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Abstract
Gamma ray shielding is essential to ensure the safety of personnel and equipment in facilities and environments where 
radiation exists. The Monte Carlo technique is vital for analyzing the gamma-ray shielding capabilities of materials. In this 
study, a simple Monte Carlo code, EJUSTCO, is developed to cd simulate gamma radiation transport in shielding materials 
for academic purposes. The code considers the photoelectric effect, Compton (incoherent) scattering, pair production, and 
photon annihilation as the dominant interaction mechanisms in the gamma radiation shielding problem. Variance reduction 
techniques, such as the Russian roulette, survival weighting, and exponential transformation, are incorporated into the code 
to improve computational efficiency. Predicting the exponential transformation parameter typically requires trial and error 
as well as expertise. Herein, a deep learning neural network is proposed as a viable method for predicting this parameter 
for the first time. The model achieves an MSE of 0.00076752 and an R-value of 0.99998. The exposure buildup factors and 
radiation dose rates due to the passage of gamma radiation with different source energies and varying thicknesses of lead, 
water, iron, concrete, and aluminum in single-, double-, and triple-layer material systems are validated by comparing the 
results with those of MCNP, ESG, ANS-6.4.3, MCBLD, MONTEREY MARK (M), PENELOPE, and experiments. Average 
errors of 5.6%, 2.75%, and 10% are achieved for the exposure buildup factor in single-, double-, and triple-layer materials, 
respectively. A significant parameter that is not considered in similar studies is the gamma ray albedo. In the EJUSTCO code, 
the total number and energy albedos have been computed. The results are compared with those of MCNP, FOTELP, and 
PENELOPE. In general, the EJUSTCO-developed code can be employed to assess the performance of radiation shielding 
materials because the validation results are consistent with theoretical, experimental, and literary results.
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1 Introduction

Ionizing radiation, such as gamma radiation, traverses 
through matter and changes the material structure upon 
interaction with matter. In biological systems and electronic 
devices for space exploration and signaling, exposure to 
radiation can cause damage or injury; thus, adequate protec-
tion is necessitated [1]. Understanding the manner by which 
gamma rays interact with a material to reduce its intensity 
is essential for providing adequate shielding. The photon 
intensities are reduced through photoelectric absorption, 
Compton scattering, pair production, and coherent scatter-
ing interactions [2, 3], which are explained in detail in the 
Sect. 2 herein. Computational techniques are used to analyze 
the transport of photons through matter. The computational 
methods used to analyze photon transport in materials can 
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be regarded as deterministic, such as the discrete ordinate, 
finite element, point kernel, or statistical methods, which 
house the Monte Carlo method [4]. The Monte Carlo method 
is considered the preferred method to simulate gamma radia-
tion penetration through matter as it considers the physi-
cal nature of the interaction process and allows intractable 
results using experiments to be obtained computationally 
[5, 6]. Consequently, the Monte Carlo method has been used 
to benchmark against other methods. Commercial com-
puter codes developed based on the Monte Carlo technique 
include GEANT 4, MCNP, and EGS4 [7–9]. However, stu-
dents cannot easily access these codes for shielding analysis 
because most of them are not open-source codes; in some 
cases, location can limit access to such codes, and the usage 
of these codes requires considerable expertise, which can 
be overwhelming for students, particularly undergraduates. 
Hence, a simple Monte Carlo code, EJUSTCO, is devel-
oped in this study for academic and research purposes, with 
emphasis on graduate and undergraduate students. The pro-
gram is written in MATLAB, which allows the algorithm to 
be implemented, debugged, and tested easily. In addition, 
the code employs gamma-ray cross-sectional data from the 
XCOM database, which are easier to assess and incorporate 
into the code compared with other sources used in other 
codes. Herein, validation results of the code based on the 
dose rate, exposure buildup factor, and radiation albedos as 
quantities of interest are presented [10, 11]. The total energy 
and number albedos are computed for water and aluminum 
in the energy range of 20–100 keV. The obtained albedo val-
ues are validated using results from general-purpose codes 
MCNP, FOLTELP, and PENELOPE. The developed code 
is used to analyze the exposure buildup factor and the dose 
rate of common shielding materials, such as lead, aluminum, 
water, iron, and concrete. The materials are considered sin-
gle-, double-, and triple-layered systems. A comparison of 
the simulation results for the dose rate and buildup factor 
with results from codes such as MCNP, EGS4, GP, and 
ANSI-6.4.3, PENELOPE, and the literature is performed to 
validate the EJUSTCO code. To achieve reliable results, an 
exponential transformation variance technique is employed 
to ensure that the particles reach deeper regions of the 
shield. However, determining the arbitrary parameters used 
in this technique, which are typically obtained through trial 
and error, is challenging. Hence, in this study, we investigate 
the prospects of using artificial neural networks (ANNs) to 
predict the arbitrary parameters by training the generated 
data. ANNs are preferred because they have been shown to 
effectively predict values when the general trends of such 
parameters are unknown; furthermore, ANNs are suitable 
for any function, at least theoretically [12]. Thus, by training 
the available data, the ANN model can fit the data to obtain 
a general model that can predict values without trial and 
error. Based on the unique advantages of neural networks 

[13–15], an ANN model is developed to predict exponential 
transformation parameters. In all validations, the developed 
code agrees well with the experimental results, thus demon-
strating the significant potential of ANNs. Additionally, the 
ANN model is a practical example where current techniques 
can be employed in conjunction with conventional methods. 
In the developed code, photon tracks and the position where 
gamma rays deposit their energies can be generated, thus 
allowing students to visually appreciate the transport process 
within the medium. The remainder of this paper is organ-
ized as follows: the Monte Carlo procedure is described in 
Sect. 2, the general algorithm is provided in Sect. 3, the 
results and discussion are presented in Sect. 4, and the con-
clusion is presented in Sect. 5.

2  Problem investigated and calculation 
procedure

The Monte Carlo simulation of photon transport involves 
several histories of photons from birth to death and requires 
the sampling of various physical parameters that govern 
the trajectory of photons through the medium. A photon 
begins its journey in a medium by assigning its initial posi-
tion and direction. The photon traverse a certain distance, 
which is referred to as the photon path length, before inter-
acting with a medium. This distance is sampled using the 
energy-dependent total cross-section of the medium, within 
which the photon traverses. Once a collision site is reached, 
the photons interact with the medium through different 
mechanisms. The interaction type is selected using indi-
vidual and total cross-sections (interaction probabilities). 
Relevant information regarding the photons at the collision 
site is stored for further processing. This process continues 
until the photon’s history is terminated using several cutoff 
techniques such as energy, weight (in an automated Monte 
Carlo method), and time. For this process to be successful, 
a random number generator must be employed, which is the 
core of the simulation process. In this study, the rand func-
tion in MATLAB is used as a random number generator to 
generate random numbers between (0,1) from the canonical 
probability distribution. The following subsections briefly 
explain the interaction mechanisms and mathematical mod-
els underlying this procedure.

2.1  Interaction mechanisms

The photoelectric absorption effect is an interaction mecha-
nism in which the gamma ray provides all its energy to a 
bound electron, as depicted in Fig. 1a. In this process, some 
of the energy overcomes the binding energy of a bound 
electron, and the free electron absorbs the remaining photon 
energy in the form of kinetic energy. Only a small portion 
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of energy remains in the atom to conserve momentum [16, 
17]. Gamma rays can be scattered when they interact with 
a bound electron through Compton scattering, which con-
sequently changes the photon direction and energy. Addi-
tionally, the bound electrons gain kinetic energy. After the 
interaction, the energy of the secondary photon due to scat-
tering as a function of the scattering angle � is computed 
using Eq. (1).

The Compton scattering mechanism is illustrated sche-
matically in Fig.  1b. Pair production involves the total 
absorption of the primary gamma ray and the generation of 
an electron–positron pair with kinetic energies, as expressed 
in Eq. (2).

where Te− and Te+ are the kinetic energies of the electron and 
positron, respectively.

Based on Eq. (2), the threshold energy for pair pro-
duction is above 1.022 MeV. After a pair is created, the 
positron annihilates to release two photons of 0.511 MeV 

(1)E� � =
E�

1 +
E�

mc2
(1 − cos�)

(2)Te− + Te+ = E� − 1.022MeV,

energy each and traverses 180° opposite each other. This 
mechanism is illustrated in Fig. 1c. Typically, the anni-
hilated photons are followed individually while they are 
traversing 180° apart and are considered the classical 
model in this work. However, a strategy that can reduce 
computational time yet exhibits an extremely small error 
has been suggested previously; in this strategy, only one 
photon with an energy of 0.511 MeV is followed, and its 
weight is compensated by 2. This approach was considered 
a simple model [18]. The two strategies mentioned above 
were investigated to ascertain their accuracy.

2.2  Photon path length and scoring

The photon is transported through a medium by sampling 
the path length to a collision site from the exponential 
distribution, which can be expressed as follows:

where e−�s is the probability of a gamma ray traveling a 
distance s without interaction. Thus, the probability that a 
gamma ray will interact in the interval ds is � ds. Therefore, 
the probability of a gamma ray interacting between distance 
s and s + ds by �e�sds can be expressed as

(3)p(s) = �e−�s, 0 ≤ s ≤ ∞,

Fig. 1  a Photoelectric effect; b Compton scattering; c pair production and annihilation of positrons and electrons
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Hence, the path length can be calculated as shown in 
Eq. (5).

Here, ξ is a random number governed by the canoni-
cal distribution [p(ξ) = 1, 0 ≤ ξ ≤ 1]. Herein, � is the total 
gamma photon attenuation coefficient that describes the 

(4)�

s

∫
0

e−�s
⋅

d s =

�

∫
0

dy ⇒ 1 − e−�s = �.

(5)s = −
1

�
ln(1 − �) = −

1

�
ln�

probability of the photon undergoing an interaction; math-
ematically, it is the sum of the individual cross-sections of 
the interactions. For this code, all photon cross-sections 
were obtained using XCOM [19]. A graphical representa-
tion of the various gamma interaction cross-sections for 
the materials investigated in the study is shown in Fig. 2.

The quantities of importance in the code, namely the dose 
rate, photon exposure buildup factor, and albedo, were calcu-
lated using a surface crossing estimator [20]. The estimator 
for a particle with energy ΔEi in volume ΔVi is expressed as

(6)C(i, j) = C(i, j) + w × l,

Fig. 2  (Color online) Gamma interaction cross-section variation with energy in a aluminum, b concrete, c lead, and d water
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where C(i, j) is the counter, w the weight of the particle, and 
l the path length inside the volume ΔVi . The projection along 
the thickness is expressed as Δxi

|cos�| , as shown in Eq. (7). The 
absolute sign is considered to include all particles moving 
in all directions. When the absolute value approaches 
cos � = 0, a value of 0.005 is assigned to prevent the estima-
tor from becoming indeterminate. By specifying Δxi as 
unity, the scalar flux for energy j outside a particular surface 
can be expressed as

2.3  Translation and rotation of photon

After the tentative path length is calculated using Eq. (5), 
the photon traverses to the next interaction site via coor-
dinate transformation and rotation. The new position of 
the gamma ray after an interaction ( x,y,z ) in the direction 
���⃗u0 =

(
u0, v0,w0

)
= (sin𝜃 cos𝜑, sin𝜃 sin𝜑, cos𝜃) can be com-

puted using Eq. (9).

Next, we introduce the rotation matrix R(�,�) Eq. (10) 
as follows:

The function of the rotation matrix R(�,�) is to transform 
the gamma-ray vector components from the local coordi-
nates to the laboratory coordinate system ( x, y,z ) via the 
azimuthal angle � about the positive z-axis, followed by the 
rotation of the polar angle � about yʹ [21]. After the transfor-
mation, the three components of the new direction cosine, 
namely u, v , and w are calculated using Eq. (11).

Using the aforementioned methodologies, the entire 
gamma-ray trajectory can be described. Each particle is 
monitored from birth until any cutoff condition terminates 
its life history or until it escapes from the medium. During 

(7)C(i, j) = C(i, j) + w ×
Δxi

|cos�| ,

(8)�
(
Ej

)
= �

(
Ej

)
+ w ×

1

|cos�| .

(9)x⃗ = x⃗0 + u⃗0s ⇒

⎧
⎪⎨⎪⎩

x = x0 + u0s

y = y0 + v0s

z = z0 + w0s

(10)R(�,�) =

⎛
⎜⎜⎝

cos� cos� −sin� sin� cos�

cos� sin� cos� sin� sin�

−sin� 0 cos�

⎞⎟⎟⎠

(11)

u = sin� cos� = u0cos� + sin�
(
w0 cos� cos�0 − sin� sin�0

)
v = sin� sin� = v0 cos� + sin�

(
w0 cos� sin�0 + sin� cos�0

)
w = cos� = w0 cos� − sin� sin�0 cos�

particle transport, sampling is performed using known prob-
ability density functions for different physical processes. For 
double- and triple-layer systems, surface-to-surface tracking 
[22] accounts for boundary crossing and regional changes 
in an event in which a photon leaves its current region for 
a new one.

2.4  Variance reduction (Biasing)

Variance is used to increase the efficiency and computa-
tional speed. The developed code applies the survival 
weight, exponential transform, and Russian roulette. The 
survival weight prevents the direct absorption of the parti-
cles by inducing forced scattering. This technique increases 
the number of photons that can penetrate important areas, 
thereby increasing the particle score in significant regions 
of the medium prior to premature absorption. The survival-
weight technique is essential for shielding applications 
involving thick media. The introduced bias is mitigated by 
adjusting the particle weight after each collision by multi-
plying the photon survival weight by a factor, as shown in 
Eq. (12).

where the ratio �c
�

 is the probability of a scattering event.
The photon is assigned a weight of unity from the source, 

i.e., wO = 1 , which is adjusted as the simulation proceeds 
[14]. The exponential transform performs a function similar 
to the survival weight. However, this technique improves 
the particle score by increasing the path length of the pho-
ton when it approaches a region of interest (ROI), i.e., 
where scoring is desired.versely, the particle path length is 
reduced when the particle departs from the ROI. The expo-
nential transformation is executed by replacing the actual 
total cross-section � with a transformed total cross-section 
�′ . expressed as �� = � − cu ., which is dependent on the 
direction, or �� = � ∗ c, which is the direction-independent 
transformed total cross-section [23]. In this code, the latter 
is employed because the directional form introduces fluctua-
tions in the computation of the buildup factor. Subsequently, 
the path length is sampled using the transformed total cross-
section as follows:

The weights of the particles are adjusted accordingly to 
remove the effect of bias as follows:

(12)w = wO

�c

�
,

(13)s =
− ln (�)

��
⇒

− ln (�)

� ∗ c
.

(14)w =
wO

c
e[−s�(1−c)].
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When c > 1, the path length is reduced and is typically 
used in situations where buildup zones exist at the medium 
entrance. If c = 1, then sampling is performed using the 
untransformed total cross-section; meanwhile, if 0 < c < 1, 
then the path length is stretched, which renders its applicable 
to thick media. This technique is useful for shielding prob-
lems in which the particle history is terminated before detec-
tion, which is characteristic of deep penetration problems.

The Russian roulette determines whether a particle’s life 
history must be terminated or continued when its weight is 
low. This technique is typically used to prolong the compu-
tational time. A particle is assigned a probability of survival, 
e.g., 1 out of 10. If a generated random number exceeds 
0.1, then the history is terminated and the particle history 
continues [14].

2.5  ANN

As mentioned previously, obtaining an arbitrary parameter 
for the exponential transformation involves trial and error. 
Once data are available for parameters that require trial and 
error, such data can be trained using machine-learning tech-
niques, such as ANNs, to predict such parameters. An ANN 
is based on the manner in which the human brain processes 
information using neurons. A typical ANN contains neurons, 
which are known as nodes, that are connected to form a web-
like system. Additionally, an ANN comprises an input layer 
that receives input data and transmits it through a hidden 
layer, if such a layer exists. Finally, an output is produced 
after data processing is performed [24]. An ANN can be 
considered a perceptron if it does not contain any hidden 
layers, a multilayer perceptron if it comprises three layers, or 
a deep neural network if it comprises more than three hidden 
layers [25]. Deep learning is desirable owing to its high pre-
cision [26]. In this study, an ANN model, i.e., a deep neural 
network, is proposed to predict the exponential transforma-
tion parameter c. The proposed model is shown in Fig. 3.

The input data are transmitted between the hidden layers 
using a transfer function, which is expressed as

Here, Hj is the input to the next layer and wT
i
 is the 

weight of the ith xi input. The sum of the weights generates 
activation, which is the signal strength. After processing 
the output using the hidden layers, the output is generated 
using an activation function that can be a linear or non-
linear function, such as a sigmoidal hyperbolic function, 
expressed as

Subsequently, the output returned in the output layer is

Because ANNs are machine-learning techniques, the 
network must be trained before deployment. In this con-
text, the suitable learning schemes include the Newton, 
quasi-Newton, Conjugate gradient, gradient descent, and 
Levenberg–Marquardt schemes. The detailed algorithms 
of these schemes are not presented here as they are avail-
able in [27].

2.5.1  Network properties

For the developed ANN, the input parameters were 
the material density and radiation energy, and the out-
put is the parameter c. The simulation results obtained 
from EJUSTCO after validation were used as the dataset 
required to train the network. The network was trained 
using the Levenberg–Marquardt algorithm [28]. The 
numbers of samples for training and validating the model 

Hj =

n∑
i=1

wT
i
xi + b

(15)f (x) = 1
/[
1 + exp

(
−xi

)]
.

(16)yj = 1
/[
1 + exp

(
−Hj

)]
.

Fig. 3  The proposed deep neu-
ral network architecture
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were 34 (60%) and 22 (40%), respectively. The MATLAB 
R2022a software was used to train the ANN model. To 
obtain the optimum configuration in terms of the number 
of hidden layers, an intrinsic MATLAB machine-learning 
optimization tool for selecting the hyperparameters, i.e., 
Bayesopt, which is based on Bayesian optimization, was 
employed.

2.6  Dose rate, exposure buildup factor, and albedo 
evaluation

After all histories have been simulated, the code computes 
quantities that characterize the shield's performance by 
evaluating all tallies corresponding to each. The dose rate 
provides a quantitative measure of the radiation risk at a 
point behind the shield and provides information regarding 
the hazards posed by radiation. The code evaluates the dose 
rate as follows:

where �(r,E) is the total photon flux at a distance r , K the 
dose conversion factor, Eg the average photon energy, and 
�air
en

(
Eg

)

�
 the energy absorption coefficient of air at energy Eg . 

The dose is the total dose at a point comprising both scat-
tered and noncollided photons.

The exposure buildup factor is evaluated as the ratio of 
the total dose to the uncollided dose and is expressed as

Here, �u is the uncollided photon f lux defined 
by Beer and Lamber t,  which is expressed as 
�u = �0exp(−�r) =

(
S∕4�r2

)
exp(−�r) ; and �0 is the total 

photon history based on the initial photon flux impinging on 
the material surface.

The integration of the differential albedo generally com-
putes the total albedo over energy and the solid angle for the 
directional domain as a function of both the total number 
and energy albedos as follows:

(17)Dose =

G∑
g=1

𝜑(r,E) ⋅ K ⋅ Ēg ⋅

𝜇air
en

(
Ēg

)
𝜌

,

(18)EBF =

∑G

g=1
�g ⋅ Eg ⋅

�
�ir
en

�
Eg

�

�

�u ⋅ E0

�uir
em

�
Eg

�

�

.

(19)

aN
(
E0, �0

)
=

E0

∫
0

dE

2�

∫
0

d�

�∕2

∫
0

a
(
E0, �0;E, �,�

)
sin�d�,

Here, aN
(
E0, �0

)
 and aE

(
E0, �0

)
 are the number and 

energy of albedos; and a
(
E0, �0;E, �,�

)
 is the differential 

albedo, which is integrated over the energy domain dE as 
well as over the polar and azimuthal domains ( d� and d�, 
respectively). For the Monte Carlo simulations, the total 
number and energy albedo are computed by replacing the 
integrals in Eqs. (21) and (22) with a finite sum and tallying 
for the particles in all directions and energies, which can be 
expressed as follows:

where wi and Ei are the weight and energy of the ith parti-
cle, respectively; and E0 is the incident energy. A schematic 
representation of the reflection process in the material is 
shown in Fig. 4.

3  EJUSCO code

The EJUSTCO code was written in MATLAB as a script 
file. The program begins by inputting the necessary data, 
followed by the computation of once and for all calcula-
tions, such as establishing the energy mesh, cross-sec-
tional tables, and geometric boundaries, as well as ini-
tializing different counters for scoring. Subsequently, the 
program specifies the initial positions and directions of 
the photons. The cross-section is interpolated using the 
photon’s initial energy, and the path length to the first col-
lision is calculated. Next, the particle is shifted to the first 
collision site via translation, as expressed in Eq. 9. At the 
new position, the code interrogates the geometry to deter-
mine whether the photon crosses an internal boundary; if 
it does, then the energy and dose are scored in this region. 
If the crossing suggests that the photon is outside the 
medium, i.e., either at the front or back, then the photon 
history is terminated and a new photon history is started. 
If the photon remains in the medium, then it is shifted 
to the collision site. Because the photoelectric effect is 
not allowed directly, the type of interaction, whether 
Compton scattering or pair production, is determined 
by comparing a random number to the ratio of an indi-
vidual interaction cross-section to the total cross-section. 

(20)

aE
(
E0, �0

)
=

1

E0

E0

∫
0

EdE

2�

∫
0

d�

�∕2

∫
0

a
(
E0, �0;E, �,�

)
sin�d�.

(21)�N
�
E0, �0

�
=

∑NR

i=1
wi

�0

,

(22)�E
�
E0, �0

�
=

∑NR

i=1

Ei

E0

.wi

�0

,
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If the interaction involves scattering, then the new pho-
ton energy is determined by the angle of scattering sam-
pled from the Klein–Nishina distribution using the Khan 
or Koblinger method, depending on the initial photon 
energy. Subsequently, the photon directional cosines are 
determined using the rotational techniques described in 
Sect. 2.5. If pair production occurs, then an annihilated 
photon with energy 0.511 MeV is followed with a weight 
of 2. In either scattering or pair production, the photon 
is followed by repeating the process above until the pho-
ton departs from the medium, the energy falls below the 
energy cutoff, or the history is terminated in the Russian 
roulette. In double- and triple-layer systems, a routine is 
entered after a tentative path length is obtained to verify 
whether the particle has entered a new region of a differ-
ent material. If it has, then the routine sets the distance 
to the boundary and calculates a new path length using 
the correct regional cross-section. A flow diagram of the 
programming algorithm is shown in Fig. 5.

4  Results and discussion

4.1  Comparison of EJUSTCO simulation 
with literature

The aim of this study is to develop a code to investigate 
gamma-ray transport through different shielding materials 
and calculate the quantities used to evaluate the capability 

of gamma-ray shields. In the initial study, monoenergetic 
photons with an energy of 0.662 MeV were simulated using 
20,001 photons/cm2/s as the number of histories in a lead 
medium with a thickness of 1.7 cm (two mean free paths). 
The photon distribution, deposited energy, and final posi-
tions of the photons after each cycle are shown in Fig. 6. 
This plot allows the particle behavior within a material to 
be visualized and understood easily.

The fates of the photons after the simulations as fractions 
of the normalized photon history are presented in Table 1. In 
addition, the dose rate and buildup factor at material thick-
nesses of 1, 1.5, and 2 mfp were computed (see Table 2). 
The results shown in both tables were compared with those 
in the literature, and the percentage errors were computed.

Figure 7 shows the energy spectrum of gamma rays trans-
mitted onto the surface of a 2-mfp-thick water medium, 
which agreed well with that obtained from the wood MON-
TERAY Mark (I) code.

In another simulation using the same number of particle 
histories, the effect of pair production inclusion on the fate 
of photons, buildup factor, and dose rate was investigated 
using lead with thicknesses of 1 and 3 mfp and a monoen-
ergetic photon source of 10 MeV. The results without pair 
production are presented in Tables 3 and 4, whereas those 
with pair production are presented in Tables 5 and 6. In 
both cases, the results were compared with those reported 
in the literature. The results of this study show that at ener-
gies above 1.022 MeV, the effect of pair production is not 
negligible as it increases the buildup factor and hence the 
number of absorption processes in the media. The EJUSTCO 

Fig. 4  Illustration showing gamma rays reflected from a surface. In most shielding applications, the interface between air and a shielding mate-
rial is of interest, with the shield material being the reflective surface (adapted from [14])
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Fig. 5  Flow chart of EJUSTCO algorithm

Fig. 6  (Color online) Distribu-
tion of final position of each 
photon after each history in lead 
media using EJUSTCO
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simulation results agreed well to the results from literature 
for both cases. The energy spectrum for the case of 3-mfp-
thick lead is presented in Fig. 8 for comparison.

According to the literature, annihilated photons can be 
treated via two approaches, as explained in Sect. 2.1. Thus, 
to understand the effect of each model on the simulation 

results and computational time, both models were tested. 
Their effects are listed in Tables 7 and 8. As shown in 
Table 7, the simple model can be safely employed because 
its figure-of-merit (FOM) is higher than that of the classi-
cal model, thus confirming the assertions presented in the 
literature. Meanwhile, Table 8 shows that employing a sim-
ple model significantly reduces the computational time by 
more than one-half of that required by the classical model. 
Therefore, all other analyses were performed using a simple 
model.

4.2  Comparison of exposure buildup factor 
results in single materials with standard codes 
and data

To fully ascertain the usefulness and robustness of the 
code, it must be validated by comparing the results yielded 
by it with standard codes and data for different materials 
with varying thicknesses and photon energies. Thus, expo-
sure buildup factors computed using the EJUSTCO code 
were validated for water (Table 9), lead (Table 10), iron 
(Table 11), aluminum (Table 12), and concrete (Table 13) 
based on results obtained from the EGS4 [29] and MCNP 
[30] standard codes and the ANS-6.4.3 standard [31] for 
material thicknesses up to 8 mfp and energies of 1, 2, 3, and 
4 MeV. In all cases, a particle history of 1 ×  106 was used 

Table 1  Photon fate (total 
fraction = 1) without pair 
production inclusion at 6 MeV 
in water

Photons fate EJUSTCO Wood [13] Error (%) =
|EJUSTCO−WOOD|

WOOD

Absorbed in medium 0.23 0.2315 0.647948
Photons transmitted through medium 0.6698 0.6707 0.134188
Photons reflected from medium surface 0.1001 0.0978 2.351738
Photons with E < Ecut 3.59E-06 3.82E -06 6.020942

Table 2  Dose rate and exposure 
buildup factor comparison at 
6 MeV in water

Thickness 
(mfp)

Parameters EJUSTCO Wood Error (%) =
|EJUSTCO−WOOD|

WOOD

1 Dose rate (R/hr) 0.062 0.0622 0.321543
Exposure Buildup factor 1.406 1.413 0.4954

1.5 Dose rate (R/hr) 0.0428 0.0428 0
Exposure Buildup factor 1.6005 1.602 0.093633

2 Dose rate (R/hr) 0.0292 0.0292 0
Exposure Buildup factor 1.7993 1.802 0.149834

Fig. 7  (Color online) Energy spectrum of gamma-ray (6 MeV) trans-
mitted to 2-mfp-thick water

Table 3  Photon fate (total 
fraction = 1) without pair 
production inclusion at 10 MeV 
in lead

Photons fate EJUSTCO Wood Error (%) = |EJUSTCO−WOOD|
WOOD

Absorbed in medium 0.5521 0.5529 0.144692
Photons transmitted through medium 0.4442 0.4438 0.090131
Photons reflected from medium surface 0.0035 0.0033 6.060606
Photons with E < Ecut 1.36E-27 1.09E-27 24.77706
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in the validation, which resulted in an average maximum 
standard error of approximately 5%.

4.3  Exponential transform parameter prediction 
using ANN

As stated in Sect. 2, determining an arbitrary parameter 
for use in the simulation when the exponential transforma-
tion technique is active can be time consuming and may 
require several trials. Therefore, some knowledge regarding 
the expected value is required. Hence, an ANN model was 
trained to predict these parameters. The model was trained 
using the Levenberg–Marquardt algorithm, which achieved 
an MSE of 0.00076752, as shown in Figs. 9, 10 shows the 
regression plots of the training and validation data. In the 
regression, the accuracy of data fitting for training was indi-
cated by an R-value of 0.99527.

The error and fitting accuracy confirmed that the model 
can be used to predict the parameter c. The values predicted 
using the ANN model were compared with those obtained 
using the EJUSTCO code (see Table 14). The results con-
firmed the viability of using ANNs to predict the exponen-
tial transform parameter. However, because of the few data 
points employed, predictions beyond the range of the dataset 
would be inaccurate, which is a significant disadvantage in 
employing ANNs in regression analysis. Hence, increasing 
the dataset would extend its applicability beyond current 
data ranges. To demonstrate the representativeness of the 

Table 4  Comparison of 
contributions of dose rate and 
exposure buildup factor without 
pair production at 10 MeV in 
lead

Thickness 
(mfp)

Parameters EJUSTCO Wood Error (%) =
|EJUSTCO−WOOD|

WOOD

1 Dose rate (R/hr) 0.0777 0.0738 5.284553
Exposure Buildup factor 1.1 1.1 0

3 Dose rate (R/hr) 0.012 0.012 0
Exposure Buildup factor 1.42 1.41 0.70922

Table 5  Photon fate (total 
fraction = 1) with pair 
production inclusion at 10 MeV 
in lead

Photons fate EJUSTCO Wood Error (%) = |EJUSTCO−WOOD|
WOOD

Pair frac. = 0.4812 Pair frac. = 0.4893

Absorbed in medium 0.6239 0.6707 1.580438
Photons transmitted through medium 0.3240 0.2648 22.35695
Photons reflected from medium surface 0.0559 0.0645 13.33333
Photons with E < Ecut 8.88E-26 8.80E-26 0.852273

Table 6  Comparison of 
contributions of dose rate and 
exposure buildup factor with 
pair production at 10 MeV in 
lead

Thickness 
(mfp)

Parameters EJUSTCO Wood Error (%) =
|EJUSTCO−WOOD|

WOOD

1 Dose rate (R/hr) 0.075 0.0759 1.185771
Exposure Buildup factor 1.13 1.14 0.877193

3 Dose rate (R/hr) 0.0125 0.0126 0.793651
Exposure Buildup factor 1.4 1.41 0.70922

Fig. 8  (Color online) Energy spectrum of gamma-ray (10  MeV) 
transport in 3-mfp-thick lead
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training dataset, Fig. 11 shows the distribution of the data 
in terms of the input parameters. Figure 11a shows that the 
energy range extends from low to high energies in a range 
between 0.5 and 10 MeV. Similarly, Fig. 11b shows the 
distribution of the densities used in the training. Based on 
the distribution, the density spans from less dense to highly 
dense materials, thus capturing materials of diverse den-
sities. Further analyses were conducted to understand the 
effect of incorporating the ANN model on the computa-
tional time required by EJUSTCO. The computational times 
required when the ANN model was used and not used were 
88.776 and 89.673 s, respectively, based on a photon history 
of 20,000. Clearly, incorporating the ANN model did not 
significantly affect the EJUSTCO code.

In Table 15, the total times required to predict parameter 
C using trial and error and the ANN model are listed. Using 
trial and error, an average of four trials was required, which 
corresponded to a total time of 1287.44 s. However, no tri-
als were necessitated for the ANN and hence a short time of 
273.47 s was required. The results clearly indicate that the 
ANN is advantageous because it does not require simula-
tion trials to determine the optimum value. Additionally, the 
effect of the ANN inclusion on the efficiency of the simula-
tion must be ascertained. Thus, the FOMs of different simu-
lation trials involving aluminum, lead, and carbon at 3 MeV 
were computed (see Table 16). For the simulation involving 
aluminum and lead, the FOMs were extremely high in the 
simulation employing the ANN compared with that with-
out the ANN. However, the FOM for the carbon simulation 
with the ANN was lower than that without the ANN. This 
shows that incorporating the ANN can significantly affect 
the simulation efficiency, which is primarily governed by the 
prediction accuracy, as listed in Table 14. 

Table 7  Efficiency of pair production strategy on dose rate and buildup factor calculation

Thickness 
(mfp)

Parameters Simple model Classical model FOM simple model FOM classical model

1 Dose rate (R/hr) 0.075 0.075 8008.9 2541.02
Exposure Buildup factor 1.135 1.142 97 30.99

3 Dose rate (R/hr) 0.0134 0.0132 31,087.8 10,331.70
Exposure Buildup factor 1.49 1.48 7.016 2.328

Table 8  Effect of pair production strategy on computational time

Computational time for simple 
model (s)

Computational time for classical 
model (s)

123.28 389.6

Table 9  Comparison of 
exposure buildup factor in 
water, where standard error 
between EJUSTCO and other 
standard results is shown

Energy 
(MeV)

mfp Water Error (%)

=
|EJUSTCO − ANS − 6.4.3|

ANS − 6.4.3

Error (%) = |EJUSTCO−EGS4|
EGS4

EJUSTCO ANS-6.4.3 EGS4

1 1 1.87 2.08 2.04 9.97 8.21
2 2.99 3.62 3.57 17.30 16.14
3 4.44 5.5 5.54 19.33 19.92
4 6.23 7.68 7.75 18.84 19.57
5 9.00 10.1 10.2 10.93 11.81
6 11.88 12.8 12.9 7.18 7.89
7 14.98 15.8 15.9 5.17 5.77
8 19.74 19 19.2 3.91 2.83

3 1 1.65 1.71 1.66 3.48 0.58
2 2.35 2.46 2.41 4.63 2.66
3 3.11 3.23 3.23 3.75 3.75
4 3.95 4 4.03 1.23 1.96
5 4.74 4.8 4.83 1.17 1.78
6 6.53 5.61 5.63 16.43 16.02
7 7.70 6.43 6.5 19.72 18.43
8 8.14 7.27 7.4 11.99 10.02
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4.4  Dose rate analysis in single‑ and triple‑layer 
material systems

This section presents the dose rate calculated using the 
EJUSTCO code for single- and triple-layer systems. The 

dose rates in aluminum, lead, water, concrete, and iron are 
shown in Fig. 12 for the 1 and 3 MeV energy sources. As 
shown in the plot, the dose reduction reflects an exponential 
decay, which characterizes gamma-ray attenuation. Further-
more, the attenuation reduction for both energies shows that 

Table 10  Comparison of 
exposure build up factor in lead, 
where standard error between 
EJUSTCO and other standard 
results is shown

Energy 
(MeV)

mfp Lead Error (%) =
|EJUSTCO−ANS−6.4.3|

ANS−6.4.3
Error (%) =

|EJUSTCO−EGS4|
EGS4

EJUSTCO ANS-
6.4.3

EGS4

1 1 1.36 1.31 1.36 3.73 0.08
2 1.61 1.61 1.69 0.24 4.51
3 1.89 1.87 1.92 0.94 1.69
4 2.06 2.1 2.18 1.71 5.32
5 2.45 2.32 2.42 5.81 1.44
6 2.66 2.54 2.66 4.89 0.16
7 2.46 2.75 2.88 10.37 14.41
8 2.56 2.96 3.05 13.59 16.14

3 1 1.35 1.41 1.43 4.17 5.51
2 1.65 1.77 1.71 6.74 3.47
3 1.98 2.13 2.13 7.16 7.16
4 2.35 2.51 2.51 6.38 6.38
5 2.70 2.91 2.94 7.19 8.13
6 3.21 3.34 3.39 3.93 5.35
7 3.83 3.81 3.87 0.43 1.12
8 4.42 4.3 4.43 2.83 0.19

Table 11  Comparison of 
exposure build up factor in iron, 
where standard error between 
EJUSTCO and other standard 
results is shown

Energy 
(MeV)

mfp Iron Error (%) =
|EJUSTCO−ANS−6.4.3|

ANS−6.4.3
Error (%) =

|EJUSTCO−EGS4|
EGS4

EJUSTCO ANS-
6.4.3

EGS4

1 1 1.78 1.85 1.76 4.04 0.87
2 2.61 2.85 2.83 8.25 7.61
3 3.66 4 4.03 8.39 9.08
4 5.01 5.3 5.3 5.56 5.56
5 6.25 6.74 6.77 7.33 7.74
6 8.03 8.31 8.38 3.43 4.23
7 9.64 10 10.1 3.62 4.57
8 12.44 11.8 12 5.41 3.65

3 1 1.57 1.64 1.64 4.04 4.04
2 2.20 2.28 2.24 3.47 1.74
3 2.85 2.96 3.01 3.75 5.35
4 3.54 3.68 3.71 3.94 4.71
5 4.29 4.45 4.49 3.62 4.48
6 4.78 5.25 5.31 8.98 10.01
7 5.69 6.09 6.16 6.61 7.67
8 6.79 6.96 7.02 2.50 3.34
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as the energy increases, the ability of the materials to shield 
gamma rays decreases owing to the decrease in the attenua-
tion coefficient of the material.

Similarly, the dose rates within layered materials are shown 
in Figs. 13 and 14, which have been validated via comparison 
with results in the literature [14, 32]. Based on the figures, 
the behavior of photon attenuation can be visualized, i.e., the 
attenuation process involves a combination of individual mate-
rials within the system. To demonstrate the attenuation per-
formance of different single materials and their combinations 

in triple-layer systems, the efficiencies of these systems were 
computed, as shown in Fig. 15.

4.5  Comparison of exposure buildup factor 
in double layer system with standard codes 
and data

The transmission buildup factors for double-layer systems 
were investigated. Specifically, the buildup factor values for 
an iron–water system (medium- and high-atomic-number 

Table 12  Comparison of exposure build up factor in aluminum, where standard error between EJUSTCO and other standard results is shown

Aluminium

Energy (MeV) Thickness (mfp) EJUSTCO ANS-6.4.3 Error (%) =
|EJUSTCO−ANS−6.4.3|

ANS−6.4.3

1 1 2.02 1.99 1.51
2 3.26 3.26 0.00
4 6.37 6.48 1.70

3 1 1.68 1.68 0.00
2 2.38 2.38 0.00
4 3.92 3.86 1.55

Table 13  Comparison of exposure build up factor in concrete, where statistical error between EJUSTCO and other standard results is shown

Energy (MeV) Thickness (mfp) Concrete Error (%) =
|EJUSTCO−MCNP|

MCNP

EJUSTCO MCNP

1 1 2.05 2.05 0.00
2 3.34 3.31 0.91
3 4.76 4.88 2.46
4 6.51 6.59 1.21
5 8.9 8.54 4.22
6 11.29 10.22 10.47
7 14.7 12.18 20.69
8 16.26 15.46 5.17

2 1 1.86 1.86 0.00
2 2.85 2.83 0.71
3 3.96 3.72 6.45
4 5.08 4.77 6.50
5 6.44 5.81 10.84
6 7.63 7.12 7.16
7 8.96 8.24 8.74
8 9.19 9.36 1.82

4 1 1.59 1.77 10.17
2 2.18 2.23 2.24
3 2.81 3.01 6.64
4 3.45 3.45 0.00
5 4.16 4.16 0.00
6 4.86 4.88 0.41
7 5.72 5.56 2.88
8 6.18 6.11 1.15



EJUSTCO: Monte Carlo radiation transport code hybrid with ANN model for gamma‑ray shielding…

1 3

Page 15 of 22 144

materials) were investigated for two cases. In the first case 
(as presented in Table 17), the iron thickness fixed while the 
thickness of water was varied at energies of 1 and 3 MeV. 
Meanwhile, the converse was applied for the second case, as 
shown in Table 18. The results from both cases were com-
pared with the results yielded by the EGS4 and MCBLD 
codes in the literature. Finally, the transmission buildup 
factors for double layers of lead, aluminum, and iron were 
validated at energies of 0.662 and 1.25 MeV via comparison 
with experimental results. In all cases, the results showed 
good agreement, as presented in Table. 19. The exposure 

buildup factor of the triple-layer materials was computed and 
compared with the results yielded by the EGS and PENEL-
OPE codes and an empirical formula derived by Lin and 
Jiang [29] (see Table 20).

4.6  Total number and energy albedo computation 
using EJUSTCO for perpendicular incidence

The concept of albedo is provided in the Introduction section 
and in Sect. 2. This section presents the numerical results 
obtained via EJUSTCO simulations. Figures 16 and 17 show 

Fig. 9  (Color online) Mean 
square error analysis of ANN 
training

Fig. 10  Regression plots showing fitting performance of the ANN model
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the total number albedo values for aluminum and water at 
varying energies. The results were validated using the Monte 
Carlo codes MCNP, FOTELP, and PENELOPE. As shown 
in the figures, all the codes agreed well with one another, 
thus indicating the ability of the developed code to accu-
rately compute albedo values. The general trend shows that 
the albedo increases with energy and is lower for heavier 
materials because of the increased absorption rate in such 
materials. These observations are consistent with those 
reported previously.

Similarly, Fig. 18 shows the energy albedo for both water 
and aluminum, where the same trend is shown. However, 
a slight error exists between our code and that of MCNP, 
which is attributable to the nonconsideration of coherent 
scattering and secondary photon emissions [33] in our code. 
Nonetheless, the results show good agreement.

5  Conclusions and future directions

Motivated by the demand for a Monte Carlo code that can 
be easily accessed without constraints for radiation shield-
ing analysis, we developed EJUSTCO using the Monte 
Carlo technique. In this study, the code was employed 
to evaluate the shielding performance and parameters of 
radiation-shielding materials. The code simulates gamma-
ray particles through different material media by consider-
ing the primary interaction mechanisms, such as Compton 
scattering, the photoelectric effect, pair production, and 
gamma ray annihilation. The EJUSTCO code adopts a 
non-analog Monte Carlo approach using survival weight, 
the Russian roulette, and exponential transform techniques 
to improve computational efficiency. The parameters for 
the exponential transform were predicted based on data 

Table 14  Comparison of parameter c predicted by ANN model with 
data observed from EJUSTCO code

Material Energy EJUSTCO ANN Error (%) =
|ANN−EJUSTCO|

EJUSTCO

Aluminum 0.5 0.77 0.77 0
0.8 0.83 0.83 0
3 0.94 0.94 0
6 0.96 0.96 0

Lead 0.5 1.023 1.02 0
0.8 1.015 1.02 0
3 0.93 0.93 0
6 0.9 0.90 0

Carbon 0.5 0.69 0.76 0.1
0.8 0.73 0.77 0.05
3 0.92 0.60 0.34
6 0.98 0.87 0.11

Fig. 11  Distribution of training sample based on input parameters

Table 15  Total computational time to predict parameter C using trial 
and error and the ANN model

Mechanism Average number of trials Total compu-
tational time 
(s)

Trial and Error 4 1287.445
ANN Not applicable 273.471

Table 16  Effect of the incorporating the ANN model on simulation 
efficiency

Material EJUSTCO
FOM

EJUSTCO/ANN
FOM

Aluminium 0.575 0.661
Lead 0.6046 0.611
Carbon 0.464 0.277
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obtained through trial and error. The model achieved an 
MSE of 0.00076752 and an R-value of 0.99998, which 
demonstrated the viability of the model. The model 
eliminates the necessity for such trials when a simula-
tion is to be performed, provided that the required value 
involves inputs within the range of data used in to train 
the model. Thus, generalizability beyond the data points 
is not guaranteed. Based on this limitation, the dataset 
should be extended to increase the generalization of 

the model. The exposure buildup factor and dose rate 
values in single-, double-, and triple-layer materials of 
lead, iron, concrete, aluminum, and water were investi-
gated. The exposure buildup values were validated with 
results yielded by MCNP, EGS4, ANS-6.4., MCBLD, 
and MONTEREY codes. The EJUSTCO code performed 
well, achieving average values of 5.6% for the exposure 
buildup factor in single materials, 2.75% in double-layer 
materials, and 10% in triple-layer materials. However, 

Fig. 12  (Color online) Dose rate for iron, lead, and water at 1 MeV (a) and 3 MeV (b) with 8 mfp thickness, as predicted by EJUSTCO

Fig. 13  EJUSTCO prediction of relative dose rate variation for different triple-layer shield systems: a water/lead/iron and b lead/water/iron for 
1 MeV gamma photon
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Fig. 14  EJUSTCO prediction of relative dose rate variation for different triple-layer shield systems: a water/lead/iron and b lead/water/iron for 
10 MeV gamma photon

Fig. 15  Efficiencies of single 
and triple-layer materials with 
5 mfp thickness in attenuating 
gamma radiation, as predicted 
by EJUSTCO

Table 17  Comparison of transmission double-layer exposure buildup factor in iron/ water system

Energy (MeV) Media/Thickness (mfp) EGS4 EJUSTCO Error (%) =
|EJUSTCO−EGS4|

EGS4

1 2Fe +  1H2O 4.23 4.7 11.11
2Fe +  2H2O 6.37 6.51 2.20
2Fe +  3H2O 8.73 8.52 2.41
2Fe +  4H2O 10.4 10.25 1.44
2Fe +  5H2O 13.7 13.05 4.74
2Fe +  6H2O 16.4 17.14 4.51

3 2Fe +  1H2O 2.96 2.94 0.68
2Fe +  2H2O 3.74 3.52 5.88
2Fe +  3H2O 4.45 4.25 4.49
2Fe +  4H2O 5.19 4.99 3.85
2Fe +  5H2O 5.97 6.38 6.87
2Fe +  6H2O 6.58 6.82 3.65
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this errors are anticipated because the coherent scatter-
ing was not considered. However, for the energy values 
used in the computation, the coherent scattering event is 
negligible because the photon trajectory reaches a peak at 
such energies. The dose rate behavior in the single- and 
triple-layer materials was investigated, and the profile cor-
responded to that reported in the literature. The shielding 

efficiency when using a single- or triple-layer shield was 
demonstrated by analyzing the attenuation efficiencies in 
each system. The results showed that combining different 
materials with smaller thicknesses and consequently lower 
weights yielded the same attenuation of 98%, whereas a 
single material would require the same thickness with a 
higher weight. This finding is essential in cases where 

Table 18  Comparison of transmission double layer exposure buildup Factor in water/ iron system

Energy (MeV) Media/Thickness (mfp) EGS4 EJUSTCO Error (%) =
|EJUSTCO−EGS4|

EGS4

1 2H2O + 1Fe 3.78 3.59 5.03
2H2O + 2Fe 4.71 4.64 1.49
2H2O + 3Fe 5.83 6.06 3.95
2H2O + 4Fe 6.9 7.4 7.25
2H2O + 5Fe 8.09 7.95 1.73
2H2O + 6Fe 9.55 10.1 5.76

3 2H2O + 1Fe 2.89 2.97 2.77
2H2O + 2Fe 3.48 3.52 1.15
2H2O + 3Fe 4.13 4.01 2.91
2H2O + 4Fe 4.82 4.72 2.07
2H2O + 5Fe 5.52 5.74 3.99
2H2O + 6Fe 6.19 6.28 1.45

Table 19  Comparison of transmission double-layer exposure buildup factor for different configurations of lead, iron, and aluminum

Energy(MeV) Media/Thickness (cm) EJUSTCO EXP Error (%) =
|EJUSTCO−EXP|

EXP

0.662 2Al–2Pb 1.46 1.46 0.00
2Pb–2Al 1.409 1.408 0.07
2Fe–2Al 1.46 1.49 2.01
2Al–2Fe 1.59 1.55 2.58
2Pb–2 Fe 2.08 2.08 0.00
2Fe–2Pb 1.85 1.85 0.00

1.25 2Al–2Pb 1.72 1.73 0.58
2Pb–2Al 1.66 1.67 0.60
2Fe–2Al 1.36 1.38 1.45
2Al–2 Fe 1.45 1.45 0.00
2Pb–2Fe 2.02 2.03 0.49
2Fe–2Pb 1.76 1.76 0.00

Table 20  Comparison of transmission triple-layer exposure buildup factor for different configurations of lead, iron, and water

Energy 
(MeV)

Media/Thickness 
(mfp)

EGS PENEL-
OPE

Lin & 
Jiang

EJUSTCO Error (%) =
|EJUSTCO−EGS|

EGS
Error (%) =

|EJUSTCO−Lin|
lin

Error (%) =
|EJUSTCO−PENELOPE|

PENELOPE

1 2H2O + 2Fe +  1H2O 6.55 7.06 7.76 18.47 9.92
2H2O + 2Fe +  2H2O 8.82 9.81 9.61 8.96 2.04
2Fe +  2H2O + 1Fe 6.91 6.63 6.78 1.88 2.26
2Fe +  2H2O + 2Fe 8.07 7.74 7.8 3.35 0.78
1Pb + 1Fe +  1H2O 2.7 3.77 39.62963
1Pb + 1Fe +  2H2O 4.39 4.47 1.822323
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Fig. 16  Comparison of total 
number albedo as a function 
of energy computed using 
EJUSTCO with general purpose 
codes MCNP, FOTELP, and 
PENELOPE for aluminum

Fig. 17  Comparison of total 
number albedo as a function 
of energy computed using 
EJUSTCO with general purpose 
codes MCNP, FOTELP, and 
PENELOPE for water

Fig. 18  Comparison of total 
energy albedo values computed 
using EJUSTCO and general-
purpose code MCNP
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the shield weight is significant, such as the transportation 
of radiation containers and shields used in the aerospace 
industry. Furthermore, the albedo is an important param-
eter in radiation shielding, particularly in areas where the 
radiation shield is exposed to radiation from a streaming 
duct. The albedo parameters computed in this study were 
the total number and energy albedos for aluminum and 
water. The values obtained during the simulation were 
compared with those yielded by MCNP, PENELOPE, 
and FOTELP. However, errors were observed in the total 
energy albedo values at high energies for water. This error 
was due to the nonconsideration of the coherent scatter-
ing mechanism and secondary photons, which are X-rays 
and bremsstrahlung gamma rays. The evidence for this 
assertion is based on the study conducted by Ezathola, 
which showed that these secondary photons contributed 
significantly to the albedo values, which implies that dis-
regarding them affects the computed results. Additionally, 
coherent scattering becomes important for albedo values 
at high energies, and not considering it can result in a 
maximum error of 12%. Further studies should be per-
formed by considering coherent events and simulating 
secondary photons. In conclusion, based on the results 
obtained thus far, the developed code performed satisfac-
torily. In future studies, a radiation source geometry other 
than the plane source considered in this study should be 
considered. Material geometries, such as spheres, cylin-
ders, and other quadric geometries, should be considered 
as well. A geometry package based on combinatorial mod-
eling or constructive solid geometrical modeling would be 
developed to allow the visualization of the radiation pro-
file in the shielding material. The ANN dataset should be 
increased to extend its applicability to other points outside 
the current range. In addition, the applicability of employ-
ing a neural network to predict the cross-section using the 
Monte Carlo code was demonstrated.
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