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Abstract
As a unique probe, the precision measurement of pp solar neutrinos is important for studying the sun’s energy mechanism as 
it enables monitoring the thermodynamic equilibrium and studying neutrino oscillations in the vacuum-dominated region. 
For a large-scale liquid scintillator detector, a bottleneck for pp solar neutrino detection is the pile-up events of intrinsic 
14 C decay. This paper presents a few approaches to discriminating between pp solar neutrinos and 14 C pile-up events by 
considering the differences in their time and spatial distributions. In this study, a Geant4-based Monte Carlo simulation is 
conducted. Multivariate analysis and deep learning technology are adopted to investigate the capability of 14 C pile-up reduc-
tion. The BDTG (boosted decision trees with gradient boosting) model and VGG network demonstrate good performance 
in discriminating pp solar neutrinos and 14 C double pile-up events. Under the 14 C concentration assumption of 5 × 10−18 
g/g, the signal significance can achieve 10.3 and 15.6 using the statistics of only one day. In this case, the signal efficiency 
for discrimination using the BDTG model while rejecting 99.18% 14 C double pile-up events is 51.1%, and that for the case 
where the VGG network is used while rejecting 99.81% of the 14 C double pile-up events is 42.7%.

Keywords Liquid scintillator detector · pp solar neutrinos · 14 C pile-up · Multivariate analysis · Deep learning

1 Introduction

With the development of nuclear physics and astrophysics, 
we have been able to glimpse into the sun’s energy mecha-
nism, which originates from the nuclear fusion of light 
nuclei in the core of the sun [1–3]. The proton-proton (pp) 
cycle produces ∼99% of solar energy, and its primary reac-
tion is the fusion of two protons into a deuteron:

In this reaction, large numbers of low-energy neutrinos, 
called pp neutrinos, are emitted ( E < 0.42 MeV). In addi-
tion, the proton–electron–proton (pep) process and second-
ary reactions in the pp cycle also emit neutrinos known 
as pep neutrinos, 7 Be neutrinos, 8 B neutrinos, and hep 
(helium–proton) neutrinos. The remaining energy of the sun 
is contributed by the carbon–nitrogen–oxygen (CNO) cycle, 
which emits CNO neutrinos. The detection of solar neutri-
nos is considered a direct way to test theoretical solar mod-
els. However, differences between early observations and 
theoretical predictions were discovered [4–13], leading to 

(1)p + p =
2H + e+ + �e
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the so-called solar neutrino problem that has plagued us for 
more than 30 years. Subsequently, the MSW–LMA (neutrino 
oscillation with the Mikheyev–Smirnov–Wolfenstein effect 
and a large mixing angle) mechanism [14, 15] was proven to 
be the standard solution based on solid evidence provided by 
SNO [16, 17] and KamLAND [18]. Currently, the standard 
solar model (SSM) [19–24] provides precise predictions of 
the flux and energy distribution of solar neutrinos. Almost 
all solar neutrino components have been observed [25–28], 
and we expect to enter an era of precise and comprehensive 
measurements of solar neutrinos in the coming decades [29, 
30].

pp neutrinos are strongly related to the predominant 
energy production of the sun and carry recent messages 
from the core of the sun. These characteristics make them an 
important means for studying the sun’s energy mechanism 
and thermodynamic equilibrium monitoring. By contrast, 
pp neutrinos can be used to study neutrino oscillations in 
vacuum-dominated regions. The detection of pp neutrinos 
simultaneously requires a low threshold ( ∼ 200 keV) along 
with effective background reduction. pp neutrinos were first 
detected using 71Ga-based radiochemical detectors [6–11]. 
Subsequently, a large-scale liquid scintillator (LS) detector 
was successfully applied in the Borexino experiment and 
provided the best measurement of pp neutrinos at the ∼10% 
level [26, 27] via elastic neutrino–electron scattering.

According to the experience gained from the Borexino 
experiment, intrinsic 14 C decays from an organic liquid 
scintillator and their associated pile-up events are a cru-
cial internal background for a large-scale LS detector. 14 C 
pile-up events correspond to cases in which more than one 
14 C decay occurs at different detector positions but in the 
same trigger window. In addition, pile-ups can be classified 
into the following categories according to the multiplicity 
of 14 C accidental coincidences: double pile-ups, threefold 
pile-ups, and fourfold pile-ups. The Borexino experiment ( ∼
278 ton) requires considerable effort for LS purification to 
obtain a 14 C concentration of approximately 2.7 × 10−18 g/g. 
At this concentration, the 14 C double pile-up accounts for 

approximately 10% of the events in the spectral gap between 
the 14 C and 210 Po spectra [26].

For an LS detector with a sensitive target mass of m kilo-
tons (kton), the frequency of a 14 C single event is

where NA is Avogadro’s constants ( 6.023 × 1023 ) and � , M, 
C14C correspond to 14C’s lifetime, molar mass, and its con-
centration in the LS, respectively.

The frequency of 14 C pile-up events can be calculated as 
follows:

where n ( n ≥ 2 ) denotes the multiplicity of the 14 C acciden-
tal coincidence; for example, n = 2 represents the case of 
a double 14 C pile-up. Δt is the time window for detection 
and � corresponds to the reconstruction efficiency of the 14 C 
pile-up events.

As the detector mass increases, a dramatic increase in 14 C 
pile-up events must be considered and effectively rejected. 
Taking a large spherical LS detector as an example, with 
the radius of the detector being 15 m and the detector mass 
being approximately 12 kton, Table 1 lists the event rates 
of pp neutrinos and 14 C single and pile-up events at differ-
ent 14 C concentrations. A 500 ns time window was used in 
this calculation, and the reconstruction efficiency was set 
to 100%. For a 14 C concentration of 5 × 10−18 g/g in the LS 
of the above detector, Fig.  1 shows the recoil energy spec-
tra of pp neutrinos via elastic neutrino–electron scattering, 
which can be found in [30]. The energy spectra of 14 C single, 
double, and triple pile-up events are shown for comparison. 
In this giant detector, the 14 C pile-up events completely out-
numbered the pp neutrino signals by more than two orders 
of magnitude.

In Table 1, the values in brackets indicate the event rates 
within the energy range of interest of 0.16−0.25 MeV for 

(2)fsingle[Hz] =
C14C ⋅ NA ⋅ m

� ⋅M
× 109,

(3)fpile-up[Hz] =
e−fsingle⋅Δt

(n − 1)!
⋅ f n

single
⋅ Δtn−1 ⋅ �,

Table 1  The event rates (unit: cpd/kton) of pp neutrinos and 14 C single and pile-up events in different 14 C concentrations

A spherical LS detector ( ∼12 kton) with a 15 m radius was used in the calculation, and the time window was 500 ns. The values in the brackets 
indicate the event rates inside the energy range of interest (0.16, 0.25) MeV; the ratio is about 10% for both pp neutrinos and 14 C double pile-up 
events

Event types 10−18 g/g 2.7 × 10−18 g/g (Borexino-like) 5 × 10−18 g/g 10−17 g/g

pp-� 1.37 × 103 ( ∼ 1.37 × 102 ) 1.37 × 103 ( ∼ 1.37 × 102 ) 1.37 × 103 ( ∼ 1.37 × 102 ) 1.37 × 103 ( ∼ 1.37 × 102 )
14 C single 1.43 × 107 3.86 × 107 7.16 × 107 1.43 × 108

14 C double 2.38 × 104 ( ∼ 2.38 × 103 ) 1.73 × 105 ( ∼ 1.73 × 104 ) 5.94 × 105 ( ∼ 5.94 × 104 ) 2.38 × 106 ( ∼ 2.38 × 105 )
14 C triple 1.97 × 101 3.88 × 102 2.47 × 103 1.97 × 104

Signal-to-back-
ground ratio: 
( pp−�

14C double
)

∼ 1: 17 ∼ 1: 126 ∼ 1: 431 ∼ 1: 1727
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the deposited energy, considering that the Q value of 14 C 
� decay is ∼ 156 keV and the scattered electron of the pp 
neutrino reaction is difficult to distinguish from the emitted 
electron of a 14 C single event. The target mass of the above 
detector ( ∼12 kton) is ∼ 43 times larger than that of Borexino 
( ∼278 ton). Consequently, the signal-to-background ratio of 
pp neutrinos and 14 C double pile-up events in this detector is 
smaller than 1:126 for a 14 C concentration of 2.7 × 10−18 g/g, 
and the signal-to-background ratio will be much lower if 
a higher 14 C concentration is used. However, because the 
energy resolution introduces smearing in the energy spec-
trum, the energy range of the analysis must be determined 
based on realistic situations.

More neutrino experiments are underway or are being 
planned, and many of them [31, 31–35] have good potential 
for pp neutrino detection because they are expected to have 
a large detector target, well-controlled radioactivity, low 
detection threshold, or good energy resolution. In experi-
ments with LS detectors of the order of tens of kilotons, 
neutrino detection in low-energy regions is difficult because 
of 14 C pile-up. Therefore, an approach must be developed 
for 14 C pile-up discrimination and reduction, especially that 
for 14 C double pile-up, because its event rate is much higher 
than that of other accidental coincidences.

This study focuses on discriminating between pp solar 
neutrinos and 14 C double pile-up events. The discrimination 
of other accidental coincidences with a 14 C multiplicity ≥ 3 is 
an important topic in the case of a higher 14 C concentration; 
however, it is not the subject of this study. The details of our 
work are as follows: First, we simulated an LS detector and 
investigated the features of the detector’s photomultiplier 

(PMT) hit pattern for pp neutrinos and 14 C double pile-up 
events (Sect.  2). We then present several approaches to 14 C 
double pile-up discrimination based on multivariate analysis 
and deep-learning technology (Sect.  3). In Sect. 4, the dis-
crimination performances are shown and compared. Finally, 
a summary is presented in Sect.  5

2  Detector simulation

In this study, a spherical LS detector was built using Monte 
Carlo (MC) simulations with the Geant4 toolkit [36] version 
4.10.p02. The radius of the spherical detector was 15 m, and 
the LS was contained in an acrylic sphere with a 10-cm-
thick wall. To simplify the simulation, a sensitive optical 
surface was defined for receiving the photons instead of 
using the detailed PMT simulation. The sensitive optical 
surface was a sphere outside the acrylic sphere, separated 
by a 1-m-thick layer of water. The coverage and quantum 
efficiency of the photosensors could be easily tuned. In 
the simulation, the coverage rate was 65%, corresponding 
to approximately 10650 20-inch photomultipliers (PMTs) 
uniformly distributed on the sensitive optical surface. Fig-
ure 2 shows a schematic of the detector. In the simulation, an 
average quantum efficiency of 30% was used for the 20-inch 
PMTs with a 2% Gaussian relative spread. The LS properties 
were referenced from [37–44], and comprehensive optical 
processes were adopted, including quenching, Rayleigh scat-
tering, absorption, re-emission, photon transport in the LS, 
and reflections on the acrylic surface. Table 2 summarizes 
the main parameters of the PMTs in the simulation, includ-
ing the transit time spread (TTS), quantum efficiency (QE), 
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Fig. 1  (Color online) The recoil energy spectra of pp neutrinos, 14 C 
single, double, and triple pile-up events in a spherical LS detec-
tor, whose radius and 14 C concentration are 15 m and 5 × 10−18 g/g, 
respectively. The spectra do not include the detection effects: energy 
non-linearity, non-uniformity, and resolution. The higher order con-
tribution from the 14 C pile-up is negligible and not shown

Fig. 2  (Color online) A schematic view of the detector. Each pixel 
corresponds to a 20-inch PMT, and its color indicates the ID of each 
PMT. In total, the detector had 10650 PMTs
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dark noise (DR), and resolution of a single photoelectron 
(spe). As a result, approximately 1100 photoelectrons (PEs) 
could be observed by the 10650 PMTs for a 1 MeV electron 
that fully deposited its kinetic energy in the center of the 
detector, which corresponds to approximately a 3% energy 
resolution. In contrast, approximately 106.5 additional PEs 
originating from the PMT dark noise in a time window of 
500 ns could be detected.

To investigate the response features of pp neutrinos and 
14 C double pile-up events, MC samples were generated and 
compared. Approximately one million final-state electrons 
from the elastic neutrino–electron scattering reaction of 
pp neutrinos were uniformly simulated in the LS volume, 
and the spectrum of the scattered electrons was referenced 
from [30]. Because the final-state electrons from elastic neu-
trino–electron scattering are similar to the electrons emitted 
from the 14 C � decay ( 14 C single event), distinguishing them 
at an event-by-event level is difficult. Therefore, an energy 

cut is required to focus on a narrow energy region. The 
same treatment method as used by Borexino et al. was used. 
However, electrons whose kinetic energy is approximately 
200 keV in LS show a 5% energy nonlinearity  [44, 45], and 
the energy resolution is already included in the above simu-
lation. As a result, in our analysis, a 270 PE cut was applied 
to the total number of PEs of all PMTs by considering the ∼
156 keV end-point energy of the 14 C � decay ( ∼163 PEs) and 
the contribution of PMT dark noise ( ∼106.5 PEs).

After the total PE cut, an MC sample that included 
100,000 pp neutrinos was used for the discrimination study, 
and they were uniformly distributed in the LS. To gener-
ate the 14 C double pile-up sample, first a large dataset was 
produced by simulating 10 million 14 C single events in the 
LS using 14 C � decay. Next, two 14 C single events were ran-
domly selected from the dataset and merged into a double 
pile-up event. In the merge operation, because the lifetime of 
14 C is longer than 8000 years, the time interval between two 
14 C single events could be considered an approximately uni-
form distribution for a few hundred nanoseconds. Similarly, 
a 270 PE cut was applied, and 100,000 14 C double pile-up 
events were used for our analysis.

As illustrated in Figs. 3 and 4, pp solar neutrinos and 14 C 
double pile-up events exhibited different features in their 
temporal and spatial distributions. The pp solar neutrino is 
a single point-like event whose energy deposition occurs in a 
relatively short time and small space; hence, only one cluster 
is expected to be found in its PMT hit pattern. For the 14 C 
double pile-up event, if two 14 C nucleus decay at different 

Table 2  PMT parameters in the simulation

Parameters Values

PMT Coverage 65%
PMT QE 30% ± 2% (Gaussian)
PMT TTS 3 ± 0.3 ns (Gaussian)
PMT dark rate (DR) 20 ± 3 kHz (Gaussian)
PMT spe resolution 30% ± 3% (Gaussian)
Time window 500 ns

(a) (b)

Fig. 3  (Color online) The PMT hit patterns of a pp solar neutrino 
event. Each pixel corresponds to a fired PMT, and its color indicates 
the hit time information. The location of the red hollow triangle is ( −
6582.21, −8972.86, 8696.34) mm, which indicates the position where 
the physical event deposited its energy (159.94 keV). a only physical 

hits are included, and 172 PEs are observed for a 500-ns time win-
dow. b Both physical hits and PMT dark noise hits are shown, and 
284 PEs are observed for a 500-ns time window, including 112 PEs 
from the PMT dark noise
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detector positions, two clusters are expected to be found. 
However, because the hit time distribution of the fired PMTs 
includes both the scintillation time and the photon’s time of 
flight, as well as the decay time of 14 C, the hit time distribu-
tion is useful for identification studies. In particular, when 
two 14 C nucleus decay near each other, their spatial distribu-
tion is not expected to be significantly different from that of 
a single point-like event. However, the hit time distribution 
is still helpful if the time interval between the two 14 C decays 
is large. An example is shown in Fig.  4.

As mentioned previously, our approach employs a 
straightforward trigger strategy that considers whether 
the total number of PEs within 500 ns exceeds 270 PEs. 
Subsequently, we selected the hit information within this 
timeframe for further analysis. However, the trigger strategy 
must be optimized. As described in Sect. 3, the event spatial 
information was extracted and used together with the hit 
time information as input to the discrimination algorithms.

3  Discrimination methods

The basic idea behind developing a discrimination algorithm 
for pp solar neutrinos and 14 C double pile-up events is to uti-
lize their temporal and spatial information, which have dif-
ferent characteristics (see Sect. 2). Similar approaches have 
been applied to discriminate single-site and multisite energy 
depositions in large-scale liquid scintillation detectors [46]. 

During the measurement, the cluster structure was smeared 
by interference from dark noise and the TTS of the PMT. 
These effects make the identification more challenging and 
more efficient approaches are required. In this study, a mul-
tivariate analysis using the Toolkit for Multivariate Data 
Analysis (TMVA) [47, 48] was performed, and the widely 
used algorithm, boosted decision trees with gradient boost-
ing (BDTG), was chosen for the analysis. In addition, deep 
learning technologies based on the VGG network were also 
applied. In the following section, we present details of the 
discrimination method.

3.1  TMVA analysis

TMVA [47, 48] is a powerful tool for multivariate analysis 
and has been successfully applied to both signal and back-
ground classification in accelerator physics [49], component 
identification of cosmic rays [50], and event reconstruction 
in LS detectors for neutrino experiments [51]. The TMVA 
toolkit hosts a wide variety of multivariate classification 
algorithms. In this study, we used the TMVA algorithm, 
BDTG. To extract the input variables, the PMT hit pattern 
was projected onto a one-dimensional (1-D) plane for the hit 
time, � , and � of each fired PMT in spherical coordinates. 
The projection results of Fig. 3b are shown in Fig. 5, and 
the projection results of Fig. 4b are shown in Fig. 6. The pp 
solar neutrino, which is a single-point-like event, showed 
only one cluster in its distribution, whereas the 14 C double 
pile-up event showed two clusters.

(a) (b)

Fig. 4  (Color online) The PMT hit patterns of a 14 C double pile-up 
event. Each pixel corresponds to a fired PMT and its color indicates 
the hit time information. The two red hollow triangles indicate the 
positions where two 14 C events deposited their energies (71.161 keV 
and 56.593  keV). Their locations are ( −6229.32, −2139.36, 

10471.7)  mm and (484.61, −3199.44, 14423.5)  mm, respectively. a 
Only physical hits are included, and 173 PEs (107+66) are observed 
for a 500-ns time window. b Both physical hits and PMT dark noise 
hits are shown, and 273 PEs are observed for a 500-ns time window, 
including 100 PEs from the PMT dark noise
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Fig. 5  (Color online) The hit time, � , and � distributions of a pp solar neutrino event corresponding to the event in Fig. 3b. a Hit time distribu-
tion. b � distribution. c � distribution
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Fig. 6  (Color online) The hit time, � , and � distributions of a 14 C double pile-up event corresponding to the event in Fig. 4b. a Hit time distribu-
tion. b � distribution. c � distribution

Table 3  Input variables for 
multivariate analysis

Variable Description

Vhittime
1

Number of hits in the first 200 ns

Vhittime
2

The peak position of the highest bin in the first 200 ns

Vhittime
3

The amplitude of the highest bin in the first 200 ns

Vhittime
4

Number of hits in (200, 500) ns

Vhittime
5

The amplitude of the highest bin in (200, 500) ns

Vhittime
6

The ratio between the peak amplitude and the peak position of the highest 
bin in (200, 500) ns

Vhittime
7

The ratio between the number of hits in the first 200 ns and in (200, 500) ns

Vhittime
8

The RMS value of the 1-D distribution of hit time

Vhittime
9

The Mean value of the 1-D distribution of hit time
V theta
1

The RMS value of the 1-D distribution of �

V theta
2

The skewness coefficient of the 1-D distribution of �

V theta
3

The kurtosis coefficient of the 1-D distribution of �

V
phi

1
The RMS value of the 1-D distribution of �

V
phi

2
The skewness coefficient of the 1-D distribution of �

V
phi

3
The kurtosis coefficient of the 1-D distribution of �
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These 1-D distributions were used in multivariate analy-
sis. The input variables for the TMVA algorithms should be 
sensitive to discrimination and contain the characteristics 
of pp solar neutrinos and 14 C double pile-up events. In our 
analysis, we found that hit time information dominated the 
discrimination performance; therefore, more variables were 
extracted from the 1-D distribution of hit time. Fifteen vari-
ables were used in the TMVA analysis. These variables are 
denoted as V�

i
 , where i = 1, 2, 3 , etc., and correspond to the 

extracted parameters in each 1-D distribution. � = hittime , 
� , or � , which indicates that the variables are from the 1-D 

distribution of hit time, � , or � . The details can be found in 
Table 3.

Figure 7 shows the normalized distributions of these input 
variables, and the difference in their shapes is determined by 
comparing the two types of events. By contrast, the correla-
tions of the input variables were checked for both pp solar 
neutrinos and 14 C double pile-up events. As shown in Fig. 8, 
because we dropped several variables with strong correla-
tions in a previous study, the correlation of the current vari-
ables is acceptable, provided it is less than 90%. A few vari-
ables had close to 90% correlations, and we retained them in 
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Fig. 7  (Color online) Normalized distributions of the variables of pp solar neutrino and 14 C double pileup event
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the analysis. This is mainly determined by considering that 
the variables exhibit different correlations for the signal and 
background; a similar strategy was applied in [52].

The MC samples of the pp solar neutrinos and 14 C double 
pile-up events were divided into two equal parts, one for 
TMVA training and the other for validation. Hence, both the 
training and test samples include 50 thousand pp neutrinos 
and 50 thousand 14C double pile-up events. To improve the 
performance, several main parameters of the BDTG algo-
rithm were tuned. Table 4 shows the settings of these param-
eters. The other parameters were set to their default values 
and are not listed in the tables.

3.2  Deep learning

Deep learning technology is widely used in high-energy 
and nuclear physics, with many successful applications [51, 
53–58] such as energy reconstruction, track reconstruc-
tion, particle identification, and signal processing. In this 
study, the deep learning algorithm VGG convolutional 
neural network was used for the feature recognition of one-
dimensional sequences. The extracted PMT hit patterns are 
projected onto a one-dimensional feature series for the hit 
time, � , and � , respectively. The resulting patterns are simi-
lar to those in Figs.  5 and 6. To extract their features, a one-
dimensional convolution kernel was used for the three series, 
a pooling layer was used for information compression, and a 
fully connected layer was used for particle classification. The 
model structure was based on the architecture of VGG-16, 
which includes 13 convolution and pooling modules, three 
fully connected layers, batch normalization layers, and con-
nected neural unit dropout processing.

In addition to one-dimensional projection using PMT 
hit patterns, we also attempted two-dimensional projection 
methods to provide input to deep learning networks, includ-
ing the Mercator projection, sinusoidal projection, and a pro-
jection method based on the arrangement of PMTs [51, 59]. 
However, after applying the two-dimensional projection, the 
performance did not improve but, in fact, slightly worsened. 
Considering that the number of hits in the energy range of 
interest is very small, we performed a detailed investiga-
tion and comparison because the cluster features were much 

more pronounced in the one-dimensional projection but very 
discrete in the two-dimensional projection.

Finally, a one-dimensional projection was used to provide 
input to the VGG network described above. We trained the 
VGG network using adaptive momentum with a batch size of 
256 samples, momentum of 0.9, and an initial learning rate 
of 0.01. After every 10 epochs, the learning rate was reduced 
by a factor of 10. The accuracy of the model was evaluated 
using a cross-entropy loss function. In the discrimination 
study using the VGG network, 80% of the pp neutrino and 
14 C double pile-up separately were used separately for train-
ing, whereas the other 20% were used for validation.

4  Discrimination performance 
and discussion

4.1  Discrimination performance of the BDTG model

Figure 9 shows the training results of the BDTG model. 
The network was not overtrained, as the responses of the 
testing data were consistent with those of the training 
data (Fig.  9a). The signal and background were separated 
into two parts after training; however, some overlapping 
components remained, indicating that their event features 
were similar. Hence, the network failed to distinguish 
between them. According to a detailed investigation, one 
of the main reasons for the failed identification was the 
stacking of two 14 C nucleus that are very close together 
in both time and space. To optimize the significance 
Ns∕

√

Ns + Nb  , where Ns and Nb are the numbers of sig-
nals and background after identification, we scanned the 
cut value on the BDTG response, and the corresponding 
efficiencies were also obtained. The 14 C concentration 
in the LS was assumed to be 5 × 10−18 g/g, as shown in 
Fig.  9b. The significance calculations using the statis-
tics in the analysis region for a period of one day (true 
energy:160–250 keV), based on the estimation in Table 1, 
are ∼1653 for the signal and ∼712440 for the background 
(considering only the 14 C double pile-up events) before 
the identification. For the BDTG model, the significance 
reached its maximum value of 10.33 after applying a 
cut at 0.915, and the signal and background rejection 

Table 4  Parameters used in the 
BDTG algorithm

Configuration option Setting Description

NTrees 1000 Number of trees in the forest
MaxDepth 2 Max depth of the decision tree allowed
MinNodeSize 2.5% Minimum percentage of training events required in a leaf node
nCuts 20 Number of grid points in variable range used in finding opti-

mal cut in node splitting
BoostType Grad Boosting type for the trees in the forest
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efficiencies were 51.1% and 99.18%, respectively. As dis-
cussed in Sect. 1, the signal-to-background ratio of the 
pp neutrinos and 14 C double pile-up events was low in a 
large-scale LS detector. Therefore, a strict cut is required 
to reject most of the background. In this case, 51.1% is 
an acceptable value for signal efficiency, and it still cor-
responds to a much larger number of effective pp neutrino 
signals per day compared with most existing experiments.

In Fig. 9c, the significance was evaluated for differ-
ent assumptions for 14 C concentration. Figure  9d shows 
the signal-to-background ratio after identification using 
the BDTG model, based on the statistics for a period of 
one day for different 14 C concentrations. As a result, the 
BDTG model exhibits excellent performance and can han-
dle most of 14 C double pile-up events effectively.

In addition, other TMVA algorithms were investigated, 
including the likelihood algorithm and several BDT mod-
els (BDT and BDTD). Many exhibited similar perfor-
mances (Fig.  10), indicating the robustness and stability 
of the analysis.

4.2  Discrimination performance of the VGG 
network

Figure 11 shows the training results of the VGG network. 
The network was not overtrained, as the responses of the 
testing data were consistent with those of the training data 
(Fig.  11a). To optimize the significance, we scanned the 
cut values of the VGG output, and the corresponding effi-
ciencies were obtained. The 14 C concentration of the LS 
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Fig. 9  (Color online) Identification performance using the BDTG 
model. a Normalized response distributions of the BDTG model 
for the signal and the background. b Cut efficiencies as functions 
of BDTG cut values. The significance (green line) was calculated 
using the statistics for one day of the signal and the background in 

the analysis region, and the 14 C concentration of LS was assumed to 
be 5 × 10−18  g/g. c Significance of different assumptions of the 14 C 
concentration. d Signal-to-background ratio after identification for 
different assumptions of the 14 C concentration; the statistics for one 
day were adopted
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was assumed to be 5 × 10−18 g/g, as shown in Fig.  11b, 
and the calculation of significance using the statistics for 
a period of one day in the analysis region was based on 
the estimation in Table 1. For the VGG network, the sig-
nificance reached its maximum value of 15.55 after apply-
ing a cut of 0.975. The signal efficiency and background 
rejection efficiency were 42.7% and 99.81%, respectively.

In Fig. 11c, the significance was evaluated using different 
assumptions for 14 C concentration, whereas Fig.  11d shows 
the signal-to-background ratio after identification using the 
VGG network. The calculations were based on the statis-
tics for one day for different 14 C concentrations. As a result, 
the VGG network showed excellent performance and could 
achieve higher significance and a good improvement in the 
signal-to-background ratio compared with the BDTG model.

Furthermore, the discrimination performances of the dif-
ferent MC samples were compared, as shown in Fig.  12. 
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Fig. 10  (Color online) Relationship between background rejection 
efficiency and signal efficiency obtained using various TMVA algo-
rithms
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Fig. 11  (Color online) Identification performance using the VGG 
network. a Normalized response distributions of the VGG network 
for the signal and the background. b Cut efficiencies as functions of 
VGG cut values. The significance (green line) was calculated using 
the statistics of the signal and the background in the analysis region 

for a one-day period; the 14 C concentration in LS was assumed to be 
5 × 10−18 g/g. c Significance for different assumptions of 14 C concen-
tration. d Signal-to-background ratio after identification for differ-
ent assumptions of the 14 C concentration, the statistics for a one-day 
period
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They worsened after including the PMT dark noise, whereas 
TTS had only a small influence. In addition, the discrimi-
nation performance based on the VGG network was stable 
when rejecting ∼99.8% of the 14 C double pile-up events.

5  Summary

Large-scale LS detectors have the benefits of a large target 
mass and high energy resolution, which gives them good 
potential for pp solar neutrino detection. However, they also 
face a serious problem of the 14 C pile-up background. In 
this study, we investigated how pp solar neutrinos and 14 C 
double pile-up events in a large-scale LS detector could be 
distinguished using multivariate analysis and deep learning 
technology. In the simulation study, a spherical LS detec-
tor was built using the Geant4 toolkit, and comprehensive 
optical processes were adopted. The response features in 
the PMT hit patterns of pp neutrinos and 14 C double pile-up 
events were compared, and clear differences were found in 
their temporal and spatial distributions because one of them 
was a single point-like event, whereas the other was an acci-
dental coincidence of multiple events.

Using the BDTG model for the pp neutrino and 14 C 
double pile-up event discrimination, at a 14 C concentra-
tion of 5 × 10−18 g∕g , a signal significance of 10.3 could 
be achieved using the statistics for a period of only one 
day. The signal efficiency was 51.1% when 99.18% of 
14 C double pile-up events were rejected. In the VGG net-
work model, signal significance could reach 15.6 using 
the statistics for a period of only one day, and the signal 
efficiency was 42.7% when 99.81% of 14 C double pile-
up events were rejected. This analysis provides a reliable 

reference for similar experiments in low-threshold physics 
detection and 14 C pile-up background reduction.
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