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Abstract
Nuclear charge density distribution plays an important role in both nuclear and atomic physics, for which the two-parameter 
Fermi (2pF) model has been widely applied as one of the most frequently used models. Currently, the feedforward neural 
network has been employed to study the available 2pF model parameters for 86 nuclei, and the accuracy and precision of the 
parameter-learning effect are improved by introducing A1∕3 into the input parameter of the neural network. Furthermore, the 
average result of multiple predictions is more reliable than the best result of a single prediction and there is no significant 
difference between the average result of the density and parameter values for the average charge density distribution. In addi-
tion, the 2pF parameters of 284 (near) stable nuclei are predicted in this study, which provides a reference for the experiment.

Keywords  Charge density distribution · Two-parameter Fermi model · Feedforward neural network approach

1  Introduction

Starting from when the nucleus was discovered by Ruther-
ford [1], its charge density distribution has been studied 
because it is critical for analyzing the nuclear structure. The 
nuclear charge density distribution provides direct informa-
tion regarding the Coulomb energy of the nucleus, which 
allows it to be used to calculate the charge radius. Addition-
ally, studies regarding high-momentum tails (HMT) caused 
by short-range correlations (SRC) found that the percentage 
of tails is closely related to the distribution of the nuclear 
charge density [2, 3]. An accurate estimation of the neutron 

and proton density distributions is crucial for the study of 
asymmetric nuclear matter in nuclear Astrophysics. The 
nuclear symmetry energy and its density-dependence play 
an important role in understanding the physics of several 
terrestrial nuclear experiments and astrophysical observa-
tions [4, 5]. Considering configurational information entropy 
(CIE), the charge distributions in projectile fragmentation 
reactions may be good probes for determining the thick-
ness of the neutron skin of neutron-rich nuclei [6], among 
other characteristics, such as the density dependence of the 
symmetry energy [7, 8]. In contrast, the charge density dis-
tribution also has a high status in atomic physics [9, 10]. For 
example, if the charge density distribution in the nucleus is 
known, the deformation of the nucleus can be calculated 
and its influence on the electrons in the atom can then be 
determined [11, 12].

Hofstadter measured the charge density of protons in 
the 1950s and described the density distribution of certain 
nuclei based on the findings [13]. Thus far, electron scatter-
ing experiments (elastic and inelastic) have become an effec-
tive method for measuring the nuclear structure [14–17]. 
After obtaining the density distribution data, the follow-
ing two methods can be used to describe the shape of the 
charge density: a model-dependent analysis (e.g., two/three 
parametric Fermi models and two/three parametric Gauss-
ian models), and model-independent analysis (e.g., Fourier 
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Bessel and sum-of-Gaussian analyses) [18]. However, the 
experimental data regarding nuclear charge density remains 
limited. Considering the model-related analysis method 
as an example, fewer than 300 nuclei with charge density 
parameters were confirmed [19–21], which are mainly con-
centrated near stable nuclei.

In recent decades, several microscopic models of nuclear 
structure have been successfully established, nearly all of 
which can calculate the density distribution information, 
such as the ab-initio (Green’s function Monte Carlo method 
[22], self-consistent Green’s function method [23], cou-
pled-cluster method [24], lattice chiral effective field theory 
[25], and Nocore shell model) and the density functional 
theory (DFT) [26]. Both of these can accurately describe 
the nuclear ground-state properties. However, as the nuclear 
mass number increases, the expansion of the configuration 
space limits the calculation range of ab-initio and the shell 
models. The systematicity of the calculation and accurately 
describing is a significant challenge. The density functional 
theory, such as the Skyrme-Hartree-Fock (SHF) method 
[27–29] and Covariant Density Functional Theory (CDFT) 
[30–36], are the most widely used and effective micro-
scopic models for studying nuclear properties. The DFT, 
with a small number of parameters, allows a very success-
ful description of the ground-state properties of nuclei all 
over the nuclear chart [26]. Although its calculation range 
on the nuclear chart is far beyond that of ab-initio and shell 
models, its prediction of the charge density distribution is 
occasionally inaccurate.

Compared to the aforementioned microscopic theoreti-
cal models, empirical models are more commonly used to 
describe the distribution of the nuclear charge density, such 
as the Fermi and Gaussian models in the model-dependent 
analysis method, among which the two-parameter Fermi 
(2pF) model is one of the most widely used. 2pF can 
describe the stability of the central density of larger nuclei 
and demonstrates the exponential decay of the surface den-
sity. More importantly, the 2pF model only requires two 
parameters to describe the nuclear charge density and is easy 
to use. However, only a few nuclei have the 2pF param-
eters according to Refs. [19–21], and other nuclei need to 
be extrapolated from existing experimental data. This can be 
easily performed using machine learning methods.

Machine Learning (ML) utilizes computers to simulate 
or achieve human learning activities. It is one of the most 
intelligent and cutting-edge research fields in artificial intel-
ligence (AI). In recent decades, the prodigious development 
of machine learning applications has impacted several fields, 
such as image recognition [37, 38] and language translation 
[39, 40]. Many algorithms have been developed for machine 
learning to closely resemble the human mind, the core of 
which is the Back Propagation (BP) algorithm, which is the 
most powerful and popular machine learning tool. Other 

algorithms, such as the Decision Tree (DT), Naive Bayes-
ian Model (NBM), SVM and Cluster have also been used 
in several areas, providing powerful tools for particle phys-
ics [41–43] and condensed matter physics [44, 45], among 
others.

In the 1990s, ML along with neural networks was applied 
to the modeling of observational data in nuclear physics [46, 
47] and have been widely used in various fields, such as 
to determine the ground state properties of nuclei includ-
ing the nuclear mass (binding energy), stability, separation 
energy, and branching ratio of radioactive decay, among 
others [46–56]. Others include the excited state [57–60], 
charge radius [61–63], � decay [64, 65], � decay [66–68], 
magnetic moment [69], nuclear reactions and cross sections 
[70–74], nuclear structural data [75–79], giant dipole reso-
nance [80], � decay one-neutron emission probabilities [81], 
density functionals for nuclear systems [82], and nuclear 
data evaluation [83]. Among these, the feedforward neural 
network (FNN) is the most widely used. [46, 47, 50–54, 59, 
60, 63, 68]. This neural network demonstrates a significant 
learning ability because it can learn any function by adjust-
ing the appropriate hyperparameters. Therefore, the FNN is 
adopted to study the 2pF experimental data and for predic-
tions of other nuclei.

The basic formulas of the FNN approach are presented in 
Sect. 2, the prediction results of the charge density distribu-
tion are discussed in Sect. 3, and the summary and perspec-
tives are presented in Sect. 4.

2 � Two‑parameter fermi model 
and feedforward neural network 
approach

2.1 � Two‑parameter Fermi model

In most cases, a two-parameter Fermi distribution:

is assumed for the charge distribution. The parameter c is 
the half-density radius and z is the diffuseness of the nuclear 
surface. N0 is the normalization factor that satisfies the 
following:

where Z is the number of protons.

(1)�2pF =
N0

1 + e
r−c

z

(2)Z = ∫
∞

0

�2pF4�r
2dr,
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2.2 � Feedforward neural network approach

The feedback neural network can be categorized under the 
ML sub-area. FNN mimics human brain functionality to pro-
vide outputs as a consequence of the input computation. It 
is composed of processing units called neurons, which have 
an adaptive synaptic weights [60]. The FNN framework is 
illustrated in Fig. 1, which is a multilayer neural network 
consisting of an input layer, hidden layers, and an output 
layer. The number of hidden layers can vary and the neurons 
are fully connected between the layers.

The output of each layer of the neural network is denoted 
as [a1, a2, a3,… , an] , where a1 is the input of the network 
and an is the output of the network, and the number of each 
layer’s neurons are labeled as [N1,N2,N3,… ,Nn] . For the 
hidden layer, the output ai is calculated using the following 
formula:

where Wi is the weight matrix between the i-1th and ith lay-
ers with shapes of Ni × Ni−1 , and bi is the bias vector of 
the ith layer. The activation function f performs a nonlinear 
mapping of the input, which is an important cause of FNN 
fitting most functions. In this study, the activation functions 
of hidden layers are considered the hyperbolic tangent, tanh:

In the training procedure, the mean squared error (MSE) is 
used as the loss function as follows:

which is used to quantify the difference between the model 
predictions ypre and the experimental values ytar . Here, Ns 
denotes the size of the training set. The learning process min-
imizes the loss function via a proper optimization method. 
A back-propagation algorithm by Levenberg-Marquardt 

(3)ai = f (Wiai−1 + bi),

(4)tanh(x) =
sinh x

cosh x
=

ex − e−x

ex + e−x
.

(5)Loss(ytar, ypre) =
1

Ns

Ns
∑

i=1

(ytar − ypre)
2,

[84, 85] was used to train the FNN. The FNN modifies its 
weights until an acceptable error level between the predicted 
and the desired outputs is achieved. The stochastic gradient 
descent (SGD) method [86] is used in this study to obtain 
the optimal parameters Wi and bi in the network. The SGD is 
a popular alternative to the gradient descent (GD) method, 
which is one of the most widely used training algorithms.

Because the charge radius of the nucleus can be described 
by R = r0Z

1∕3 in most cases [87], considering Z1∕3 in the 
input will help fit the parameter c of 2pF. The following 
alternative formula for the radius has been occasionally 
used in other previous studies[13, 88, 89]: R = r0A

1∕3 , 
where A is the mass number. Therefore, A1∕3 has inputs 
apart from Z,N, Z1∕3 to ascertain the effect of this addi-
tional input. For simplicity, FNN-I3 and FNN-I4 are used 
to represent the FNN approaches with x = (Z,N, Z1∕3) and 
x = (Z,N, Z1∕3,A1∕3) , respectively. To simultaneously pre-
dict the two parameters c and z in 2pF, FNN with a double 
hidden layer structure is adopted.

The experimental data for 2pF are obtained from Refs. 
[19–21]. There are 86 nuclei remaining and their experimen-
tal 2pF data are recorded in the dataset. If the 2pF parameter 
of a nucleus is obtained from multiple independent experi-
ments, the most recent data will be used.

3 � Results and discussion

To obtain reliable results, the neural network is repeat-
edly trained (1000 times), and each training used randomly 
divided training and validation sets, among which the train-
ing set accounted for 80% of the dataset (86 nuclei) and the 
validation set accounted for 20% . Moreover, at the beginning 
of each training session, the network parameters are ran-
domly reinitialized. After each training, FNN-I3 and FNN-
I4 obtain the prediction results of parameters c and z on the 
validation set, which can be compared with the experimental 
results from Refs. [19–21] to obtain a mean-squared-error 
(MSE).

Table 1 lists the MSE statistics of the parameter c and z 
predictions of the FNN-I3 and FNN-I4 approaches for the 
training and validation sets. As the result of FNN is affected 
by parameter initialization, certain training results deviate 
far from the experimental value. In this study, the following 
upper limits of MSE are set for the indicated parameters: 
0.2 for parameter c, and 0.005 for parameter z. Note, the 
two nuclei ( 98In and 102Sb ) that are used in the dataset are 
distant from the others on the nuclide chart and are unstable. 
Removing these two nuclei from the dataset will not affect 
the results by more than 0.002 fm2 and the relative error is 
less than 5% . These errors can be considered the result of 
removing the data from the dataset and do not represent 
any particularities of the two nuclei. Results with an MSE 

Fig. 1   (Color online) A schematic diagram of a neural network with 
four input variables, two output variables, and two hidden layers (five 
neurons H = 5 in each hidden layer). There are also four input and 
two output variables
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greater than the upper limit are eliminated. The number of 
accepted predictions is shown in the last column. The stand-
ard deviation (SD) is also shown in the table, which can be 
obtained as follows:

where N denotes the number of predictions adopted. ypre
i

 
indicates the predicted values and ytar is the target value.

For parameter c, the mean squared deviation of FNN-I3 is 
clearly significantly larger than that of FNN-I4, and the SD 
of FNN-I4 is smaller. Compared to FNN-I3, the mean MSE 
of FNN-I4 is reduced from 0.03913 to 0.02408 fm2 on the 
training sets and from 0.03655 to 0.02286 fm2 on the valida-
tion sets, which is significantly precise for the predictions of 
parameter c. The nuclear charge radius is closely related to 
the mass and proton numbers. Therefore, the aforementioned 
results indicate that the FNN approach is reliable to improve 
the accuracy of the nuclear charge density distribution pre-
dictions based on experimental data by including the known 
effects of physics in the input layer. Note, different com-
binations of the physical quantities are used as the inputs, 
and it is found that parameter c significantly correlated with 
A1∕3 and Z1∕3 (Pearson correlation coefficients of A1∕3 − c 
and Z1∕3 − c are 0.9953 and 0.9969, respectively), whereas 
parameter z is not sensitive to it (Pearson correlation coef-
ficients are – 0.1625 for A1∕3 − c and – 0.1609 for Z1∕3 − c ). 
Therefore, the result of parameter z is not considered in the 
following analysis.

To further evaluate the prediction ability of the FNN 
method, the MSE statistics of parameter c for the fixed train-
ing and validation sets are demonstrated in Table 2. The 

(6)SD =

√

√

√

√
1

N − 1

N
∑

i=1

(

y
pre

i
− ytar

)2
,

columns in Table 2 indicate the same meaning as those in 
Table 1. As the value of parameter c ranges from 2.4 to 7.0 
fm, the FNN approach can be considered to be reliable.

Figure 2 presents the prediction of the charge density dis-
tribution of certain nuclei with a fixed training and validation 
set. The average charge density distributions are obtained by 
applying the 100 FNN models with the best performance 
on the training set, which indicates the smallest loss func-
tion value, and applied it to the validation set to obtain the 
average charge density distributions. The error bands are 
obtained from the standard deviation of the density distribu-
tion values of the 100 FNN models. Figure 2 clearly dem-
onstrates that the error bands of FNN-I4 are significantly 
narrower than those of FNN-I3, indicating that FNN-I4 has 
a higher precision than FNN-I3. Moreover, in most cases, 
the average prediction distributions of FNN-I4 are closer 
to the density distribution obtained using the experimental 
parameters compared to those of FNN-I3. In conclusion, 
FNN-I4 has a higher accuracy than FNN-I3.

To illustrate the rationality of using the average density 
distribution as the prediction result, we compare the average 
result of multiple predictions and the result with the mini-
mum (maximum) error on the validation set, as shown in 
Fig. 3. The 2pF model uses parameters to control the charge 
density distribution; in addition to averaging the charge 
density distribution curve to obtain the average predicted 
density distribution, it can be obtained by averaging the 
predicted parameters. Thus, Fig. 3 presents the prediction 
results obtained using these two averaging methods.

The following useful information can be obtained from 
Fig.  3: First, the distribution of the prediction density 
obtained by the two averaging methods nearly coincide, 
which allows us to conveniently describe the prediction 
result without considering which method to use. Second, the 
prediction results of the single minimum error network are 
not better than the results obtained by averaging. Because 
the effect of randomness is significantly reduced by averag-
ing the results, the following work in this study will use the 
averaging method to obtain the prediction results.

Therefore, it is necessary to further explore the differ-
ences between the two averaging methods. Figure 4 presents 
the average curves and error bands of the charge density 
distributions obtained by the two methods for certain nuclei, 

Table 2   Table caption Mean squared error statistics of parameter c on 
the training and validation sets; the dataset is fixed

Parameter c Input Mean ( fm2) SD ( fm2) Count

Training set Z,N,Z1∕3 0.035 0.031 894

Z,N,Z1∕3,A1∕3 0.024 0.030
Validation set Z,N,Z1∕3 0.038 0.033 900

Z,N,Z1∕3,A1∕3 0.028 0.032

Table 1   MSE statistics of parameters c and z on the training and 
validation sets; the datasets are randomly divided. SD represents the 
standard deviation calculated using Eq. (6)

The count indicates the number of results whose error is within the 
acceptable range (0.2 for c and 0.005 for z)

Input Mean ( fm2) SD ( fm2) Count

Parameter c
Training set Z,N,Z1∕3 0.039 0.037 899

Z,N,Z1∕3,A1∕3 0.024 0.031
Validation set Z,N,Z1∕3 0.037 0.035 891

Z,N,Z1∕3,A1∕3 0.023 0.028
Parameter z Input Mean ( fm2) SD ( fm2) Count
Training set Z,N,Z1∕3 0.001 0.00030 998

Z,N,Z1∕3,A1∕3 0.001 0.00027
Validation set Z,N,Z1∕3 0.002 0.00027 998

Z,N,Z1∕3,A1∕3 0.002 0.00024
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Fig. 2   (Color online) Charge density distributions obtained by FNN-
I3 and FNN-I4. The first row contains nuclei selected from the train-
ing set and the remaining nuclei are those selected from the valida-
tion set. The density distribution determined by the experimental 
parameters are indicated by solid black lines. The density distribu-

tions obtained by the FNN-I3 and FNN-I4 methods are indicated by 
the blue hatched and red hatched regions, and their mean predicted 
values are indicated by the blue-dashed and red-dotted lines, respec-
tively.

and the selection of these nuclei is the same as that shown in 
Fig. 2. Apparently, the error bands obtained by averaging the 
density curves are narrower than those obtained by the other 
methods, although the average curves of the two are signifi-
cantly coincident. This is because even a small change in 
the parameter has a large impact on the density distribution; 
thus, the uncertainty of the parameter is amplified by map-
ping. Therefore, the predicted charge density distribution 
and error band are obtained by the average density curves 
later in this study.

As the interpolation ability of FNN-I4 is verified, all the 
sets are adopted as learning sets to assess the predictive 
power of the neural network. Because the second and fourth 
moments of the charge density distribution ( 

⟨

r2
⟩

 and 
⟨

r4
⟩

 ) 
are important for understanding the nuclear structure (for 
example, using statistical correlation analysis, the diffrac-
tion radius R and surface thickness � are demonstrated to 
be sufficiently determined by 

⟨

r2
⟩

 and 
⟨

r4
⟩

 , especially for 
heavy nuclei [90, 91]), the learning effect of FNN-I4 can be 
evaluated using 

⟨

r2
⟩

 and 
⟨

r4
⟩

.

A comparison of the FNN-I4 predicted and experimental 
values of 

⟨

r2
⟩

 and 
⟨

r4
⟩

 are shown in Fig. 5a, b, respectively. 
Because the neural network directly outputs the parameters 
of the 2pF model, the predicted values of the second and 
fourth moments are calculated approximatively with a high 
precision as follows [92]:

As shown in Fig. 5, the FNN results agree exceptionally 
well with the experimental values, especially for the light-
medium mass nuclei. The rms deviations ( � ) between the 

(7)
⟨

r2
⟩

=
4�N0c

5

5

(

1 +
10

3

�2z2

c2
+

7

3

�4z4

c4

)

,

(8)
⟨

r4
⟩

=
4�N0c

7

7

(

1 + 7
�2z2

c2
+

49

3

�4z4

c4
+

31

3

�6z6

c6

)

,

(9)N0 =
3

4�c3

(

1 +
�2z2

c2

)−1

.
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experimental charge radii and the results of the FNN for 
⟨

r2
⟩

 
and 

⟨

r4
⟩

 are 0.7045 fm2 and 42.83 fm4 , respectively. Inciden-
tally, the RMS deviation of the charge radii is 0.7041 fm . 
The large error between the predicted and experimental 
results for heavier nuclei is acceptable because there are 
few heavier nuclei.

The distributions of the learning and prediction sets are 
shown in Fig. 7, where the solid blue square represents the 
learning set, with a total of 86 nuclei. The solid red squares 
represent the prediction set, which has 284 nuclei. The 
nuclei in the prediction set are selected as follows: consid-
ering the nuclei in the stable nuclei as the endpoints, this 
isotope chain is filled, and the filled nuclides are included in 
the prediction set; the nuclei that are included in the learn-
ing set were eliminated. In Fig. 6, the charge radii of the 
prediction set nuclei, obtained from the FNN-I4 approach, 
are compared with the experimental values. The data of the 
experimental values are obtained from Ref. [93]. Among the 
284 nuclei in the prediction set selected in this study, 230 
have an experimental charge radii.

Figure 6 demonstrates that nearly all of the points are 
close to the line y = x , which indicates that the FNN-I4 pre-
dictions are significantly close to the experimental values, 
with the rms deviation ( � ) between the experimental charge 
radii and the result of the FNN is 0.07693 fm . Certain nuclei 
significantly deviate from the experimental values; they are 
either light nuclei near the oxygen isotope chain or heavy 
nuclei with A > 208 . These nuclei may have different physi-
cal properties that are not sufficiently reproduced by the cur-
rent learning set. With the increase in the experimental data 
available for learning, the prediction accuracy of FNN-I4 in 
these regions may be improved. In summary, the FNN-I4 
method presents a good prediction accuracy. The deviations 
of most predicted nuclei are less than 0.1 fm , which indicates 
that the FNN-I4 method is reliable for predicting the nuclear 
charge distribution. Therefore, the interpolation ability of the 
FNN-I4 method is also significantly promising.

We also attempted to use the FNN-I4 method to pre-
dict the charge density distribution of calcium isotopes 
and obtained the charge radius from it. The experimen-
tal values of the charge radius are obtained from Ref. 
[93]. For the entire calcium isotope chain, only 40Ca is 
included in the learning set, with the other nuclei serving 

Fig. 3   (Color online) The charge density distributions from different 
methods. The charge distributions obtained by using the experimen-
tal parameters are denoted by the solid black lines. The distributions 
obtained by using the mean predicted density and mean predicted 

parameter are indicated by the blue and red solid lines, respectively. 
The distributions obtained by the parameters that minimize (maxi-
mize) the loss function are denoted by the orange (purple)-dashed 
lines. The selection of nuclei is the same as that shown in Fig. 2
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Fig. 4   (Color online) The charge density distributions and error bands 
obtained by the average density distributions (Den) and the average 
parameters (Par) of multiple predictions, respectively, are indicated 
by the blue-dashed lines (blue hatched regions) and red-dotted lines 

(red hatched regions). The density curves determined by the experi-
mental parameters are indicated by the solid black lines. The selec-
tion of nuclei is the same as that shown in Fig. 2

as the prediction set. A few of the results are presented 
in Fig. 8. The uncertainty of the charge density in the 
nucleus center increases when it is distant from the 
nucleus of the learning set; therefore, only the predic-
tion results near 40Ca can be regarded as reliable, limiting 
the extrapolation ability of the FNN-I4 method. How-
ever, most of the predicted values are in good agreement 
with the experimental values, except that it is difficult to 
predict a sudden drop in the charge radius around 48Ca . 
Considering that there is no corresponding situation in 
the existing learning set, adding learning samples can 
help the FNN approach in extracting physical informa-
tion, which is helpful and necessary to improve the pre-
diction accuracy.

4 � Summary

In summary, we have employed the feedforward neural net-
work approach to predict the nuclear charge density distri-
bution, and the results obtained from the FNN are clearly 

demonstrated to be in good agreement with the experimental 
data. The nuclear 2pF model parameters obtained from Refs. 
[19–21] are studied. By adding the input variable of A1∕3 in 
the input layer, the machine learning method can accurately 
describe the 2pF model parameters of the nuclei (in the case 
of randomly dividing the dataset, the deviation in the train-
ing set is 0.02408 fm2 for parameter c and 0.00115 fm2 for 
parameter z), and presents exceptional results in the valida-
tion set ( 0.02286 fm2 for parameter c and 0.00188 fm2 for 
parameter z), which verifies the extrapolation ability of the 
FNN. Then, without any experimental values, the charge 
density distributions (described by the 2pF parameters) of 
the 284 nuclei are calculated using the FNN method. In addi-
tion, the density distribution of the calcium isotopes and 
the corresponding charge radii are obtained using the FNN 
method.

Thus far, experimental data regarding the ground-state 
density distribution of spherical nuclei remains limited. 
Compared to traditional theoretical methods, the neural 
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network method not only reduces the complexity of 
research and avoids complex multi-body problems, but 
also has a great prediction ability with less computa-
tional cost. In future, as the data available for neural net-
works to learn increase, the prediction ability will also be 
improved. Directly learning density distributions rather 
than using the model parameters may further improve the 
prediction.

Fig. 5   (Color online) The differences between the experimental sec-
ond (a) and fourth (b) moments of the charge density distribution and 
FNN training results (red dot)

Fig. 6   (Color online) Comparison of predicted rms charge radii(Rpre ) 
and experimental values ( Rexp ) for nuclei with available data

Fig. 7   (Color online) learning 
set and prediction set in the 
nuclear chart. The learning sets 
are indicated by the solid blue 
square, including all 86 nuclei, 
and the prediction sets are 
indicated by the solid red square 
with a total of 284 nuclei. The 
two blue-dashed lines indicate 
the proton and neutron drip-
lines; the numbers represent 
magic numbers
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