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Abstract The algebraic collapsing acceleration (ACA)

technique maximizes the use of geometric flexibility of the

method of characteristics (MOC). The spatial grids for low-

order ACA are the same as the high-order transport, which

makes the numerical solution of ACA equations costly,

especially for large-size problems. To speed-up the MOC

transport iterations effectively for general geometry, a

coarse-mesh ACA method that involves selectively merg-

ing fine-mesh cells with identical materials, called mate-

rial-mesh ACA (MMACA), is presented. The energy group

batching (EGB) strategy in the tracing process is proposed

to increase the parallel efficiency for microscopic cross-

section problems. Microscopic and macroscopic cross-

section benchmark problems are used to validate and

analyse the accuracy and efficiency of the MMACA

method. The maximum errors in the multiplication factor

and pin power distributions are from the VERA-4B-2D

case with silver-indium-cadmium (AIC) control rods

inserted and are 104 pcm and 1.97%, respectively. Com-

pared with the single-thread ACA solution, the maximum

speed-up ratio reached 25 on 12 CPU cores for microscopic

cross-section VERA-4-2D problem. For the C5G7-2D and

LRA-2D benchmarks, the MMACA method can reduce the

computation time by approximately one half. The present

work proposes the MMACA method and demonstrates its

ability to effectively accelerate MOC transport iterations.

Keywords Algebraic collapsing acceleration � Material-

mesh ACA � Method of characteristics � OpenMP �
Arbitrary geometry

1 Introduction

Owing to the advantages of excellent geometric flexi-

bility, suitability for large-scale problems and good paral-

lelism, the method of characteristics (MOC) is one of the

mainstream methods employed for neutron transport cal-

culation. However, the convergence of scattering source

iterations is slow, and the efficient numerical algorithms to

speed-up the convergence and multicore parallel tech-

nologies are useful. This study focuses on effectively

accelerating MOC source iterations for an arbitrary

geometry.

The convergence acceleration algorithm generally

introduces an efficient low-order approximate solution of

the transport equation to speed-up the scattering source

iteration, such as the coarse-mesh finite difference (CMFD)

[1] and diffusion synthetic acceleration (DSA) [2]. The

CMFD method is widely adopted and developed in pres-

surized water reactors (PWRs). Many improved algorithms

have been proposed to enhance the convergence rate or

stability, such as partial current-based CMFD (pCMFD)

[3], optimally diffusive CMFD (odCMFD) [4] and linear

prolongation CMFD (lpCMFD) [5]. The PerMOC code

performed CMFD in adjoint mode to accelerate the adjoint
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MOC kernel in the thermal-up-scattering-like iteration

scheme [6]. Recently, an equivalent angular flux nonlinear

finite difference (ANFD) equation was established to

update the MOC incident angular flux and sources directly

[7], based on which a novel acceleration technique is

expected to be developed to exceed the CMFD perfor-

mance. Limited by the finite-difference method, these

schemes are only suitable for regular geometries. To

expand the geometric adaptability of the CMFD method,

unstructured CMFD (uCMFD) [8] was developed for

unstructured polygonal meshes and generalized CMFD

(gCMFD) [9, 10] for general geometries. Nevertheless, the

uCMFD method is unsuitable for arbitrary geometries, and

gCMFD depends on the width factor adjusted according to

the five empirical conditions.

The algebraic collapsing acceleration (ACA) technique

[11–15] is a variant of the DSA method. Its solution grid is

the same as that of the fine-mesh grid of the transport

equation. The ACA equations with the sparse coefficient

matrix were constructed approximately from the charac-

teristic line equations. The ACA has good properties in

terms of its convergence speed and stability and is suit-

able for arbitrary geometries. Spectral radius studies

[11, 12] showed that convergence can be guaranteed for

any optical length; the larger the optical length, the smaller

the spectral radius. Divergence due to the large optical

length in CMFD can be avoided, and this is also an

advantage of the DSA method over CMFD [16]. Owing to

the complex proximity relationship between nodes in the

unstructured meshes, the number of non-zero elements in

the ACA coefficient matrix is increased, which makes the

convergence rate of the solution lower than that of the tri-

diagonal matrix in CMFD. Using the same grids as the

transport calculation increases the number of calculations

and memory requirements. The efficiency of solving the

ACA equations is sensitive to the fine-mesh size, especially

in the case of microscopic cross-section problems. In this

case, the solution efficiency decreases [12] or even exceeds

the ray tracing time. Therefore, it is necessary to study the

coarse-mesh method to reduce the computational time and

memory requirements of the low-order ACA.

Larsen and Kelley studied the relationship between

coarse-mesh DSA (CMDSA) and CMFD [16]. The

CMDSA used volume homogenization for the cross-sec-

tions in the coarse-mesh cell, and a uniform distribution

was used for the flux prolongation of the coarse-mesh cells

to the fine-mesh FSRs. For a single track, the ACA equa-

tions are equivalent to the characteristic line equations, but

the adoption of any homogenization causes them to be

inequivalent. Byambaakhuu proposed discontinuous

Galerkin DSA (DG-DSA) with coarse-mesh grids, which

uses DG discretized coarse-mesh diffusion equations to

accelerate the solution of the SN transport equation with

discontinuous finite-element discretization [17]. DG-DSA

does not involve cross-section homogenization, but adjusts

the mesh size or polynomial order according to the total

cross-section of the material. Because the ACA equations

are derived from MOC, and the ACA technique has strong

geometric adaptability, this idea of broadening the mesh by

material mesh is very suitable for ACA. Santandrea studied

the DSA acceleration of eigenvalue problems in the MOC

[18]. The computational efficiency of the ACA without

coarser grids will further deteriorate because the power

iteration for solving the ACA equations will take more

time.

Because the ACA method is suitable for general

geometry, this paper proposes a coarse-mesh ACA by

selectively merging some fine-mesh cells with the same

material, called material-mesh ACA (MMACA). In this

way, the homogenization operation is avoided. The

MMACA uses coarse-mesh grids to solve low-order ACA

equations, which reduces the number of ACA grids to

improve the efficiency of the solution and decreases the

size of its coefficient matrix to meet the memory require-

ments of parallel computing.

The remainder of this paper is organized as follows. In

Sect. 2, the basic solution process of the MOC is intro-

duced. The derivation of the elemental equations of the

MMACA method is presented in Sect. 3, and the energy

group batching (EGB) strategy in the parallel process of

ray tracing is presented in Sect. 4. Then, benchmark vali-

dation and acceleration performance analyses are presented

in Sects. 5 and 6 concludes the paper.

2 Method of characteristics

The steady-state neutron transport equation is written in

the following matrix form:

LU ¼ HUþ FU
k

; ð1Þ

where L is the neutron leakage and collision coefficient

matrix, H is the scattering source coefficient matrix, F is

the fission source coefficient matrix,k is the eigenvalue,

and U is the neutron flux. Equation (1) can be transformed

into an eigenvalue problem as follows:

AU ¼ FU
k

;A ¼ L� H: ð2Þ

The power iteration is used to solve Eq. (2):

Uðkþ1Þ ¼ 1

kðkÞ
A�1FUðkÞ: ð3Þ

For the multi-group equations of practical problems, the

efficiency of the direct inversion of A is low; thus, the
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iterative method is usually used. It is transformed into a

fixed-source problem to solve

AUðkþ1Þ ¼ 1

kðkÞ
FU

ðkÞ
= SðkÞ: ð4Þ

Equation (4) can be solved by the conventional split

iteration method:

AUðkÞ ¼ ðL�HÞUðkÞ
= SðkÞ

U nþ1;kð Þ ¼ L�1Qðn;kÞ ¼ L�1HU n;kð Þ þ L�1SðkÞ

U kþ1ð Þ¼U 1;kð Þ
: ð5Þ

The necessary condition for the convergence of Eq. (5)

is that the spectral radius of the iteration matrix Pfree ¼
L�1H should be smaller than 1.

The MOC approach uses Eq. (3) and Eq. (5) to solve the

neutron transport equation. Unlike other methods, MOC

does not explicitly construct a matrix L or inverse it. First,

the source term is constructed as

Qðn;kÞ ¼ HU n;kð Þ þ SðkÞ: ð6Þ

Then, based on the integral form of the neutron transport

equation, the outgoing segment-boundary angular flux

/ nþ1;kð Þ
mþ1;T and segment-average angular flux /

nþ1;kð Þ
m;T of the m-

th segment on the characteristic line T in the flat source

region (FSR)Nm can be obtained from the incoming seg-

ment-boundary angular flux / nþ1;kð Þ
m;T and source term q

ðn;kÞ
Nm

:

/ nþ1;kð Þ
mþ1;T ¼ am;T/

nþ1;kð Þ
m;T þ 1

4p
bm;Tq

ðn;kÞ
Nm

/
nþ1;kð Þ
m;T ¼ 1

lm;T
½bm;T/

nþ1;kð Þ
m;T þ 1

4p
cm;Tq

ðn;kÞ
Nm

�
; ð7Þ

where am;T ,bm;T and cm;T are coefficients that are related to

the optical length, and lm;T is the length of the m-th segment

on track T in the FSR Nm.

The angular fluxes of all FSRs can be obtained by

tracing all the characteristic lines according to Eq. (7). The

incoming boundary currents were obtained using the

boundary conditions. There is an iterative convergence

problem of the boundary currents for a non-vacuum

boundary. The required scalar neutron fluxes are obtained

by a weighted sum of all angular fluxes, as follows:

/ðnþ1;kÞ
i ¼ 1

Vi

Z

Vi

d3r

Z

4p

d2X/
ðnþ1;kÞ
m;T

¼ 4p

PP
p¼1

wp

P
m
diNm

lm;T/
ðnþ1;kÞ
m;T

PP
p¼1

wp

P
m
diNm

lm;T

;

ð8Þ

where p is the index of the angle discretization, and wp is

the weight of the angle p.

From the above, it can be seen that ray tracing once is

equivalent to left multiplying the source term in Eq. (6) by

L�1. For practical problems, the split-iteration convergence

of Eq. (5) is slow, and the global energy group rebalancing

method and the Livolant method [15] can accelerate the

convergence to a certain extent, but the effect is limited. In

this paper, the ACA method is studied and a coarse-mesh

ACA based on a material mesh is proposed.

3 Material-mesh algebraic collapsing acceleration

The ACA method is a variant of DSA. It was derived

based on the MOC method, and a low-order neutron

transport description similar to the diffusion equation is

obtained by an algebraic collapsing approximation, which

applies to arbitrary geometry. Because only adjacent FSRs

are coupled, the coefficient matrix has good sparsity. The

solution of the coefficient matrix can be accelerated using

the tracking merging technique (TMT) [19]. This paper

proposes a material-mesh ACA method to improve the

efficiency of the ACA method.

3.1 Algebraic collapsing acceleration

ACA is a preconditioned Richardson iteration. Equa-

tion (5) is left multiplied by L�1, and we obtain

BUðkÞ¼L�1SðkÞ;B ¼ I� L�1H: ð9Þ

The Richardson iterative method splits the coefficient

matrix B into B ¼ I� ðI� BÞ, and its iterative scheme is

written as

U nþ1=2;kð Þ ¼ L�1SðkÞ þ ðI� BÞU n;kð Þ

¼L�1HU n;kð Þ þ L�1SðkÞ;
ð10Þ

Equation (10) is the same as Eq. (5). The solution of this

free iteration can be obtained using the MOC method. In

synthetic acceleration, the new iterative solution is

achieved by the additive correction of the free iterative

solution:

U nþ1;kð Þ ¼ U nþ1=2;kð Þ þ IintW
nþ1=2;kð Þ; ð11Þ

where Iint represents the interpolation matrix between the

transport system of the free iteration and the corrective

system. It is expected that a corrective flux W nþ1=2;kð Þ will
be introduced to make the actual solution converge:

ðI� L�1HÞU nþ1;kð Þ¼L�1SðkÞ: ð12Þ

Combining Eq. (10), Eq. (11) and Eq. (12) give the

following equation for the corrective flux:

L�Hð ÞIintW nþ1=2;kð Þ¼H½U nþ1=2;kð Þ �U n;kð Þ�: ð13Þ
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Equation (13) is a fixed-source problem, similar to

Eq. (5). However, the difference is that the source term is

replaced by the scattering source term of the flux residual

instead of the fission source term. Equation (13) is as dif-

ficult to solve as is the case with Eq. (5). The ACA method

is used to construct a simplified system of Eq. (13) by

using the algebraic collapsing approximation directly on

equations for the even symmetric part of the corrective

fluxes. These equations have a strongly sparse coefficient

matrix, such as diffusion equations and are derived from

the basic equations of the MOC method.

In the ACA method, the corrective angular flux is

decomposed into an even symmetric part wS
m;T and an odd

symmetric part wA
m;T [12] as follows:

wS
m;T¼

1

2
ðwm;T þ wm;�TÞ

wA
m;T¼

1

2
ðwm;T � wm;�TÞ

; ð14Þ

where -T denotes the direction opposite to the character-

istic line T. The angular and volume integrals of the even

symmetric part will be equal to the corrective scalar flux.

The relationship between the segment-averaged angular

flux and the segment-boundary angular flux is obtained by

eliminating the source term from Eq. (7) for MOC. This is

similar to the -T direction. Then, the relationship between

the even- and odd-symmetry part of the segment-averaged

angular flux and those of the segment-boundary angular

flux can be obtained by combining the definition of

Eq. (14) as

w
S

m;T¼
1

2
wS
mþ1;T þ wS

m;T þ ~am;T wA
mþ1;T � wA

m;T

� �h i

w
A

m;T¼
1

2
wA
mþ1;T þ wA

m;T þ ~am;T wS
mþ1;T � wS

m;T

� �h i

~am;T¼
2

1�am;T
� 2

sm;T
� 1

; ð15Þ

where sm;T is the optical length of the m-th segment of

characteristic line T.

Equation (13) for the corrective flux can be written in a

characteristic form and integrating along the m-th segment

yields

wmþ1;T � wm;T þ sm;Twm;T ¼ lm;T
4p

q̂Nm
; ð16Þ

where q̂Nm
includes fixed and scattering source terms. A

similar expression can be obtained for the -T direction.

Then, by adding or subtracting two equations, dividing

them by two and combining Eq. (14) gives

wA
mþ1;T � wA

m;T þ sm;Tw
S

m;T ¼ lm;T
4p

q̂Nm

wS
mþ1;T � wS

m;T þ sm;Tw
A

m;T ¼ 0

: ð17Þ

By combining Eq. (15) and Eq. (17), we can obtain

equations that contain only the even symmetric part of the

corrective flux. As an example, take the m-th segment,

which is away from the boundary surface. If we let the

segment in front be j = m-1 and the segment behind be

l = m ? 1, we can write

� 1�bj;T
dml;T

w
S

j;T þ ð1� bm;TÞ
1

dml;T
þ 1

djm;T

� �
þ sm;T
djm;Tdml;T

� �
w
S

m;T � 1� bl;T
djm;T

w
S

l;T

¼ bj;T
dml;T

q̂Nj
þ �bm;T

1

dml;T
þ 1

djm;T

� �
þ sm;T
djm;Tdml;T

� �
q̂Nm

þ bl;T
djm

q̂Nl

1

dml;T
¼ 1

~dm;T
þ 1

~dl;T
;

1

~dm;T
¼ sm;T

2þ sm;T ~am;T

bm;T ¼ sm;T
2

1

~dm;T
� ~am;T

 !
:

ð18Þ

Equation (18) implies that adjacent regions are con-

nected by characteristic lines, and its coefficient matrix is

sparse. Each term of Eq. (18) is integrated as Eq. (8), and

the algebraic collapsing approximation is introduced on

both sides of the equation. This approximation means that

the integral of the product of two functions is approxi-

mately the product of their respective integrals, or the

assumption of an isotropic even symmetric part of the

corrective flux is adopted. For example, for the first term in

Eq. (18), we can write

1

Vi

Z

Vi

d3r

Z

4p

d2X � 1 - bj;T

dml;T
w
S

j;T

� �

¼ 1

Vi

Z

Vi

d3r

Z

4p

d2X � 1�bj;T
dml;T

� �
� 1

Vi

Z

Vi

d3r

Z

4p

d2Xw
S

j;T

¼ 1

Vi

Z

Vi

d3r

Z

4p

d2X � 1�bj;T
dml;T

� �2
4

3
5� wNj

:

ð19Þ

After applying an approximation similar to that in

Eq. (19) to all the terms in Eq. (18), the equation for the

corrective flux can be obtained approximately. This equa-

tion is a simplified form of Eq. (13), which can be

expressed in the corresponding matrix form as

DW nþ1=2;kð Þ¼EIproj½U nþ1=2;kð Þ �U n;kð Þ�; ð20Þ

where Iproj is the projection matrix from the corrective

system to the actual neutron transport system. The source

term q̂Nm
in Eq. (18) includes the corrected flux scattering

source term, in addition to the flux residual on the right side

of Eq. (20); thus, D is related to the coefficients on both

sides of Eq. (18). The biconjugate gradient stabilized

method (BICGSTAB) with a left incomplete LU (ILU0)

precondition can be used to solve Eq. (20). To reduce the

non-zero filling items in ILU0 decomposition, the inversion
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of the breadth-first search (BFS) algorithm can be used to

adjust the order of the elements of the corrective flux vector

[20].

By combining Eq. (10), Eq. (11) and Eq. (20), we can

write

U nþ1;kð Þ ¼ ðIþ IintD
�1EIprojÞU nþ1=2;kð Þ � IintD

�1EIprojU
n;kð Þ

¼ U n;kð Þ þMðL�1SðkÞ � BU n;kð ÞÞ
M ¼ Iþ IintD

�1EIproj:

ð21Þ

Equation (21) is the standard left-preconditioned

Richardson iteration. The preconditioning matrix M is

close to B�1, and the iterative matrix PACA can be written

as

PACA ¼ I�MB ¼ Pfree � IintD
�1EIprojðI� PfreeÞ: ð22Þ

3.2 Tracking merging technique

The TMT technique [19] compresses the characteristic

lines that pass through the same sets of FSRs into one

merged track and the contribution of that merged track to

the components of the ACA coefficient matrix is then

computed. For the m-th segment, the weight of the merged

track is the sum of the weights of all the compressed

characteristic lines, and the length of the merged track is its

weighted average value:

wm;TMT ¼
P

T2TMT

wm;T

lm;TMT ¼

P
T2TMT

wm;T lm;T

wm;TMT

; ð23Þ

where TMT represents the merged track. In practical

problems, the density of characteristic lines is large, and

there is a specific proportion of the characteristic lines that

pass through the same sets of FSRs. TMT reduces the

number of tracks when solving the coefficient matrix, so it

can improve the efficiency with which the coefficient

matrix is solved, and it can also reduce the deviation

introduced by algebraic collapsing approximation to a

certain extent.

3.3 Material-mesh ACA

The basis of the ACA derivation is given by Eq. (15)

and Eq. (17), which are derived from Eq. (7) and Eq. (16),

respectively, and Eq. (7) is the basic equation of the MOC

method and is derived from the integral form of the neutron

transport equation. Taking s as the distance from any point

on the m-th segment to the incoming boundary of this

segment, the angular neutron flux of any point on the m-th

segment can be written as

/m;TðsÞ ¼ /m;Te
�
Rs
0

Rðs0Þ�ds0

þ
Zs

0

ds�qðs� s�Þe
�
Rs�
0

Rðs�s0Þ�ds0

;

ð24Þ

where s� is the distance between the source point and the

target point.

The premise of Eq. (7), which is derived from Eq. (24), is

that the cross-section and source term of the m-th segment

remain unchanged. To keep the cross-section unaltered, the

most direct method is to select the material mesh; that is,

FSRs with the same material can be assigned to the same

coarse region. Because the coefficient matrix is computed by

ray tracing, all FSRs in the same coarse region can form any

geometric shape, including a concave shape or a group of

discretely distributed shapes. It is worth noting that it is

difficult to construct a homogenization method to make the

system equivalent before or after homogenization. For

example, the optical lengths before and after volume

homogenization were markedly different. To make the

source term unchanged,M denotes the coarse-mesh segment

index on track T and taking the volume-averaged source

term of each FSRs in the same coarse region to replace the

source term in Eq. (24), which is equivalent to using the

algebraic collapsing approximation, it can be expressed as:

/M;TðsÞ ¼ /M;Te
�RNM

�s þ qNM

Zs

0

ds�e�RNM
�s�: ð25Þ

We can deduce the basic Eq. (7) for the coarse-mesh

segments from Eq. (25). Another basic Eq. (16) for the

coarse-mesh segments can be derived in the same way.

Then, the similar ACA equations that are used in Eq. (20)

can be obtained.

The coefficient matrix and equation of the MMACA can

be solved with only a few changes in the ACA.

1. Before the coefficient matrix is solved, the track

information of the fine-mesh grids is transformed into

that of the material mesh. The adjacent segments with

identical materials are merged, leading to the modifi-

cation of the number of elements, region numbering

and the length of segments.

2. When solving the equation, the scalar neutron fluxes of

the last iteration and current free iteration are con-

verted into those averaged by the material mesh; thus,

the source term computed in each coarse region is the

volume-averaged source term of the corresponding

FSRs.

3. The calculated coarse-mesh correction fluxes were

used to correct the free iteration fluxes of all FSRs in
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the same coarse region. The uniform source term is

used for each FSR in the same coarse region, and then

the coarse-mesh correction fluxes were returned to

each FSRs homogeneously.

In terms of the matrix-form equations, the interpolation

matrix and projection matrix of Eq. (11), Eq. (20) and

Eq. (21) are different from those of the original ACA

method. In addition to considering the change in the order

of elements to reduce the non-zero filling items in ILU0

decomposition, the corresponding mapping between the

fine-mesh grids and the coarser material mesh should also

be reflected in those two matrices. Owing to the algebraic

collapsing approximation, the coarser the grid, the larger

will be the deviation. Therefore, the material mesh should

be selected properly.

4 Energy group batching strategy in the parallel
process of ray tracing

At present, the primary method of parallel computing is

to use message passing parallelism between nodes and to

use memory-sharing parallelism within a single node. Its

purpose is to reduce the memory consumption of a single

node and reduce the communication time between the

processors. OpenMP is a widely used shared memory

programming model that can be controlled by compiling

directives, API functions and environmental variables.

OpenMP is easy to use, but because of the opacity of

interfaces, it is not easy to achieve good parallel scalability.

OpenMP has been widely used to parallel MOCs. So far,

the mainstream Intel multicore CPU adopts a three-level

cache architecture in which the last level of cache L3 is

shared. The competition for shared cache L3 is

inevitable in multicore parallel, especially for random

access to memory data. During ray tracing, the access to

FSRs is unordered, which makes the L3 competition

important for problems with numerous energy groups. One

way to handle this problem is to reduce the working set size

of the execution of the core code. A simple and convenient

way to achieve this goal is to process ray tracing in energy

group batches. To reduce the cost of the repeated con-

struction or destruction of the parallel sections, the loops of

the energy group batching (EGB) and the characteristic

lines are mixed by the COLLAPSE directive clause to

allocate tasks. The pseudo-code is expressed as follows:

!$OMP PARALLEL &

!$OMP PRIVATE(…).

!$OMP DO REDUCTION(? :phi) COLLAPSE(2).

DO ibatch = 1,nbatch ! the loop of the energy group

batching.

DO iline = 1,nline ! the loop of the characteristic lines.

Reading_tracks() ! to get the information of character-

istic line.

Tracing_process() ! Ray tracing process through the

polar anger loop and energy group loop.

ENDDO

ENDDO

!$OMP END DO.

!$OMP END PARALLEL.

The dimension of the scalar flux phi is the number of

grids multiplied by the number of energy groups, and its

size can reach the capacity of the L3 cache. The

REDUCTION directive clause is used in the pseudo-code

above to generate copies of variables that need to be

modified for each thread, and there will be no pseudo-

sharing problem. However, if the EGB is not adopted, the

working set of each thread will be near L3 capacity, and

there will be competition in sharing L3 among multiple

threads when FSRs are accessed in a nearly random man-

ner. The use of EGB is equivalent to refining the task size.

The work originally completed by one thread is further

subdivided into N batches, which are completed by dif-

ferent threads in parallel. At this time, the parallel com-

puting work set will be 1/N of the original, leading to a

reduction in the competition of the shared L3. Although the

cost of repeated construction or destruction of the parallel

section can be effectively avoided by a COLLAPSE clause,

the addition of an outer loop increases the number of

computations, such as repeatedly reading the track infor-

mation. Then, there is an optimal selection problem for the

number of batches N.

5 Benchmark validation and acceleration
performance analysis

ThorLAT is a collision probability and MOC-based

lattice and burnup code for the analysis of nuclear reactor

fuel assemblies. The proposed MMACA method in the

ThorLAT code was validated using the VERA-2A, VERA-

2F, VERA-4-2D, C5G7-2D and LRA-2D benchmark

problems.

The 2A and 2F cases in VERA problems are both

assembly geometries, and the 4-2D case is an array of 3�
3 assemblies. For a detailed model geometry and parame-

ters, please refer to the literature [21]. The influence of the

coarse-mesh partition on the convergence and the effect of

the EGB strategy on the acceleration ratio was analyzed

using the 1/8 VERA-2A model. We validated the problem

with burnable poisons by VERA-2F with complete geom-

etry and studied the acceleration effect of the MMACA

method for a larger-size problem. Finally, VERA-4-2D was

used to validate the results and performance of the

MMACA method for problems with the control rod. In the
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current work, the Draglib format database with the SHEM-

361 energy group structure generated from ENDF/B-VII.1

[22] was used. Choosing numerous energy groups reduces

the influence of the resonance interference effect because

the energy group structure is specifically refined. The res-

onance calculation adopted the subgroup method based on

the physical probability table, considered the resonance

interference effect by the Bondarenko iteration and ensured

the conservation of the reaction rate before and after the

subgroup collapsing and volume homogenization by the

SPH method. The MOC was used to solve the subgroup

slowing down equation.

The C5G7-2D [23] benchmark is a mini-core problem

with four 17� 17 pin-cell assemblies and five reflector

blocks. The LRA-2D [24] benchmark is a 2-group, quarter-

core transient BWR problem. These macroscopic cross-

section benchmark problems can exclude the influence of

cross-sections when validating the MMACA method.

All calculations were carried out on a single server that

has 32 GB of memory and which uses 12 Intel Xeon silver

4214 CPU cores with a 2.20-GHz main frequency. Some

common calculation parameters are as follows: For VERA

problems, the characteristic line spacing was 0.05 cm, half

of which was used for macroscopic cross-section problems,

and the azimuth number was 64. The polar angle number

was four, and the convergence accuracy of the eigenvalue

was 1:0� 10�5. The convergence accuracy of the scale

flux was 1:0� 10�5 for VERA problems and 5:0� 10�5

macroscopic cross-section problems. A transport-modified

P0 cross-section was used. Fixed-source iteration uses the

global energy group rebalancing method and the Livolant

method in addition to the ACA or MMACA techniques.

The Livolant method was also used in power iteration. The

diamond difference scheme [25] was used to integrate the

characteristic form of the transport equation, and the TMT

method was used in computing the ACA coefficient matrix.

For macroscopic cross-section problems, only one inner

iteration was set up to solve the fluxes.

5.1 1/8 VERA-2A

5.1.1 MMACA validation and analysis

Figure 1 shows the geometric modeling of VERA-2A in

ThorLAT. The fuel pin-cell was subdivided into 88 FSRs.

The number of FSRs is 3157, and the number of unknowns

is approximately 1:0� 106. The water gap between the

assemblies was explicitly modeled, and the grid of the

ACA was the same as that of the FSRs. The different

coarse-mesh divisions of the MMACA are shown in Fig. 2.

The material mesh of the pin was selected as the coarse-

mesh in MMACA3, and the number of coarse-mesh cells

was changed from 88 to 4. MMACA1 and MMACA2

represent meshes that are further refined from MMACA3

and the corresponding number of coarse-mesh cells is 16

and 7, respectively. MMACA4 denotes that the cells with

two pins having identical materials are merged into the

same coarse-mesh cell, which is the case in which the

coarse-mesh cell consists of discretely distributed fine-

mesh cells. In this case, the number of coarse-mesh cells

changed from 176 to 4.

The calculation results of VERA-2A with different ACA

grids are listed in Table 1. This problem was solved using a

single thread, and the EGB strategy was not used. From the

errors of keff and pin power distribution, MMACA can

reach the convergence result of ACA, which indicates the

correctness of MMACA. With the coarser ACA grid, the

Fig. 1 (Color online) Geometric modeling of VERA-2A in ThorLAT

Fig. 2 (Color online) Different coarse-mesh division of MMACA

method
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number of ray tracing increases, which is caused by the

deviation introduced by the algebraic collapsing approxi-

mation. The coarser the grid is, the greater the deviation

introduced by this approximation, which makes the

approximation of the preconditioning matrix to the inverse

of the coefficient matrix less accurate and increases the

number of iterations. However, the increase in the number

of iterations is limited. From the perspective of the calcu-

lation efficiency, the four MMACA grids can effectively

reduce the calculation time, and the speed-up ratio can

reach more than 1.5 when compared with ACA, which

shows the effectiveness of MMACA at improving the

computational efficiency. There are two aspects of the

effect of grid coarsening on computational efficiency. First,

coarsening the grid leads to more iterations, which is

detrimental to improving computational efficiency; the

other is that reducing the number of ACA cells can sig-

nificantly lower the ACA calculation time. Consequently,

MMACA2 with a moderate number of coarse-mesh cells

had the highest speed-up ratio.

In the original ACA scheme, the time taken to solve the

ACA equations of the low-order system accounts for 51%,

which indicates that solving ACA equations is inefficient

for problems with medium or above size. The reasons are

as follows: (1) the complex neighborhood relationship

between nodes in unstructured grids increases the number

of non-zero elements of the coefficient matrix, and its

solution convergence will be lower than that of a standard

tri-diagonal matrix in CMFD; (2) for medium or above size

problems, the use of the ACA equations to solve problems

with numerous energy groups is time-consuming because

the iterative solution of upward scattering in thermal

groups takes a lot of time; (3) the contribution of each track

to the ACA coefficient matrix can be accumulated by ray

tracing based on algebraic collapsing approximation, and

the larger the problem size, the more time-consuming is the

solution of the coefficient matrix. MMACA can effectively

reduce the percentage of the ACA run-time. For example,

the percentage of the ACA run-time of MMACA2, which

is the optimal coarse-mesh division, can be reduced to less

than 10%, which shows the need to introduce MMACA for

applying ACA to large-scale problems.

5.1.2 Performance analysis of energy group batching

The process of ray tracing can be divided into two parts.

First, the information about the track is read, and the

boundary or segment-averaged angular flux along the track

is then calculated. The track information only needs to be

read once when the energy groups are not processed in

batches. In contrast, the time taken to read the track

information is the number of batches, which increases the

number of calculations. This is also the reason for which

EGB is not used in general, but it may not be the optimal

method for problems having different sizes. The calcula-

tion in this section adopts the MMACA2 model for VERA-

2A.

Table 2 shows the effect of the number of energy groups

per batch (nEGB) on the computational performance,

where the case with 361 energy groups in a batch corre-

sponds to non-batch processing. With the increase in

nEGB, the run-time first decreased and then increased, and

the speed-up ratio declined. Compared with the case with

non-batch processing, the minimum-time case, which has

10 energy groups per batch, increases the parallel speed-up

ratio from 3.7 to 6.9. The results indicate that the EGB

strategy can improve the calculation efficiency and sig-

nificantly enhance the OpenMP parallel speed-up.

To analyse the impact of the cache on program perfor-

mance, we used the ‘‘perf’’ tool to record the events of

‘‘cache-misses’’ and ‘‘cache-references’’ in ray tracing.

‘‘Cash-misses’’ can reflect misses of cache-L3, while

‘‘cash-references’’ is the sum of L3 hits and misses, which

can reflect L2 misses, as shown in Fig. 3. With the increase

in nEGB, the number of L2 and L3 misses of reading track

information gradually decreases, while the number of

misses of calculations in ray tracing increases. When nEGB

is small, the number of cache misses of reading is higher

Table 1 The calculation results

of VERA-2A with different

ACA grids

ACA MMACA1 MMACA2 MMACA3 MMACA4

Number of cells for ACA 3157 633 318 194 127

keff diff. (pcm) -10 -10 -10 -10 -10

RMS of pin power error dist. (%) 0.11 0.11 0.11 0.11 0.11

MAX of pin power error dist. (%) 0.42 0.42 0.42 0.42 0.42

Ray tracing times 27 31 33 37 39

Total time (s) 1151 734 693 732 757

Time for ACA coefficient matrix (s) 179 58 43 38 35

ACA total time (s) 592 111 65 47 40

Pct. of ACA run-time (%) 51.4 15.1 9.4 6.4 5.3

Speed-up ratio 1 1.57 1.66 1.57 1.52
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than that of tracing because of the repeated reading of track

information. When nEGB increases, the number of times of

reading decreases and the working set size of the tracing

calculation is enlarged, causing the ratio of cache misses to

be more focused on the tracing calculation. The total

number of cache misses is the combined result of the two

processes mentioned above. It first decreases with a

decrease in the number of cache misses of reading and then

rises with the increase in the number of cache misses of

tracing, which is consistent with the trend observed in the

calculation time with nEGB in Table 2. When nEGB is 1 in

the single-thread calculation, the time is longer than the

case without batching. This is because all energy groups

need to read the track information again, and the number of

calculations is much larger than the case without batching.

When nEGB is 50, the number of cache misses under a

single thread is less than that of the case when nEGB is 10,

but its calculation time is longer. The reason is that with the

increase in nEGB, the working set size of the tracing cal-

culation will exceed L2 capacity, resulting in a rapid

increase in the number of L2 misses by two orders of

magnitude. When 12 threads are used in parallel, the scalar

flux is treated by the REDUCTION clause, which means

that each thread generates a copy of the scalar flux, leading

to a significant increase in the size of the working set.

During the parallel calculation, threads compete for the

shared L3. When nEGB increases to a certain extent, L3

becomes saturated. If nEGB continues to grow, the number

of L3 misses will increase sharply, which will seriously

affect the speed-up ratio.

When nEGB is 10 and the ACA coarse-mesh division

adopts MMACA2, the strong parallel speed-up ratio is as

shown in Fig. 4, where 24 threads are realized by using

hyper-threading technology. The maximum speed-up was

8.0, on a 12-core Intel Xeon silver 4214 CPU. Considering

the MMACA and EBG introduced in this paper, the max-

imum speed-up is 15.0, compared with the original scheme.

Table 2 The effect of the

number of energy groups per

batch on the computational

performance

Number of energy groups per batch Single thread (s) 12 Threads (s) Speed-up ratio

1 770 106 7.3

5 634 91 7.0

10 617 90 6.9

50 628 95 6.6

100 670 117 5.7

361 (non-batch) 694 186 3.7

Fig. 3 Cache misses in ray tracing

Fig. 4 Strong parallel speed-up ratio for the case with MMACA2 and

10 nEGB
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5.2 VERA-2F with complete geometry

It can be seen from the above calculations that with an

increase in the number of cells for ACA, the percentage of

the ACA run-time gradually increases. When using the

same fine-mesh grid with the transport calculation in

Table 1, the ACA total time exceeds the ray tracing time in

the solution of the transport equation. If the problem size is

further expanded, it can be predicted that the proportion of

the ACA solution time will also increase. Hence, the cal-

culation of VERA-2F with complete geometry was carried

out. The scale of the unknown variables in this problem

was close to 1:0� 107. The calculation results are listed in

Table 3. The nEGB is 10 and 12 threads are used in par-

allel. VERA-2F is an assembly with 24 Pyrex burnable

poison rods. The results show that MMACA can correctly

handle the calculation of such an assembly. The percentage

of the ACA run-time reaches 76%, which is the most time-

consuming part of the entire calculation. The use of four

types of coarse grids for MMACA can also effectively

improve calculation efficiency. MMACA2 is also the best

coarse-mesh partition scheme, which can reduce the per-

centage of the ACA run-time to 14.1% and its speed-up

ratio attains 3.1 when compared with the fine-mesh

scheme. The computational efficiency of MMACA3 based

on the material mesh of the pin-cell was equivalent to that

of MMACA2.

Table 4 shows the effect of nEGB on the computational

efficiency of the complete geometry VERA-2F when using

MMACA2 and 12 threads in the calculation. The effect of

nEGB was similar to that of the 1/8 VERA-2A calcula-

tions. When nEGB is 10, the calculation efficiency is bet-

ter, and the speed-up ratio is 2.6 when compared with that

of non-batch processing. The increase in the ACA total

time without batching is mainly due to the increase in the

ACA coefficient matrix calculation. The ACA coefficient

matrix is obtained by accumulating through ray tracing, in

which the EGB strategy can also be implemented. Com-

pared with scalar flux, the ACA coefficient matrix

calculation requires more memory space to store non-zero

elements in the non-diagonal position, and the speed-up

effect of the ACA coefficient matrix calculation is more

obvious by performing EGB in parallel computing. The

reason for which the percentage of the ACA run-time is

lower when EGB is not used is that ray tracing is more

time-consuming, which reduces the proportion of ACA.

5.3 VERA-4-2D

5.3.1 1/8 symmetric model calculation

VERA-4-2D is a 3� 3 color set. 4A-2D is the case in

which the control rods are not inserted, 4B-2D is inserted

with AIC control rods, and 4C-2D is inserted with B4C

control rods. These cases can be used to validate the cal-

culation with the burnable poison Pyrex and control rods

inserted into the guide tubes. The results of the control rod

worth calculated using the coarse-mesh division MMACA3

for 1/8 VERA-4-2D are shown in Table 5, and 12 threads

are used for the calculation. The maximum deviation of the

control rod worth calculated by MMACA3 is -1.12%,

which is in good agreement with the reference solution.

The error distributions of pin power are shown in Fig. 5.

The maximum error for the case with the control rods

withdrawn was 0.96% and for the case with the rods

inserted, it was 1.97%. The error distribution of the pin

power is slightly larger than that of VERA-2A, which

indicates that there is a certain deviation when treating

scattering anisotropy by the transport-corrected P0 cross-

section in the presence of a strong absorber. Therefore, a

more accurate anisotropic scattering treatment is needed.

5.3.2 Performance analysis for VERA-4-2D with complete

geometry

The size of the unknown variables to be solved in

VERA-4-2D with complete geometry is approximately

8:0� 107, and the ACA calculation is time-consuming,

Table 3 Calculation results of

complete geometry VERA-2F

with different ACA grids and

using 12 threads

ACA MMACA1 MMACA2 MMACA3 MMACA4

Number of cells for ACA 26,236 5196 2282 1415 877

keff diff. (pcm) -17 -17 -17 -17 -18

RMS of pin power error dist. (%) 0.29 0.29 0.29 0.29 0.29

MAX of pin power error dist. (%) 0.50 0.50 0.49 0.49 0.49

Ray tracing times 32 36 40 43 52

Total time (s) 1538 577 491 495 571

Time for ACA coefficient matrix (s) 68 26 20 19 18

ACA total time (s) 1174 166 69 40 35

Pct. of ACA run-time (%) 76.3 28.8 14.1 8.1 6.1

Speed-up ratio 1 2.67 3.1 3.1 2.69
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which can be inferred from the situation of VERA-2F with

complete geometry. To analyse the impact of MMACA and

EGB, the following five cases are calculated: ‘‘ACA-1-a’’

represents fine-mesh ACA calculation in which nEGB is

‘‘a’’ and 1 thread is used; ‘‘MMACA3-a-b’’ denotes that

coarse-mesh MMACA3 is used in the calculation, in which

nEGB is ‘‘b’’, and the number of threads used is ‘‘a’’. The

results are listed in Table 6. The ACA grid is the same as

the grid of FSRs for transport computing, which makes the

ACA coefficient matrix occupy a significant amount of

Table 4 Effect of nEGB on the computational performance for VERA-2F when using MMACA2 and 12 threads

nEGB Total time (s) Time for ACA coefficient matrix (s) ACA total time (s) Pct. of ACA run-time (%)

1 558 40 89 15.9

5 494 22 71 14.4

10 491 20 69 14.1

50 539 32 80 14.8

100 758 72 120 15.8

361(non-batch) 1300 102 151 11.6

Table 5 Control rod worth

calculated using MMACA3 for

1/8 VERA-4-2D

Ref. keff Ref. worth MMACA3 keff Dev. (pcm) MMACA3 worth Dev. (%)

4A-2D 1.01024 1.01103 79

4B-2D 0.98345 2697 0.98448 104 2667 -1.12

4C-2D 0.98029 3024 0.98107 77 3021 -0.11

Fig. 5 (Color online) Error

distributions of pin power

calculated using MMACA3 for

1/8 VERA-4-2D
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memory. Consequently, restricted by the limit of 32 GB

memory, only the results using a single-thread can be

provided for fine-mesh ACA calculations. Coarse-mesh

division MMACA3 can effectively decrease the number of

non-zero elements of the ACA coefficient matrix and can

significantly reduce the memory requirement of the ACA

calculation, so multi-threading parallel computing can be

carried out with limited memory. For the cases that involve

the use of one thread, EGB can slightly increase the cal-

culation efficiency and the introduction of MMACA can

reduce the total time, although the ray tracing times are

increased to a certain extent. The percentage of ACA run-

time can be reduced to 8.5%, and the speed-up ratio is 3.8.

In 12-thread parallel computing, the speed-up ratio is 8.6

without EBG, but the speed-up ratio can be increased to

25.5 by setting nEBG to 10, which shows that EGB can

significantly enhance the parallel efficiency. In summary,

MMACA can effectively improve the computing efficiency

and reduce the memory requirements for problems with a

certain scale.

5.4 C5G7-2D

Similar to the above VERA problems, C5G7-2D was

solved using 12 threads in four ways, as shown in Fig. 6.

The grid for the ACA is also the mesh for the FSRs. The

number of unknowns is approximately 2:1� 106, which is

much smaller than the number of VERA-4-2D problems.

Table 7 gives the results for C5G7-2D, and the error dis-

tribution of the pin power calculated using MMACA2 is

illustrated in Fig. 7. The reference results were obtained

using OpenMOC [26]. The results demonstrated good

agreement between the MMACA and the reference

OpenMOC solution. By reducing the percentage of the

ACA run-time from 61.6% to 5.4%, MMACA2 can

achieve a speed-up of about 1.9, which is the most efficient

solution. Because C5G7-2D has strong heterogeneity,

MMACA2 with the water region of a pin further divided

can effectively reduce the number of ray tracing processes

compared with MMACA3. MMACA1 with the fuel region

further divided had little influence on decreasing the ray

tracing times, which makes it less effective than

MMACA2.

5.5 LRA-2D

LRA-2D is a benchmark for the diffusion solver, by

using which the reference eigenvalue for the initial steady-

Table 6 Results for VERA-4-2D with complete geometry

ACA-

1–361

ACA-

1–10

MMACA3-

1–10

MMACA3-

12–10

MMACA3-

12–361

Number of threads 1 1 1 12 12

nEGB 361 10 10 10 361

Number of cells for ACA 226,332 226,332 11,307 11,307 11,307

Number of non-zero elements of ACA coefficient matrix 1,133,828 1,133,828 40,881 40,881 40,881

Ray tracing times 62 62 91 91 91

Total time (s) 253,013 207,497 67,432 9938 29,318

Time for ACA coefficient matrix (s) 28,315 14,225 3201 335 1554

ACA total time (s) 172,927 158,629 5713 825 2084

Pct. of ACA run-time (%) 68.3 76.4 8.5 8.3 7.1

Speed-up ratio 1 1.2 3.8 25.5 8.6

Fig. 6 (Color online) Different coarse-mesh division of MMACA for

C5G7-2D
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state problem was keff=0.99637. In this study, OpenMOC

was used to generate the reference eigenvalue for the MOC

solver. Each assembly was divided into 32� 32 squares

with a side length of 0.46875 cm. Full core geometry with

vacuum boundary conditions was used instead of the

quarter-core. The coarse grids for an assembly in

MMACA1, MMACA2 and MMACA3 are 10� 10, 4� 4

and 1� 1, respectively. In this case, 12 threads were used,

and the convergence criterion for solving the ACA equa-

tions was set to 1:0� 10�7. As shown in Table 8, the

MMACA eigenvalue agrees well with the reference MOC

solver solution. MMACA2 can drastically decrease the

total ACA time and achieve a speed-up by a factor of 2.39.

6 Conclusion

To maximize the geometric adaptability of the MOC,

the convergence acceleration algorithm also needs to be

applied to any geometry, and the ACA technique is an

effective method for meeting this requirement. The low-

order equations with the sparse coefficient matrix can be

established by using algebraic collapsing approximation

and can be used to accelerate the convergence of the fixed-

source iteration in the MOC. Although the ACA equations

are very sparse, it still need to face the problem of large

memory requirements and inefficiency when solving large-

size problems. This is because the ACA is a type of fine-

mesh DSA method. This work enables the ACA equation

to be solved on a coarser mesh.

In the current work, the basic solution process of the

MOC is first introduced. After the derivation of the ACA, a

coarse-mesh MMACA method based on the material mesh

was proposed. This method can be realized with a slight

modification to the original scheme of the ACA. Then, the

EGB strategy is presented to achieve a better parallel

efficiency for microscopic cross-section problems. The

correctness and effectiveness of the MMACA method

under distinct coarse-mesh partitions and with different

problem sizes were analyzed numerically. The perfor-

mance of the EGB strategy was also studied during the

numerical validation. From the analysis of the VERA-2A

problems, the cache misses caused by nearly random

access to FSRs during the tracing process is the main

reason for the decrease in parallel efficiency, and the EGB

strategy can lessen them to achieve better parallel effi-

ciency by decreasing the working set size simply and

conveniently. The multiplication factor and pin power

distributions agree well with the reference solutions. The

maximum values are 104 pcm and 1.97%, respectively,

Table 7 Results for C5G7-2D with different ACA grids and using 12 threads

ACA MMACA1 MMACA2 MMACA3

Number of cells for ACA 301,716 10,693 7225 3757

keff diff. (pcm) -21 -21 -20 -21

RMS of pin power error dist. (%) 0.13 0.11 0.11 0.11

MAX of pin power error dist. (%) 0.34 0.31 0.31 0.31

Number of non-zero elements of ACA coefficient matrix 1,206,516 42,644 33,338 12,512

Ray tracing times 18 22 23 30

Total time (s) 495 265 258 328

ACA total time (s) 305 16 14 11

Pct. of ACA run-time (%) 61.6 6.0 5.4 3.3

Speed-up ratio 1 1.9 1.9 1.5

Reference keff = 1.186523 from OpenMOC

Fig. 7 (Color online) The error distribution of pin power calculated

using MMACA2 for C5G7-2D
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which occurred in the VERA-4B-2D case with AIC control

rods inserted. For microscopic cross-section VERA-4-2D

problem, a speed-up ratio relative to a single-thread ACA

solution can reach 25 on 12 CPU cores. The MMACA

method can reduce the computation time cost by approxi-

mately one half for macroscopic cross-section C5G7-2D

and LRA-2D benchmarks. The results show that the

MMACA method can effectively improve the computing

efficiency and reduce memory requirements for problems

on a certain scale.

Because the algebraic collapsing approximation is

adopted in the ACA, the larger the mesh size, the greater

will be the deviation caused by the approximation, which

leads to a deterioration of the convergence performance.

This issue requires further improvement. At present, the

proposed MMACA method only accelerates fixed-source

iteration. Therefore, an additional acceleration method may

be introduced to accelerate the convergence of the power

iteration.
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