spectrum 
is the description of s2 . Figure 3 clearly shows differences 
between s1 and s2 due to the duration of measurement, where 
the counts distributed over the energy addresses of the entire 
spectrum is significantly more prominent in s1 than s2.

To extract more discriminative image descriptors from 
the gamma-ray energy spectra for identification, s1 and s2 
are mapped to the matrix form using Eq.  (4). The mapped 
matrices are represented as P1 and P2 , which are in the 
Banach space Bm×n , where m = n = 64. To reduce the dis-
crepancy between P1 and P2 caused by the difference in the 
measurement duration, and to facilitate the matrices as the 
inputs of the DCNN for the transfer of image descriptors, 
P1 and P2 are mapped to the image form using Eq.  (6), and 
the results are represented by Q1 and Q2 . The gamma-ray 
energy spectra of 137Cs and 152Eu were randomly selected 
for comparison, and their corresponding QCs and QEu val-
ues were obtained using Eq.  (4). The intraclass similarity 
and interclass distinction of the different gamma-ray energy 

(12)F
(Q)

G
=
{
f j
}
, j ∈ [1, 2,⋯ ,N].

spectra are shown in Fig. 4 vividly. Specifically, Q1 and Q2 
exhibited nearly identical images in Fig. 4a and b, which 
indicates that the difference between s1 and s2 in Fig. 3 is sig-
nificantly reduced when s1 and s2 are mapped to RGB color 
space. By comparing Fig. 4c, d with Fig. 4a–d clearly have 
completely different characteristics than Fig. 4a, b. Namely, 
the mapping of the gamma-ray energy spectra of the ran-
domly selected 137Cs and 152Eu in the RGB color space 
exhibits completely different characteristics from those of 
60Co . Through the aforementioned comparison and analysis 

Table 1   The overall flow of the proposed method

Algorithm Feature extraction approach based on image
Descriptor transferring

Input
s : Gamma-ray energy spectrum;
n : Number of columns of P and Q;
cm : Parula colormap, a 64 × 3 matrix;
VGG : A DCNN framework with M groups of
convolution Layers and N fully connected layers;
ImageNet : Public image data set;

Begin
1. s is mapped to matrix form by:

            pij = p⌊k∕n⌋, mod (k,n) = sk

where i = 0, 1,⋯ ,m − 1 , j = 0, 1,⋯ , n − 1;
2. pij is normalized by:

                  qij =
pij−pmin

pmax−pmin

where i = 0, 1,⋯ ,m − 1 , j = 0, 1,⋯ , n − 1;
3.qij is mapped to image form by:

qij =

⎧⎪⎨⎪⎩

cm(1), qij == qmin

cm(64), qij == qmax

ls
−−→cm(2 ∶ 63), qmin < qij < qmax

where qmax = maxi,j

{
qij
}
 , qmin = mini,j

{
qij
}
,

ls means linearly scaled;
4. Q =

(
qij
)
m×n

 is the image form of s after
mapping f ∗ g;
5. Pre-trained model is obtained based on Imagenet:

               PM = VGG ( ImageNet )
6. ci is output of the i-th group of convolution
layers of PM, where i ∈ [1, 2,⋯ ,M];
7. Converting the set of feature maps into set of
feature vectors by GAP

(
ci
)
;

8. f j is output of the i-th fully connected layer
of PM, where j ∈ [1, 2,⋯ ,N];

End
Output

Transferred local features of s:

      F(Q)

L
=
{
GAP

(
ci
)}

, i ∈ [1, 2,⋯ ,M]

Transferred global features of s:

         F(Q)

G
=
{
f j
}
, j ∈ [1, 2,⋯ ,N]
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in Sect. 2, the effects of different measuring durations on Q1 
and Q2 can apparently be ignored under the same measuring 
conditions. Therefore, the information processing of map-
ping the gamma-ray energy spectra from Euclidean space to 

Banach space and then to the RGB color space remains to 
have a strong applicability and can reduce intraclass differ-
ences, thereby helping to extract the essential features from 
the gamma-ray energy spectra of different radionuclides. A 
further quantitative analysis is presented in Sect. 3.

In the feature transfer phase, the structure of VGG and 
the corresponding feature sizes are listed in Table 2, which 
consists of five groups of convolution layers and two fully 
connected layers. The layer number only considers the num-
ber of convolution layers, and the last layer of each group is 
the max-pooling layer. The number of channels in the feature 
size is not changed in the convolution layers, but changes in 
the max-pooling layer owing to the size of the stride param-
eter [the number of output channels in different groups can 
be calculated by Eqs.  (9) and (10)]. For fully connected lay-
ers, the number of output channels is equal to the number of 
neurons in the fully connected layers. The partial parameters 
of the convolution, max-pooling, and fully connected layers 
are shown in Table 3.

The VGG framework was trained on the ImageNet data-
set to obtain the classification model PM. Q1 and Q2 are 

Fig. 3   (Color online) Two original spectra of 60Co . The simulation 
settings of s1 and s2 are essentially the same, and the only difference 
is the total number of simulated particles t1 and t2 , which is equivalent 
to the difference in the measurement duration

Fig. 4   (Color online) Gamma-
ray energy spectrum images. a 
and b are the images of Q1 and 
Q2 , c and d are the images of 
QCs and QEu
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applied as input images for the PM to transfer features, 
and the activation vectors of the fully connected layers and 
activations from the convolution layers in the process are 
transferred as the image descriptors of Qa and Qb . Image 
descriptors transferred from the fifth group of convolu-
tion layers c5 and the first fully connected layer f 1 were 
selected as illustrations. c5 and f 1 from the synthetic and 
measured datasets are shown in a low-dimensional space 
through the t-SNE [48] in Fig. 7. Each color in the fig-
ure represents one type of radionuclide, which intuitively 
reflects the difference in the expressive and discrimina-
tive abilities between the different features. The transferred 
image descriptors have a strong intraclass similarity and 
interclass differentiation, and a further analysis of the fea-
ture performance is presented in the next section.

3 � Experiments and analysis

This section introduces the acquisition and preprocessing 
of the synthetic data and the measured data and establishes 
a series of experiments using 28 classification methods 
based on the Weka machine learning toolkit to verify 
the feasibility of image descriptors transferred from the 
gamma-ray energy spectrum for radionuclide identifica-
tion. Based on the previous experiments, statistical com-
parisons of features through nonparametric and Friedman 
tests were conducted to verify whether image descrip-
tors transferred from DCNNs can be used as an essential 
feature representation for gamma-ray energy spectrum 
images.

3.1 � Data preparation

The production of the synthetic dataset consisted of the fol-
lowing three steps: (1) Background data acquisition. A self-
made 3-inch NaI detector was used to measure the ambient 
background. The measurement was conducted in a labora-
tory environment without the presence of a separate radioac-
tive source. The detector was then placed at a fixed position 
for 12 h. Two measurements were performed, one with lead 
bricks placed around the detector and the other without; two 
sets of background data were obtained. (2) Single-nuclide 
energy spectrum acquisition. Based on the Geant4 platform, 
the transport process of the radioactive gamma-ray particles 
of 26 single nuclides was simulated using the Monte Carlo 
method. We constructed simulated scenarios in Geant4 
containing only different types of single radioactive point 
sources and a 3-inch NaI detector. The positions and rela-
tive distances of the radioactive point sources and detector 
were fixed. A total of one million photons were simulated, 
and their trajectories were recorded by the detector and con-
verted into the gamma-ray energy spectrum. (3) Data syn-
thesis. To simulate real measurements as closely as possible, 
two sets of background data and 26 sets of synthetic spectra 
were linearly superimposed with a random signal-to-noise 
ratio (SNR). SNR = Nnc∕Nbg , where Nnc is the sum of the 
photon counts emitted by the radioactive point source and 
Nbg is the sum of the photon counts of the background. In 
the linear superposition process, the SNR value is a random 
number ranging between 0.3 and 1. A total of 2080 syn-
thetic gamma-ray energy spectra of 26 radionuclides were 
obtained and named as dataset 1. Table 4 demonstrates a list 
of common radionuclides, which includes a total of 26 radio-
nuclides in the following four categories: SNM, industrial, 
medical, and NORM.

The measured gamma-ray energy spectra were obtained 
from radioactive sources in a laboratory environment with 
lead brick shielding. The measurements took advantage 
of a cadmium zinc telluride (CZT) gamma-ray spectrom-
eter from Kromek. The spectrometer has 4096 measuring 
channels; the measurable energy ranges between 25 keV 
and 3.0 MeV, and the electronic noise is lower than 10 
keV. Two types of V radiation sources, 137Cs and 60Co , 

Table 2   The structure of VGG

Layer group Layer number Feature size

Conv1 2 64 × 64 × 64

Conv2 2 128 × 32 × 32

Conv3 3 256 × 16 × 16

Conv4 3 512 × 8 × 8

Conv5 3 512 × 4 × 4

FC 2 4096
Output 1 1000

Table 3   Partial parameters of VGG

Layer name Kernel size/neurons 
number

Stride Padding

Convolution 3 × 3 1 1
Max pooling 2 × 2 2 0
Fully connected 4096 – –

Table 4   Radionuclide library of synthetic sample set

Type Radionuclide

SNM 237NP , 233U , 235U , 238U
Industrial 241Am , 133Ba , 57Co , 60Co , 137Cs,

152Eu , 192Ir , 75Se
Medical 51Cr , 18F , 67Ga , 123I , 125I , 131I,

111In , 103Pd , 99mTc , 201Tl , 133Xe
NORM 40K , 226Ra , 232Th
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and one type of IV radiation source, 152Eu were used in 
the measurement. The spectrometer was carried on the 
Turtlebot robot to quantitatively control the measuring 
distance and reduce radiation damage to the experimental 

operators. As shown in Table 5, seven groups of samples 
were established; the measuring object, measuring dis-
tance, and measuring duration were varied in the process. 
A total of 150 measured gamma-ray energy spectra of 
three single radiation sources and a total of 200 measured 
gamma-ray energy spectra of four mixed radiation sources 
were obtained and named dataset 2. Figure 5 presents the 
spectrum of 60Co in different sample sets. Figure 6 pre-
sents the gamma-ray energy spectrum images in different 
sample sets.

3.2 � Feature performance comparison and analysis

Research have shown that image descriptors transferred 
from DCNNs can provide a reliable performance for image 
classification problems. However, choosing different fea-
tures for a specific classification domain remains worth 
discussing. For the domain of the radioactive gamma-ray 

Table 5   Grouping of gamma-ray energy spectrum samples

Set name Nuclide type Capacity

Data set 1 Radionuclides listed in Table 4 2080
Data set 2 60Co 50

137Cs 50
152Eu 50
137Cs , 60Co 50
137Cs , 152Eu 50
60Co , 152Eu 50
137Cs , 60Co,152Eu 50

Fig. 5   Examples of synthetic and measured spectra. a displays a 60Co synthetic spectrum, and b displays a real measured 60Co spectrum

Fig. 6   (Color online) Examples of synthetic and measured gamma-ray energy spectrum images. Group a are synthetic gamma-ray energy spec-
trum images of 26 radionuclides, group b are measured gamma-ray energy spectrum images of 7 single and mixed radionuclides
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energy spectral classification presented in this study, and 
considering the limitation of the computing resources and 
the scale of parameters, VGG-16 was chosen as the DCNN 
framework owing to the characteristic that VGG-16 applies 
a significantly small 3 × 3 receptive field (filters) throughout 
the entire network with the stride of 1 pixel. A combination 
of multiple 3 × 3 filters and nonlinear activation layers can 
replace a receptive area of a larger size, which makes the 
decision functions more discriminative to the characteristics 
of the spectrum. This imparts the ability of the network to 
converge faster [46]. In addition, the consistent use of 3 × 
3 convolutions across the network makes the network sig-
nificantly simple, elegant, and conveniently transfers image 
descriptors.

In this subsection, 28 classification methods based on the 
Weka machine learning toolkit [49] were applied in a series 
of experiments to verify whether image descriptors trans-
ferred from a DCNN model can be used to construct a clas-
sification model with a strong discrimination and advanced 
accuracy. Owing to the large number of transferred features 
(five sets of local features and two sets of global features 
for a single energy spectrum), in an actual training process, 
using only a certain set of features is sufficient to build a sat-
isfactory classifier. Therefore, in the experiments described 
in this subsection, single sets of local and global features and 
combinations of high-level features were used to conduct the 
experiments. Multiple groups of transferred image descrip-
tors from the synthetic and measured datasets were applied 
in the training and testing processes of the 28 classifica-
tion models. All classification models were trained with the 
default parameters and settings specified in the toolkit, and 
the experiments applied the tenfold cross-validation method 
to avoid the imbalance caused by random data segmentation. 
The percentage of misclassified cases for transferred features 
on the synthetic dataset and measured dataset are listed in 
Tables 6 and 7. The significance of bold in the tables is the 
percentage of misclassified cases that performed well in each 
experiment.

The results demonstrate that although the gamma-ray 
energy spectrum images are completely unfamiliar to the 
DCNN model and have not been used in the pre-training 
process, the transferred image descriptors achieved good 
classification results.

For local image descriptors, a higher group of convolu-
tion layers can provide more discriminative descriptors than 
a lower group of convolution layers. Part of the multi-group 
union image descriptors can provide better resolution, and 
different arrangements of image descriptors from the same 
groups also have an impact on the results. The best average 
classification effect of the local image descriptors on the 
synthetic dataset was the multi-group union image descrip-
tors composed of c3 , c4 , and c5 , which was 93.08%. Local 
image descriptors achieved the best average classification 

effect on the measured dataset c5 , which was 93.51%. The 
best classification effects of the local image descriptor on the 
synthetic and measured datasets were 100.00% and 99.71%, 
respectively.

For the global image descriptors, f 1 , which is transferred 
from the first fully connected layer, has strong semantic 
information, achieving an average accuracy of 92.76% 
and 94.86% on the synthetic dataset and measured dataset, 
respectively. The best classification effects of the global 
image descriptors on the synthetic and measured datasets 
were both 100.00%. In contrast, the classification model 
trained on the global image descriptors transferred from the 
second fully connected layer achieved a poor classification 
performance. The aforementioned experiments have pre-
liminarily proved that image descriptors transferred from 
a DCNN model can be applied as the image descriptors of 
radionuclide gamma-ray energy spectrum images for clas-
sification; however, further comparisons of the features of 
gamma-ray energy spectra and different image descriptors of 
the gamma-ray energy spectrum images are needed.

3.3 � Statistical comparison

Characteristic peaks are the most important features of tra-
ditional radionuclide identification methods. Four groups 
of characteristic peaks were extracted from the gamma-ray 
energy spectra by changing the peak properties, that is, dis-
tance, prominence, width, and threshold. Scale-invariant 
feature transform (SIFT) [50] and a histogram of oriented 
gradients (HOG) [51] are two classical feature extraction 
algorithms used in computer vision. Two groups of features 
extracted from the gamma-ray energy spectrum images 
were obtained using the HOG and SIFT algorithms. Fig. 7 
demonstrates various features of the synthetic and meas-
ured data sets in a low-dimensional space through the t-SNE 
[48], which including characteristic peaks, features extracted 
by HOG and SIFT, present local image descriptors c5 and 
global image descriptors f 1 . As shown in Fig. 7, the distribu-
tion of the characteristic peaks is chaotic, and no apparent 
clustering center is observed for the different radionuclides. 
While HOG and SIFT features can form apparent clustering 
centers in certain radionuclides, the features of these radio-
nuclides exhibit a significant crossover. Simultaneously, the 
transferred local and global image descriptors were signifi-
cantly enhanced in feature discrimination, and the aggrega-
tion between similar feature points was also stronger.

The aforementioned features from one- and two-dimen-
sional spectral images were applied in 21 classification 
methods using the Weka machine learning toolkit [49]. All 
experiments applied the tenfold cross-validation method to 
avoid the imbalance caused by random data segmentation. 
The proportions of misclassified samples in the experiments 
are listed in Tables 8 and 9. These results provide a basis 
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for evaluating the performance of the transferred features. 
However, from a statistical point of view, these results do not 
provide strong support for identifying a group of features. 
For a statistical comparison of features, the nonparametric 
test method recommended by Demšar [52] was considered 
for comparing multiple features using several classification 
methods. First, we tested whether there were significant dif-
ferences among the seven groups of features. The Friedman 
test was then applied to compare several features of the mul-
tiple classification methods.

Assuming that Num types of classification methods and k 
groups of features are involved in this experiment, the imple-
mentation of the Friedman test assigns a value rj

i
 to each 

group of features, which indicates the rank of the feature j on 
the i-th classification method. The average rank R of feature 
j was computed using Eq.  (13).

The null hypothesis was established, which states that all 
features have the same statistical performance. The Fried-
man statistic is asymptotically �2 distributed with k-1 
degrees of freedom and is computed using Eq.  (14).

The null hypothesis is rejected if the size of �2
F
 exceeds the 

critical value, which indicates that there is a statistically sig-
nificant difference between the classifiers. Conversely, the 
null hypothesis is accepted if the size of �2

F
 does not exceed 

the critical value. A post hoc test was applied to determine 
the nature of the differences and compare the relative per-
formances of different features when the null hypothesis was 
rejected.

(13)Rj =
1

Num

∑
i

r
j

i
.

(14)�2
F
=

12Num

k(k + 1)

(∑
j

R2
j
−

k(k + 1)2

4

)

Table 6   Percentage of misclassified cases for transferred image descriptors on synthetic data set

Classification method c1 c2 c3 c4 c5 c4,5 c5,4 c3,4,5 c5,4,3 f 1 f 2 f 1,2

Bayes Net 16.68 5.62 5.62 1.20 45.14 0.43 0.43 0.87 0.82 0.43 68.80 0.48
Lib SVM 56.87 39.04 39.04 32.36 27.40 29.47 29.57 30.43 30.48 15.38 97.12 34.62
RBF Classifier 70.38 69.37 69.37 75.34 71.39 72.07 72.12 72.98 72.60 69.23 80.12 –
RBF Network 11.01 3.03 3.03 0.38 0.00 0.00 0.00 0.00 0.00 0.00 85.34 32.45
Simple Logistic 2.07 0.05 0.05 0.10 0.00 0.24 0.24 0.00 0.24 0.00 69.95 0.00
SMO 15.53 0.05 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 57.31 0.24
IBk 1.73 0.05 0.05 0.00 0.10 0.00 0.00 0.00 0.00 0.00 81.35 1.44
LWL 38.37 24.71 24.71 15.72 14.76 33.41 13.65 14.47 14.47 8.37 85.58 34.86
Attribute Selected Classifier 9.62 1.54 1.54 1.25 1.15 0.91 0.96 0.96 0.72 1.43 85.10 1.43
Bagging 4.37 1.06 1.06 0.29 3.70 0.38 0.19 0.38 0.14 0.24 82.69 0.48
Classification Via Regression 3.27 1.59 1.59 0.53 1.15 0.38 0.82 4.00 0.82 0.96 82.69 2.88
Filtered Classifier 8.89 6.59 6.59 0.53 6.54 6.39 7.26 6.01 5.72 6.63 86.92 7.74
Iterative Classifier Optimizer 2.98 0.72 0.38 0.24 0.00 0.00 34.86 0.00 0.00 0.72 78.85 0.72
Logit Boost 2.98 0.38 0.38 0.24 0.19 0.14 0.00 0.00 0.00 0.48 80.71 0.00
MultiClass Classifier 2.31 0.05 0.05 0.10 0.24 0.00 0.00 0.00 0.00 0.24 86.54 0.00
MultiClass Classifier Updateable 0.00 0.34 0.34 0.00 0.00 0.00 0.00 0.00 0.00 0.24 82.21 3.12
Random Committee 2.50 0.24 0.24 0.05 0.19 0.00 0.00 0.00 0.00 0.00 87.02 0.00
Randomizable Filtered Classifier 4.86 0.34 0.34 0.24 0.10 0.10 0.19 0.14 0.19 0.24 93.51 90.19
Random Sub Space 3.51 0.77 0.77 0.05 0.19 0.10 0.05 0.10 0.19 0.24 83.89 0.19
Decision Table 20.38 17.93 17.93 12.93 0.34 12.31 12.36 15.91 18.27 21.87 88.70 21.87
JRip 8.46 5.34 5.34 3.70 3.75 12.31 4.57 0.00 6.01 0.19 88.46 0.00
OneR 41.44 41.39 41.39 45.14 48.12 43.17 43.17 41.54 42.12 64.66 94.23 64.71
PART​ 4.95 1.39 1.39 1.15 1.59 1.30 1.15 1.25 1.06 2.36 88.46 1.59
J48 4.86 1.30 1.30 0.62 1.25 0.62 0.62 0.87 0.53 1.20 91.11 1.44
LMT 0.00 0.00 0.05 0.00 0.48 0.48 0.48 0.24 0.24 0.00 68.92 0.00
Random Forest 2.07 0.24 0.24 1.73 0.24 0.00 0.00 0.00 0.00 0.00 79.52 0.05
Random Tree 6.73 2.93 2.93 1.73 3.12 2.84 2.26 2.21 2.45 4.66 92.55 5.19
REP Tree 6.39 2.79 2.79 2.16 2.16 1.87 1.35 1.49 1.44 3.08 86.30 3.08
Mean 12.61 8.17 8.16 7.06 8.33 7.82 8.08 6.92 7.09 7.24 83.36 11.44



A novel approach for feature extraction from a gamma‑ray energy spectrum based on image descriptor…

1 3

Page 13 of 17  158

Table 7   Percentage of misclassified cases for transferred image descriptors on measured data set

Classification method c1 c2 c3 c4 c5 c4,5 c5,4 c3,4,5 c5,4,3 f 1 f 2 f 1,2

Bayes net 6.57 5.71 6.00 8.29 8.29 8.57 8.57 8.00 8.00 4.86 32.86 32.86
Lib SVM 54.29 54.29 52.57 45.14 40.00 41.43 41.43 41.14 41.14 30.00 36.00 30.57
RBF classifier 38.29 45.71 33.71 30.29 26.00 36.29 27.14 33.43 34.29 22.86 61.43 –
RBF network 18.86 22.57 9.71 6.29 2.86 3.43 3.43 3.71 3.71 1.43 65.71 33.14
Simple logistic 9.71 4.86 2.57 2.29 3.14 1.14 3.43 1.14 1.14 0.57 34.29 0.57
SMO 24.00 14.57 1.43 0.86 0.57 0.57 0.57 0.86 0.86 0.57 22.57 22.57
IBk 2.57 2.00 1.14 0.86 0.86 0.57 0.57 0.86 0.57 0.00 42.86 42.86
LWL 39.43 30.00 35.43 18.86 16.00 18.29 18.29 18.29 18.29 11.43 62.86 63.71
Attribute selected classifier 5.14 7.43 5.71 6.57 4.29 6.86 6.57 5.43 6.00 6.00 65.71 1.43
Bagging 3.71 2.86 4.86 3.14 2.86 3.43 2.00 4.57 2.29 2.00 47.14 34.29
Classification via regression 4.00 4.00 3.71 4.00 4.86 4.57 4.29 4.00 4.57 2.00 52.74 2.00
Filtered classifier 5.14 5.71 5.43 6.29 9.43 5.71 6.00 6.00 6.00 62.57 62.57 62.86
Iterative classifier optimizer 3.43 2.86 2.86 2.86 2.57 2.00 4.00 2.57 2.57 1.71 51.14 0.00
Logit boost 3.43 2.57 3.43 2.86 2.29 2.00 2.00 2.57 2.57 0.57 42.86 0.29
MultiClass classifier 9.71 5.43 3.14 2.29 1.43 1.43 1.14 1.71 2.00 2.00 54.28 8.57
MultiClass classifier updateable 38.29 14.29 4.00 4.00 1.43 1.71 1.71 2.29 1.71 4.00 35.71 4.29
Random committee 2.00 2.57 1.71 2.29 2.00 2.00 1.14 1.14 1.14 1.14 55.71 0.57
Randomizable filtered classifier 4.57 5.14 3.71 3.71 2.57 2.57 3.14 3.14 3.14 2.00 79.14 61.14
Random sub Space 3.43 2.00 1.71 2.00 2.00 2.00 4.00 3.14 3.14 1.71 48.86 79.71
Decision table 5.43 8.29 8.86 9.43 6.57 9.71 8.00 10.29 9.14 8.00 66.86 8.00
JRip 6.86 6.57 5.14 5.71 9.43 4.29 6.29 6.86 6.57 6.00 63.43 4.29
OneR 8.86 11.72 9.14 8.57 12.57 9.71 9.71 9.71 9.71 14.29 79.71 14.29
PART​ 3.71 5.72 5.43 5.14 4.57 4.00 4.29 6.00 5.14 2.00 63.71 2.00
J48 3.14 4.86 4.86 4.00 4.29 3.43 3.43 4.86 4.57 2.57 72.00 2.57
LMT 2.57 4.57 2.57 2.29 0.57 1.14 0.86 1.14 1.14 0.57 32.86 0.57
Random forest 2.29 2.29 1.14 0.86 1.14 0.29 0.57 0.57 0.57 0.57 40.57 0.57
Random tree 4.29 4.57 4.57 5.71 4.00 4.57 5.14 4.57 3.71 2.86 74.57 4.00
REP tree 5.14 6.86 7.71 5.43 5.14 4.86 5.14 5.71 5.14 5.71 63.14 5.71
Mean 11.39 10.36 8.29 7.14 6.49 6.66 6.53 6.92 6.74 5.14 53.97 19.39

Fig. 7   (Color online) Visualization of various features by t-SNE. Each color in the figure represents one type of radionuclide, which intuitively 
reflects the difference in the expressive ability and discrimination ability between different features
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In our experiments, the significance level � value was 
set to 0.05, the corresponding critical value of dataset 1 
was calculated as 2.2541 while �2

F
 = 44.8442, and the cor-

responding critical value of dataset 2 was calculated as 
2.2541 while �2

F
 = 2.6218. The result of the Friedman test 

indicated that the null hypothesis was rejected; therefore, 
further Holm tests [52] were required to compare the per-
formance of the different features.

The test statistics of the Holm test for comparing fea-
tures in a pair-wise manner are formulated in Eq. (15).

Using the z value obtained from Eq. (15), the corresponding 
probability p can be determined from the normal distribu-
tion table and is compared with the appropriate � to deter-
mine whether the hypothesis is rejected, that is, whether 
the proposed model is better than a certain classifier. Let 
p1, p2,… , denote the ordered corresponding probability p 

(15)z =
(
Ri − Rj

)
∕

√
k(k + 1)

6Num

values; thus, p from all the features have the following rela-
tionship: p1 ≤ p2 ≤ … ≤ pk−1 . The step-down procedure of 
the Holm test begins with the most significant p value and 
compares each pi with the adjusted � , which is calculated 
using �∕(k − i).

If the adjusted � corresponding to the feature, �∕(k − 1) , 
is higher than p1 , the corresponding null hypothesis is 
rejected and indicates that both features have the same per-
formance, and subsequently proceeds to compare p2 with 
the corresponding adjusted � , �∕(k − 2) . If the second null 
hypothesis remains rejected, the experiment continues to 
test the third null hypothesis, and so on. Once a certain null 
hypothesis is accepted, all remaining null hypotheses are 
preserved.

In our case, f 1 was chosen as the representative of the 
transferred image descriptors and compared with other 
groups of features. For data set 1, Rf 1

 = 1.1818, Rp e a k s-1 = 
2.0909, Rp e a k s-2 = 3.3636, Rp e a k s-3 = 3.9091, Rp e a k s-4 = 
4.7727, RH O G = 5.5455, RS I F T = 7.0000. For data set 2, Rf 1

 

Table 8   Percentage of 
misclassified cases for various 
features on synthetic data set

Classification method peaks-1 peaks-2 peaks-3 peaks-4 f 1 HOG SIFT

Bayes net 0.0111 0.0236 0.0125 0.0332 0.0043 0.1091 0.4663
RBF network 0.0625 0.0409 0.0721 0.0841 0.0000 0.2404 0.4976
Simple logistic 0.0163 0.0899 0.1212 0.1986 0.0000 0.1562 0.4952
SMO 0.1370 0.3389 0.3144 0.3649 0.0000 0.1562 0.4663
IBk 0.0163 0.3389 0.0264 0.0538 0.0000 0.1774 0.4832
Bagging 0.0139 0.0139 0.0298 0.0269 0.0024 0.1457 0.3918
Multi class classifier 0.0308 0.2043 0.1625 0.2904 0.0024 0.4452 0.7572
JRip 0.0163 0.0130 0.0274 0.0341 0.0019 0.2144 0.5673
J48 0.0087 0.0091 0.0216 0.0192 0.0120 0.1712 0.4784
LMT 0.0101 0.0423 0.0221 0.0596 0.0000 0.1683 0.4952
Random forest 0.0034 0.0043 0.0091 0.0087 0.0000 0.1187 0.3822
Mean 0.0308 0.0726 0.0745 0.1067 0.0021 0.1912 0.4982

Table 9   Percentage of 
misclassified cases for various 
features on measured data set

Classification method peaks-1 peaks-2 peaks-3 peaks-4 f 1 HOG SIFT

Bayes net 0.0943 0.1343 0.1114 0.1457 0.0486 0.1257 0.1257
RBF network 0.2143 0.2857 0.1771 0.2600 0.0143 0.1314 0.1429
Simple logistic 0.1057 0.1057 0.1343 0.1343 0.0057 0.1286 0.1629
SMO 0.1971 0.1114 0.1457 0.1114 0.0057 0.1286 0.1286
IBk 0.0914 0.1143 0.1371 0.0971 0.0000 0.1571 0.1343
Bagging 0.1286 0.1143 0.1343 0.1343 0.0200 0.1457 0.1429
Multi class Classifier 0.0943 0.1514 0.1571 0.1343 0.0200 0.1629 0.1600
JRip 0.1514 0.1200 0.1229 0.1286 0.0600 0.1571 0.1400
J48 0.1314 0.0743 0.1171 0.1143 0.0257 0.1857 0.1714
LMT 0.0857 0.1057 0.1371 0.1257 0.0057 0.1286 0.1714
Random forest 0.0829 0.0800 0.0914 0.1057 0.0057 0.1171 0.1171
Mean 0.0943 0.1557 0.1354 0.1356 0.0192 0.1426 0.1452



A novel approach for feature extraction from a gamma‑ray energy spectrum based on image descriptor…

1 3

Page 15 of 17  158

= 1.0000, Rp e a k s-1 = 3.5455, Rp e a k s-2 = 3.2273, Rp e a k s-3 
= 4.5000, Rp e a k s-4 = 4.1818, RH O G = 5.3636, RS I F T = 
5.2273. � = 0.05, Num = 11, and k = 7, and the standard 
error was SE =

√
7×(7+1)

6×11
=0.9211. The results of the Holm 

test are listed in Table 10.
For Dataset 1, the Holm procedure rejects the first, sec-

ond, third, fourth, and fifth hypotheses because the corre-
sponding p values are smaller than the adjusted � . Thus, 
the final hypothesis cannot be rejected. This indicates that 
the transferred image descriptors perform significantly bet-
ter than the characteristic peaks searched by prominence, 
width, and threshold, and features extracted by HOG and 
SIFT at the significance level of �=0.05. The transferred 
image descriptors were not significantly better than the char-
acteristic peaks searched for by distance. For Dataset 2, the 
Holm procedure rejects all the hypotheses, which indicates 
that the transferred image descriptors perform significantly 
better than the characteristic peaks and features extracted by 
HOG and SIFT at the significance level � = 0.05. The filter-
ing basis of searching the characteristic peaks by using the 
distance removes peaks with smaller distances by defining 
the minimum horizontal distance between adjacent peaks 
until all remaining peaks satisfy the distance condition. 
This peak-finding method is effective for the synthesized 
gamma-ray energy spectra using the NaI detector and has a 
larger classification error in the measured gamma-ray energy 
spectra using the CZT detector. Because the resolution of 
the NaI detector is not excellent, and the synthetic energy 
spectra comes from an ideal environmental simulation, the 
simulated energy spectrum has fewer interference peaks, 
while the measured gamma-ray energy spectra fluctuate 
significantly.

The results of the aforementioned comparative experi-
ments prove that image descriptors transferred from DCNNs 
are better than the characteristic peaks extracted from the 
gamma-ray energy spectra and the HOG and SIFT shallow 

features extracted from the gamma-ray energy spectrum 
images. These transferred image descriptors are essential, 
discriminative, and can provide a reliable performance for 
gamma-ray energy spectrum image classification problems.

4 � Conclusion

This study proposes a novel feature extraction approach 
for radionuclide identification to facilitate the extraction of 
structural and essential features and increase the precision of 
identification on the gamma-ray energy spectrum set.

The results of a series of comparative experiments 
between the proposed method, peak-searching-based 
method, HOG, and SIFT using both synthetic and meas-
ured data demonstrate the following conclusions. (1) The 
information preprocessing of the proposed method, that is, 
mapping the gamma-ray energy spectra from a Euclidean 
space to a Banach space and then to an RGB color space, 
is significant for extracting the essential features, which 
can reduce the intraclass differences caused by different 
measuring durations. (2) The feature transfer process of 
the proposed method, that is, transferring the correspond-
ing activation vectors of fully connected layers and activa-
tions from convolution layers in the process from DCNNs 
as image descriptors, can effectively extract the essential 
features of gamma-ray energy spectrum images. (3) Local 
image descriptors transferred from higher convolution lay-
ers provide more discriminative descriptors. (4) The global 
image descriptors transferred from the first fully connected 
layer had the strongest semantic information among the fully 
connected layers. (5) The proposed method outperforms the 
peak-searching-based method, HOG, and SIFT on synthetic 
and measured datasets.

Future studies will focus on exploring the available value 
of other DCNNs in the field of radionuclide identification, 
exploring more feature fusion methods and aggregation 

Table 10   Results of statistical 
comparison

Dataset name i Feature name � =
(
R
i
− RTF

)
∕SE p �∕(k − i)

Dataset1 1 SIFT (7.0000−1.1818) / 0.9211 = 6.3163 0.0000 0.0083
2 HOG (5.5455−1.1818) / 0.9211 = 4.7373 0.0000 0.0100
3 peaks-4 (4.7727−1.1818) / 0.9211 = 3.8984 0.0000 0.0125
4 peaks-3 (3.9091−1.1818) / 0.9211 = 2.9608 0.0031 0.0167
5 peaks-2 (3.3636−1.1818) / 0.9211 = 2.3686 0.0179 0.0250
6 peaks-1 (2.0909−1.1818) / 0.9211 = 0.9869 0.3237 0.0500

Dataset2 1 HOG (5.3636−1.0000) / 0.9211 = 4.7373 0.0000 0.0083
2 SIFT (5.2273−1.0000) / 0.9211 = 4.5892 0.0000 0.0100
3 peaks-3 (4.5000−1.0000) / 0.9211 = 3.7997 0.0001 0.0125
4 peaks-4 (4.1818−1.0000) / 0.9211 = 3.4542 0.0006 0.0167
5 peaks-1 (3.5455−1.0000) / 0.9211 = 2.7634 0.0057 0.0250
6 peaks-2 (3.2273−1.0000) / 0.9211 = 2.4180 0.0156 0.0500
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approaches to develop more powerful descriptors, and 
establishing more universal datasets to further advance the 
research process of radionuclide identification.
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