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Abstract
The gradient element of the aperture gradient map is utilized directly to generate the aperture shape without modulation. 
This process can be likened to choosing the direction of negative gradient descent for the generic aperture shape optimiza-
tion. The negative gradient descent direction is more suitable under local conditions and has a slow convergence rate. To 
overcome these limitations, this study introduced conjugate gradients into aperture shape optimization based on gradient 
modulation. First, the aperture gradient map of the current beam was obtained for the proposed aperture shape optimiza-
tion method, and the gradients of the aperture gradient map were modulated using conjugate gradients to form a modulated 
gradient map. The aperture shape was generated based on the modulated gradient map. The proposed optimization method 
does not change the optimal solution of the original optimization problem, but changes the iterative search direction when 
generating the aperture shape. The performance of the proposed method was verified using cases of head and neck cancer, 
and prostate cancer. The optimization results indicate that the proposed optimization method better protects the organs at 
risk and rapidly reduces the objective function value by ensuring a similar dose distribution to the planning target volume. 
Compared to the contrasting methods, the normal tissue complication probability obtained by the proposed optimization 
method decreased by up to 4.61%, and the optimization time of the proposed method decreased by 5.26% on average for ten 
cancer cases. The effectiveness and acceleration of the proposed method were verified through comparative experiments. 
According to the comparative experiments, the results indicate that the proposed optimization method is more suitable for 
clinical applications. It is feasible for the aperture shape optimization involving the proposed method.
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1  Introduction

Direct aperture optimization (DAO) [1] for intensity-mod-
ulated radiation therapy (IMRT) can be achieved by using 
approaches such as stochastic search, local gradient-based 
methods, and column generation. A stochastic search ran-
domly moves the multileaf collimator (MLC) leaves to either 
side in small increments from their current position [2, 3]. If 
the motion of the leaves improves the objective function, the 
current position is updated. Otherwise, the position change is 
accepted with a certain probability to avoid the local optima. 
The random nature of stochastic search makes it inefficient 
for aperture shape optimization. In the local gradient-based 
method, the positions of the MLC leaves are the optimization 
variables in the objective function of the optimization problem 
[4]. Because this method uses the local gradient of positions to 
generate an aperture shape, it easily reaches the local optima. 
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In practice, this method largely depends on an appropriate 
initial solution. An alternative is column generation, which 
notably differs from the other two methods [5, 6] that no ini-
tial aperture shape is required, and the gradient information is 
not local, as the network flow is constructed using the gradi-
ent map of the entire aperture to obtain a deliverable aperture 
shape. Unlike the two methods mentioned above, the optimiza-
tion of column generation does not depend on the suitability 
of the initial solution. In this study, an improved method based 
on generic column generation is developed.

In one iteration of the generic method, the pricing prob-
lem is solved first, followed by the master problem. To solve 
the pricing problem, a network flow is constructed using 
the aperture gradient map. It is used to solve the shortest 
path problem and obtain a deliverable aperture shape. This 
process is equivalent to choosing a suitable descent direction 
for the objective function of the optimization problem. If the 
gradient element of the gradient map is not modulated, the 
process is equivalent to selecting the steepest descent direc-
tion for optimization.

The steepest descent method has the advantage of low 
computational cost and can converge from any initial point 
to a local minimum. However, this method typically exhib-
its a sawtooth effect in the region near the minimum value. 
Newton’s method achieves extremely fast convergence near 
the optimum, but is computationally expensive. Quasi-New-
ton methods avoid the explicit matrix required in conven-
tional methods; however, the computation remains highly 
complex. The conjugate gradient method is an effective 
substitute because it has a comparable computational cost 
and converges faster than the steepest descent method. The 
computational complexity of the conjugate gradient method 
is less than that of the Newton’s and quasi-Newton methods. 
The conjugate gradient method is particularly suitable for 
solving large-scale optimization problems and is widely used 
in economics, engineering, physics, and other fields [7–9]. 
In IMRT, the conjugate gradient has been used to optimize 
the weights of beams (apertures) [2, 10] and study the per-
formance of column generation [11].

To overcome the drawbacks of aperture shape optimiza-
tion based on the negative gradient descent direction, this 
study introduced conjugate gradients into aperture shape 
optimization. The search direction containing the conjugate 
gradient information was constructed using the original gra-
dient of the gradient map to efficiently generate the aperture 
shape.

2 � Methods

In this study, based on column generation, the aperture 
shape search direction containing the conjugate gradient 
components was constructed to overcome the problem of 

slow convergence in generating an aperture shape directly by 
using the gradient map without gradient modulation.

2.1 � Dose calculations

During radiotherapy, the patient is irradiated with a pre-
defined beam set denoted by B . Each beam in this study 
consists of m rows and n columns of beamlets, with each 
beamlet size being 1 cm × 1 cm. The set of all generated 
deliverable apertures is denoted by K , and the weight of 
the aperture � is y� . The beamlets in set A� are delivered 
to the patient via aperture � , and the treatment involves S 
structures, where each structure s ( s = 1,… , S ) comprises 
vs voxels. The element in the deposition matrix is the deposi-
tion coefficient Wijs , which represents the dose received by 
j ( j = 1,… , vs ) in structure s from the beamlet i ( i ∈ A� ) 
allowed to pass through the aperture � at unit intensity. The 
dose Djs can be expressed as follows:

2.2 � Column generation

In this study, the optimization problem is constructed as

F(D) is the objective function of the optimization prob-
lem. For s, Ns sub-objective functions F�s

(
Ds

)
 are used to 

constrain the received dose Ds . An excellent description of 
column generation was provided by Romeijn et al. [5]. In 
one iteration, a new aperture shape is generated by solving 
the pricing problem and is accepted into the apertures set. 
The weights of the apertures set are optimized as the master 
problem. The limited-memory Broyden–Fletcher–Gold-
farb–Shanno algorithm for bound-constrained optimization 
[12–14] was employed to optimize the weights of the aper-
tures generated in this study. The optimization was termi-
nated when either the treatment plan met the requirements of 
the planner or the iteration number reached its limit.

When an aperture is generated, its cost should be calcu-
lated [5]. The pricing problem is

(1)Djs =
∑

�∈K

(
∑

i∈A�

Wijs

)
y� .

(2)min F(D) = min

S∑

s=1

Ns∑

�=1

F�s

(
Ds

)
,

(3)s.t.
∑

�∈K

(
∑

i∈A�

Wijs

)
y� = Djs,

(4)y� ≥ 0, � ∈ K.
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where �js =
�Fjs(Djs)

�Djs

 is the Lagrange multiplier under the 

Karush–Kuhn–Tucker (KKT) condition. The interdigitation 
of the MLC was not allowed for the proposed optimization 
method, and the network flow could be employed to solve 
the pricing problem with this constraint. For beam l ∈ B , in 
the rth ( r = 1,… ,m ) row of the beamlets, c1

(
c1 = 0,… , n

)
 

is used to mark the last beamlet of row r covered by the left 
leaf, and c2

(
c2 = 1,… , n + 1

)
 is used to mark the first 

beamlet of row r covered by the right leaf. According to Eq. 
(5), the cost of 

(
r, c1, c2

)
 is the sum of the gradient elements 

not covered by the leaves in the gradient map.
Therefore, the radiation beam was decomposed into rec-

tangular beamlets in this study. Each beamlet gradient was 
calculated and the gradient of the corresponding beamlet 
was arranged according to the position of the beamlet in 
the beam, forming the aperture gradient map. An aperture 
shape that can improve the objective function was gener-
ated according to the gradient map. This generated aper-
ture shape was equivalent to the negative gradient descent 
direction for the optimization process. The search was per-
formed along the negative gradient descent direction, which 
rapidly reduced the function value. However, this did not 
indicate that the convergence speed of the steepest descent 
method was high. The sawtooth effect implies that the search 
direction of a negative gradient is not necessarily the fastest 
descent direction in the global range.

2.3 � Conjugate gradient modulation

Compared with Newton’s and quasi-Newton methods, the 
conjugate gradient method uses simpler calculations, and its 
convergence speed is higher than that of the steepest descent 
method. To speed up the optimization process and improve 
the optimization quality of column generation, the conjugate 
gradient method was used to modulate the gradient to gener-
ate the aperture shape.

2.3.1 � Nonlinear conjugate gradient method

Hestenes et al. [15] proposed a linear conjugate gradient 
method for solving linear equations, whereas Fletcher and 
Reeves [16] proposed a nonlinear conjugate gradient method 
for minimizing general functions. These two methods have 
been subsequently improved. In the ( k + 1)th iteration of the 
generic process of the nonlinear conjugate gradient method, 
the iteration format is xk+1 = xk + �kdk . The conjugate gra-
dient direction dk is updated as follows:

(5)min
�∈K

∑

i∈A�

(
S∑

s=1

vs∑

j=1

Wijs�js

)
,

where x denotes the independent variable of the objective 
function, d denotes the search direction (i.e., conjugate 
gradient direction), and g denotes the first derivative of the 
objective function. The parameter �k is important for non-
linear conjugate gradient methods, because it determines the 
type of method used. Since 1952, a series of representative 
conjugate gradient methods have been proposed, such as 
the Fletcher–Reeves (FR) [16], Polak–Ribère–Polyak (PRP) 
[17, 18], Hestens–Stiefel (HS) [15], Dai–Yuan (DY) [19], 
conjugate descent (CD) [20], and Liu–Storey (LS) [21] con-
jugate gradient methods. The common definitions of �k are 
as follows.

where ‖⋅‖ represents the Euclidean norm and yk−1 = gk − gk−1
.

In recent years, many scholars have improved the conju-
gate coefficient � for the conjugate gradient method [22] to 
achieve good convergence and numerical results [23, 24]. 
This study attempted the conjugate gradient modulation for 
gradient elements of the aperture gradient map. Only the 
basic conjugate gradient direction was used at this stage.

2.3.2 � Search direction based on conjugate gradient 
modulation

The decrease in the objective function value of the column 
generation methods based on conjugate gradient directions 
with different coefficients in Eq. (7) was observed using the 
same objective function in a case of head and neck cancer 
(Fig. 1).

The objective function value of the column generation 
method based on the PRP conjugate gradient direction ini-
tially exhibited the fastest decline. During the second half 
of the iterative process, the objective function value of the 
column generation method based on the HS conjugate gradi-
ent direction exhibited the fastest convergence. Based on the 
above observations, an aperture shape optimization method, 
PRP-HS, based on modulation of the PRP and HS conjugate 
gradients, was proposed.

Two conjugate gradient descent directions were used to 
determine the search direction of the aperture shape. The PRP 

(6)dk =

{
−gk, k = 1

−gk + 𝛽kdk−1, k > 1

(7)

�FR
k

=
‖‖gk‖‖

2

‖‖gk−1‖‖
2
, �PRP

k
=

gT
k
yk−1

‖‖gk−1‖‖
2
,

�HS
k

=
gT
k
yk−1

d T

k−1
yk−1

, �DY
k

=
‖‖gk‖‖

2

dT
k−1

yk−1

,

�CD
k

= −
‖‖gk‖‖

2

d T

k−1
gk−1

, �LS
k

= −
gT
k
yk−1

d T

k−1
gk−1

,
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conjugate gradient direction had priority for decision-making, 
which decreased as the optimization proceeded, and the HS 
conjugate gradient direction increased in decision-making pri-
ority. The expression for dPRP-HS

k
 is

This formula can be rewritten as

The proposed method does not employ the hybrid conjugate 
gradient method [25] to generate the aperture shape. In con-
trast to the hybrid conjugate gradient method, the proposed 
method calculates and saves the corresponding dPRP

k
 and dHS

k
 . 

The direction dPRP-HS
k

 is obtained by combining two conju-
gate gradients through the number of iterations used to 
determine the aperture shape. The aperture search direction 
dPRP-HS
k

 is not used to calculate dPRP
k+1

 and dHS
k+1

 in the next 
iteration. In the proposed method, only basic conjugate gra-
dient classes are used to modulate the gradient. According 
to the Eq. (8), to generate an aperture shape in each iteration, 
PRP conjugate gradient descent direction dPRP

k
 and HS con-

jugate gradient descent direction dHS
k

 should be calculated 
according to the aperture gradient information and previous 
direction information. With an increase in k, the search 
direction of the aperture shape dPRP-HS

k
 gradually moves from 

the PRP-based conjugate gradient descent direction to the 
HS-based conjugate gradient descent direction. When the 
optimization search is close to the optimal value 

(
D∗

js
, y∗

�

)
 , 

gk−1 ≈ gk = 0 , according to Eq. (7), the values of �PRP
k

 and 

(8)dPRP-HS
k

=
1

k
dPRP
k

+

(
1 −

1

k

)
dHS
k
.

(9)

dPRP-HS
k

=
1

k

(
−g

k
+ �PRP

k
dPRP
k−1

)
+

(
1 −

1

k

)(
−g

k
+ �HS

k
dHS
k−1

)

= −g
k
+

(
1

k
�PRP
k

dPRP
k−1

+

(
1 −

1

k

)
�HS
k

dHS
k−1

)
.

�HS
k

 are approximately zero. The condition that must be satis-
fied for the optimal solution is as follows:

where L(x) is the Lagrange function and �� is another 
Lagrange multiplier under the KKT conditions [5]. At (
D∗

js
, y∗

�

)
 , subtract 

(
1

k
�PRP
kjs

dPRP
(k−1)js

+

(
1 −

1

k

)
�HS
kjs

dHS
(k−1)js

)
 from 

Eq. (10) without changing the optimal solution to the origi-
nal optimization problem. The proposed method uses a con-
jugate gradient modulation to generate an aperture shape. 
Compared to generic column generation based on the nega-
tive gradient direction, the proposed method achieved faster 
convergence and shorter computation time for plan 
optimization.

3 � Experimental setup and evaluation 
criteria

In this experiment, the classical pencil beam method [26] in 
an open-source computational environment for radiotherapy 
research (CERR) [27] was used to calculate the dose deposi-
tion matrix W . All methods involved in the experiment were 
implemented in Visual C++ (version Visual Studio 2012) 
on a computer with an IntelⓇ CoreTM i9-10900X central pro-
cessing unit at 3.70 GHz, running on Windows 10 with 64 
bits. All cancer cases involved in this study were obtained 
from Shanxi Provincial Cancer Hospital. The simulation 
experiments involving the relevant cancer cases in this study 
were conducted under a protocol approved by the Ethics 
Committee of the North University of China.

The physician defined the organs involved in the head and 
neck cancer cases, as illustrated in Fig. 2a, based on image 
data. Three planning target volumes (PTVs), PTV 70 Gy, 
PTV 63 Gy, and PTV 56 Gy, were obtained by an outward 
expansion of 5 mm in each direction of the three clinical tar-
get volumes (CTVs). The ipsilateral parotid gland (IL-PG), 
contralateral parotid gland (CL-PG), spinal cord, and brain 
stem were considered as the organs at risk (OARs) in the 
optimization [28]. Those OARs were obtained by expanding 
5 mm outwards from the outline of each organ. Nine equally 
spaced 6 MeV co-irradiated photon fields were set on the 
CERR to simulate the head and neck cancer case irradia-
tion. In the optimization process, we constrained the dose 
distribution to the parotid glands using the dose–volume 
(DV) criterion [29] sub-objective function and to the spinal 
cord and brain stem using the maximum dose criterion to 
penalize doses beyond the upper limit, as listed in Table 1. 
The dose distributions to the PTVs were constrained using 
the mean and minimum dose sub-objective functions, and 
the dose distribution to the remaining normal tissues was 

(10)∇Djs,y�
L
(
Djs, y� ,�js, ��

)
= 0,

Fig. 1   Decrease in the objective function value of the above six col-
umn generation methods based on the conjugate gradient direction
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constrained using the maximum dose sub-objective function. 
The optimization iterations were capped at 100 iterations.

For the prostate cancer cases illustrated in Fig. 2b, one 
PTV was set, and the OARs were the bladder and rectum. 
The OARs and PTV were delineated by the physician using 
the image data. Manually delineated bladder and rectal con-
tours were expanded outwards by 5 mm to obtain the OARs. 
The CTV was expanded backward by 5 mm and outwards 
by 10 mm in the remaining directions to obtain the PTV. 
Five radioactive sources with gantry angles of 36◦ , 100◦ , 
180◦ , 260◦ , and 324◦ were used for simulated irradiation. 
The dose distributions for the bladder and rectum were con-
strained using the DV criterion sub-objective function, and 
the DV constraint conditions are listed in Table 2. The mean 
and minimum dose criteria constrained the dose distribu-
tion to the PTV. The maximum dose sub-objective function 
restrained the remaining normal tissue dose distribution. The 
iterations of the optimization process were up to 60.

4 � Results and discussion

Comparative experiments were conducted to compare the 
performance of different methods for head and neck cancer 
cases (labeled as “H1”, “H2”, “H3”, “H4”, and “H5”) and 
prostate cancer cases (labeled as “P1”, “P2”, “P3”, “P4”, and 

“P5”). The total objective function used in the experiments 
was the sum of multiple sub-objective functions multiplied 
by the corresponding penalty factors [30]. In the same set 
of experiments, different contrast methods used the same 
objective function and penalty factors of the sub-objective 
functions. In Sects. 4.1 and 4.2, the optimized results for 
cases H1, H2, P1, and P2 are presented. To evaluate the 
optimized results for cases H1, H2, P1, and P2, the DV his-
togram (DVH) was analyzed using the clinical guidance 
standard (Tables 1, 2) developed by Marks et al. [31]. The 
generalized equivalent uniform dose (gEUD) and normal 
tissue complication probability (NTCP) of head and neck 
[32, 33] and prostate cancer cases [34, 35] were calculated to 
evaluate the protective effect of each method on the OARs. 
Relatively lower gEUD and NTCP values indicated better 
protection of the OARs. The conformity number (CN) [36] 
and homogeneity index (HI) [37] of the PTV were calcu-
lated. When CN and HI were close to 1, the dose distribution 
to the PTV was more conformal and uniform. The running 
time, number of apertures, and trend of the objective func-
tion during optimization were also used to investigate the 
performance of the experimental methods. The optimized 
results for the remaining six cancer cases are concisely 
presented.

4.1 � Results from cases of head and neck cancer

Four optimization methods—generic column generation 
(labeled as “Original”), PRP conjugate gradient direction-
based column generation (labeled as “PRP”), HS conjugate 
gradient direction-based column generation (labeled as 
“HS”), and the proposed method integrating PRP and HS 
conjugate gradient directions (labeled as “PRP-HS”)—were 
employed to optimize case H1. The optimization results are 
shown in Fig. 3 and Table 3.

The DV curves of the PTVs optimized by all the methods 
were mostly consistent (Fig. 3b). This conclusion can also be 
verified by the DV percentage, HI, and CN of the PTVs as 
shown in Table 3. It is apparent from the NTCP and gEUD 
of the OARs in Table 3 that PRP-HS can better protect the 
OARs while ensuring dose distribution to the PTVs. This 
conclusion is supported by the results shown in Fig 3c–f. In 

Fig. 2   (Color online) Distribution of organs involved in the cancer 
cases: a for the head and neck cancer case and b for the prostate can-
cer case

Table 1   DV constraint conditions for the head and neck cancer case

Structure DV parameter

Parotid gland Dmean ≤ 25 Gy

Spinal cord Dmax ≤ 50 Gy

Brain stem Dmax ≤ 54 Gy

PTV 70 Gy V70 Gy > 95% V77 Gy < 5%

PTV 63 Gy V63 Gy > 95% V70 Gy < 5%

PTV 56 Gy V56 Gy > 95% V62 Gy < 5%

Table 2   DV constraint conditions for the prostate cancer case

Bladder Rectum

DV parameter V50 Gy ≤ 50%

V60 Gy ≤ 35%

V65 Gy ≤ 50% V65 Gy ≤ 25%

V70 Gy ≤ 35% V70 Gy ≤ 20%

V75 Gy ≤ 25% V75 Gy ≤ 15%

V80 Gy ≤ 15%
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particular, the parotid glands received the lowest dose after 
optimization of PRP-HS. Table 3, Fig. 3g, h also demon-
strate that the optimization time of PRP-HS was the short-
est, and the decrease in the objective function value was the 
largest in the optimization iteration process.

In this study, the generic aperture shape generation is 
regarded as a search for the negative gradient descent direc-
tion. To address the shortcomings of the negative gradient 
descent direction, the search direction was constructed using 
the conjugate gradient direction. However, when the clas-
sical conjugate gradient direction was used to construct the 
search direction, a decrease in the objective function value 
was not ideal for the entire iterative process. The proposed 
method based on conjugate gradient modulation was used 
to determine the aperture shape. The proposed method 
improves the search direction of generic column genera-
tion. Subsequent cases were optimized using only these two 
methods to verify the improved efficacy of PRP-HS over 
generic column generation. For case H2, the DVHs, dose 
distributions, and decreases in the objective function values 
obtained using these two methods are shown in Fig. 4. The 
performance details of the methods for case H2 are pre-
sented in Table 4.

Similar to case H1, case H2 shows that the dose distri-
butions of the PTVs were mostly consistent (Fig. 4b and 
Table 4). Table 4 shows that, compared with the Original, 
PRP-HS can reduce the NTCP and gEUD of the OARs. 
However, the optimized mean dose received by the parotid 
glands and the maximum dose received by the spinal cord 
and brain stem did not satisfy the evaluation criteria listed 
in Table 1. The dose slices shown in Fig. 4c, d show that the 
organ distribution in case H2 was more compact than that 
in case H1, which makes it more difficult for the dose on the 
OARs, after optimization, to meet the evaluation criteria 
in Table 1. Figure 4e shows that, compared with the Origi-
nal, PRP-HS can significantly reduce the objective function 
value.

4.2 � Results from cases of prostate cancer

Two optimization methods, the Original and PRP-HS meth-
ods, were used to optimize cases P1 and P2. Figure 5 depicts 
the optimization results, and Table 5 presents the evaluation 
index of the OARs and dose distribution to the PTV after 
optimization.

These two groups of comparative experiments verified 
the effectiveness of PRP-HS. In Fig. 5a, b, PRP-HS reduced 

Fig. 3   (Color online) Optimization results of case H1. a DVH of the 
OARs; b DVH of the PTVs after optimization; c–f dose distributions 
of case H1 on the same surfaces after optimization of the four meth-
ods; g decrease in the objective function value in the iterative pro-
cess; and h enlarged figure of g 

▸
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the DV curves of the OARs in the high-dose region, while 
the DV curves of the PTV were mostly consistent. The PTV 
indicators in Table 5 confirm a similar dose distribution 
to the PTV, reducing the NTCP and gEUD of the OARs. 
Although the improvement in the plan quality was not as 
obvious as the optimization results of cases H1 and H2, the 
objective function value decreased significantly during the 
iterative process (Fig. 5c, d).

4.3 � Supplementary experiments

The remaining cancer cases (labeled as “H3”, “H4”, “H5”, 
“P3”, “P4”, and “P5”) were used to verify the performance 
of the proposed method.

On the premise that the dose distribution to the PTVs is 
generally consistent, Tables 6 and 7 present the optimiza-
tion information for the OARs. For the three head and neck 
cancer cases in Table 6, under the premise of meeting the 
dose constraints in Table 1, the proposed method reduces the 
dose received by the parotid glands. As shown in Table 7, 
the proposed method reduced the NTCP and gEUD of the 
OARs in the three cases of prostate cancer.

4.4 � Discussion

A suitable gradient descent direction was selected for opti-
mization to solve the pricing problem in generic column 
generation. This is considered the direction of negative gra-
dient descent. Although it has a low computational complex-
ity, the steepest descent method is prone to the sawtooth 
effect when searching near the minimum value, resulting 
in reduced search efficiency. Compared with Newton’s and 
quasi-Newton methods, the conjugate gradient method 
with its lower computational complexity is an ideal choice. 
Figure 1 reveals that column generation methods based on 
conjugate gradient direction are superior to generic column 
generation in different degrees during the iteration. How-
ever, the convergence performance of column generation 
methods based on different conjugate gradient directions 
is not always suitable during the optimization process. A 
method based on conjugate gradient modulation was pro-
posed to accelerate the descent speed of the objective func-
tion value without reducing the result quality. In Fig. 3g, 
h, the proposed method combined the advantages of PRP 
and HS, and decreased faster than the Original method. The 
optimization times listed in Table 3 show that PRP-HS was 

Table 3   Results obtained by the 
four optimization methods for 
case H1

Original PRP HS PRP-HS

PTV 70 Gy V70 Gy (%) 99.3538 99.5830 99.1471 99.4928
V77 Gy (%) 0 0 0 0
HI 1.0409 1.0420 1.0423 1.0408
CN 0.9474 0.9192 0.9318 0.9491

PTV 63 Gy V63 Gy (%) 98.0154 97.9303 97.6194 97.6489
V70 Gy (%) 1.5220 1.6016 1.9300 1.8231
HI 1.0867 1.0871 1.0894 1.0897
CN 0.2833 0.1876 0.1383 0.1585

PTV 56 Gy V56 Gy (%) 97.6046 97.3125 97.3694 97.4009
V62 Gy (%) 0.5494 0.5273 0.5122 0.4290
HI 1.0658 1.0681 1.0668 1.0676
CN 0.0092 0.0088 0.0073 0.0052

IL-PG Mean dose (Gy) 21.8708 22.5257 21.1594 20.7717
gEUD (Gy) 21.8708 22.5258 21.1593 20.7718
NTCP (%) 10.08 15.53 7.83 6.78

CL-PG Mean dose (Gy) 12.0590 14.0597 10.2722 9.3394
gEUD (Gy) 12.0590 14.0599 10.2724 9.3394
NTCP (%) 0.07 0.25 0.02 0.01

Spinal cord Max dose (Gy) 49.7250 50.2250 50.2750 48.7750
gEUD (Gy) 41.6845 41.7916 41.7300 40.9892
NTCP (%) 1.65 1.69 1.66 1.42

Brain stem Max dose (Gy) 30.9750 33.725 31.5750 35.8750
gEUD (Gy) 15.9385 15.8683 15.1105 18.6819
NTCP (%) 3.50E−06 3.35E−06 2.10E−06 1.79E−05

Aperture number 90 91 93 92
Time (s) 822.512 757.212 787.000 749.817
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the fastest. Compared to column generation based on the 
negative gradient direction, in this optimization process, 
the column generation method based on conjugate gradi-
ent modulation made the decrease in the objective function 
value more evident (Figs. 4e, 5c, d).

When DVH is used for evaluation, the DV curves of the 
PTV optimized by all methods should be as similar as pos-
sible. Accordingly, the performance of the methods can be 
evaluated by observing the DVH of the OARs. For case H1, 
the DV curves of the PTVs in the DVH optimized using 
the four contrasting methods (Original, PRP, HS, and PRP-
HS) were similar (Fig. 3b). The DVH of the OARs (Fig. 3a) 
showed that the DV curves obtained by PRP-HS were the 
lowest for the parotid glands. For the spinal cord and brain 
stem, it was revealed that the DV curves optimized by PRP-
HS were slightly worse than those obtained using the other 
three methods. However, the maximum doses received by 
the spinal cord and brain stem are greater concern (Table 1). 
The maximum dose received by the spinal cord optimized 
using PRP and HS exceeded 50 Gy, whereas when opti-
mized using PRP-HS, the result was minimal (Table 3). The 

Fig. 4   (Color online) Optimization results of case H2. a DVH of the 
OARs; b DVH of the PTVs; c, d Dose distributions of case H2 on the 
same surfaces after optimization of the two methods; and e decrease 
in the objective function value in the iterative process

Table 4   Results obtained by the two optimization methods for case 
H2

Original PRP-HS

PTV 70 Gy V70 Gy(%) 99.4607 99.6216
V77 Gy(%) 0 0
HI 1.0433 1.0414
CN 0.8442 0.8707

PTV 63 Gy V63 Gy(%) 96.3363 96.4373
V70 Gy(%) 2.5845 3.1131
HI 1.0917 1.0931
CN 0.0074 0.0115

PTV 56 Gy V56 Gy(%) 97.0534 97.2243
V62 Gy(%) 4.1580 4.1803
HI 1.0880 1.0853
CN 0.0006 0.0008

IL-PG Mean dose (Gy) 26.6590 26.0172
gEUD (Gy) 26.6585 26.0172
NTCP (%) 36.67 32.06

CL-PG Mean dose (Gy) 22.2407 22.1554
gEUD (Gy) 22.2407 22.1552
NTCP (%) 11.41 11.09

Spinal cord Max dose (Gy) 50.8750 49.6750
gEUD (Gy) 40.9685 40.9731
NTCP (%) 1.41 1.41

Brain stem Max dose (Gy) 50.9750 50.1250
gEUD (Gy) 33.2127 33.9282
NTCP (%) 0.02 0.03

Aperture number 85 85
Time (s) 865.506 861.881
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maximum dose received by the brain stem optimized by the 
four methods satisfied Dmax ≤ 54 Gy. For case H2, the gEUD 
of the spinal cord and brain stem optimized by PRP-HS were 
slightly worse than those obtained using the Original method 
(Table 4). By definition, the gEUD examines the entire dose 
distribution in the whole organ. As shown in Fig. 4a, the 
overall DV curve trend of the spinal cord and brain stem 
obtained with PRP-HS was worse than that of the Original 
method. According to Table 4, the maximum dose received 
by the brain stem optimized using both optimization meth-
ods satisfies Dmax ≤ 54 Gy. The maximum dose received by 
the spinal cord, optimized by the Original, exceeded 50 Gy. 
Compared with the contrast method, PRP-HS reduced the 
NTCP and gEUD of the parotid glands to varying degrees 
and had a better ability to protect the OARs. These results 
illustrate that the proposed optimization method can bet-
ter protect the OARs while ensuring dose distribution to 
the PTVs than the generic method. The optimization results 
for P1 and P2 (Fig. 5 and Table 5) also prove the proposed 
method performance.

For cases of head and neck cancer, only the evaluation 
index in Table 1 is presented in Table 6, whereas for cases 
of prostate cancer, only the NTCP and gEUD of the OARs 
are presented in Table 7. These results are sufficient to illus-
trate the improvement in the optimization for the proposed 
method compared with the generic method.

Table 8 presents the optimization results for the five cases 
of head and neck cancer, and the five cases of prostate cancer 
involved in this study were statistically analyzed. The pro-
posed method significantly improved the dose distribution to 
the OARs ( P < 0.05 ) other than the brain stem ( P = 0.441 ), 
and the stability of the proposed method was proved.

Compared to generic column generation based on 
negative gradient direction, PRP-HS required less time 
to optimize the treatment plan. According to the analysis 

Fig. 5   (Color online) Optimization results of cases P1 and P2. a DVH 
for case P1; b is the DVH for case P2; c, d decreases in the objective 
function in the iterative process for cases P1 and P2, respectively; e, 
f dose distributions of case P1 on the same surfaces after optimiza-
tion of the two methods; and g, h dose distributions of case P2 on the 
same surfaces after optimization of the two methods

Table 5   Results obtained by the two optimization methods for cases 
P1 and P2

P1 P2

Original PRP-HS Original PRP-HS

PTV V67.27 Gy(%) 100 100 100 100
V74 Gy(%) 99.2076 99.2488 99.6730 99.7988
V78.14 Gy (%) 0 0 0 0
HI 1.0308 1.0289 1.0225 1.0215
CN 0.9043 0.9222 0.9037 0.9044

Bladder gEUD (Gy) 57.0297 56.6286 58.5413 58.4910
NTCP (%) 5.09 4.79 6.38 6.34

Rectum gEUD (Gy) 64.0253 63.8351 62.3576 62.3356
NTCP (%) 10.03 9.73 7.60 7.57

Aperture number 57 58 58 58
Time (s) 360.064 345.325 377.920 361.984
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of the optimization results, compared with generic col-
umn generation, the proposed optimization method did 
not reduce and, in some cases, improved the plan quality. 
The proposed method did not reduce the number of gen-
erated apertures, which is a direction for future research 
and improvement. In the DAO, the aperture shape can 
be optimized by selecting the descending direction that 
maximizes improving the objective function. To generate 
a deliverable aperture shape, the descent direction was 
the direction after the conjugate gradient modulation in 
the pricing problem of this study. The proposed aperture 
shape optimization method does not involve line search 
or step length selection. In the proposed method, only 
basic conjugate gradient classes were used to modulate 
the gradient. In the future, some newly proposed conju-
gate gradient methods and radiation therapy techniques 
[38, 39] will be introduced into the DAO.

5 � Conclusion

This study proposed a method based on conjugate gradient 
modulation for aperture shape optimization by modulat-
ing the gradients, because the negative gradient direction 
search exhibited a sawtooth effect when approaching the 
local optimal point. The conjugate gradient method with 
low computational cost and fast convergence was introduced 
into the aperture generation. The performance of PRP-HS 
was verified in head and neck cancer cases, and prostate 
cancer cases. Based on comparative experimental results, 
the proposed optimization method can accelerate the solu-
tion process and improve the quality of the treatment plan. 
The optimization time of the proposed method decreased 
by up to 9.41% for head and neck cancer cases, and 9.71% 
for prostate cancer cases. This improvement does not come 
at the expense of the quality of the results. While ensur-
ing dose distribution to the PTV, PRP-HS reduced NTCP 
by up to 4.61% compared with generic column generation. 

Table 6   Results for cases H3, 
H4, and H5

H3 H4 H5

Original PRP-HS Original PRP-HS Original PRP-HS

IL-PG Mean dose (Gy) 32.8380 32.5670 40.3968 40.2397 35.4129 34.9677
CL-PG Mean dose (Gy) 33.9796 31.6606 35.5173 34.0182 34.1495 33.2812
Spinal cord Max dose (Gy) 49.1750 48.9250 49.7250 49.6250 49.2750 49.8250
Brain stem Max dose (Gy) 51.9250 51.6250 50.6750 50.8750 50.1750 50.6250
Aperture number 90 89 83 84 92 94
Time (s) 1268.620 1232.551 802.318 760.827 1396.752 1265.277

Table 7   Results for cases P3, 
P4, and P5

P3 P4 P5

Original PRP-HS Original PRP-HS Original PRP-HS

Bladder gEUD (Gy) 66.4603 66.3782 61.8468 61.5174 49.7854 49.5949
NTCP (%) 17.52 17.37 10.08 9.65 1.48 1.43

Rectum gEUD (Gy) 62.916 62.6337 65.6279 65.5339 63.1659 62.8997
NTCP (%) 8.36 7.97 12.86 12.68 8.72 8.34

Aperture number 59 59 57 57 58 60
Time (s) 262.975 237.437 252.116 246.576 309.672 292.155

Table 8   Statistical analysis of 
the optimization results

Original PRP-HS P value

Head and neck cancer IL-PG Mean dose (Gy) 31.44 ± 7.29 30.91 ± 7.63 0.034
CL-PG Mean dose (Gy) 27.59 ± 10.20 26.09 ± 10.51 0.035
Spinal cord Max dose (Gy) 49.76 ± 0.68 49.37 ± 0.48 0.028
Brain stem Max dose (Gy) 46.95 ± 8.95 47.83 ± 6.70 0.441

Prostate cancer Bladder gEUD (Gy) 58.73 ± 6.17 58.52 ± 6.20 0.037
NTCP (%) 8.11 ± 6.09 7.92 ± 6.06 0.062

Rectum gEUD (Gy) 63.62 ± 1.27 63.45 ± 1.29 0.027
NTCP (%) 9.51 ± 2.07 9.26 ± 2.08 0.020
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According to the experimental results, the proposed aperture 
shape optimization method can be applied to radiotherapy 
plan optimization for different cancer cases and can be effi-
ciently used in clinical settings.
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