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Abstract In radiation measurement and digital nuclear

spectrum systems, traditional nuclear signal processing

circuits in nuclear electronics have been gradually replaced

by digital algorithm modules with the application of high-

performance programmable hardware logic devices (such

as FPGA or DSP). Referring to the digital realization

method of inverse RC integral circuit systems, the function

of the pole-zero cancellation (PZC) circuit was analyzed, a

new modified cascade equivalent model of PZC was

established, and the time-domain digital PZC (DPZC)

recursive algorithm was derived in detail in this study. Two

parameters kI and kD are included in the new algorithm,

where kI should match the exponential decay time constant

of the input signal to realize the pole-zero compensation,

while the decay time constant of the output signal can be

changed with the adjustable parameter kD (which is larger

than the decay time constant of the input signal). Based on

the new DPZC algorithm module, two trapezoidal (trian-

gular) shaping filters were designed and implemented. The

amplitude–frequency characteristics of the output signal of

the proposed trapezoidal shaping algorithm and the con-

volution trapezoidal shaping algorithm were compared,

with fixed peaking time. The results show that the trape-

zoidal shaping algorithm based on DPZC can better sup-

press high-frequency noise. Finally, based on the NaI (Tl)

scintillator (u75 mm 9 75 mm) detector and 137Cs source,

the effect of the kD value on the energy resolution of the

DPZC trapezoidal (triangular) shaping algorithm was

studied. The experimental results show that, with an

increase in kD, the energy resolution of the system

improved and reached the maximum when kD was greater

than 10, and the optimal energy resolution of the system

was 7.72%.

Keywords Pole-zero cancellation � C–R inverse system �
Trapezoidal/ triangular shaping � Amplitude–frequency

characteristics � Energy resolution

1 Introduction

The digital pulse processing (DPP) method has been

widely studied and applied in the area of radiation mea-

surement and nuclear spectrum systems. A typical digital

nuclear spectrum system is illustrated in Fig. 1 [1]. The

first stage presents a combination of detector and pream-

plifier, which transforms nuclear energy into electrical

signal; in the second stage, the pole-zero cancellation

(PZC) circuit is applied to adjust the pulse shape, which is

an elimination procedure of the pole in the preamplifier

transform function and zero in the PZC circuit; therefore,

the PZC circuit eliminates the undershoot in the pulse and

implements the pulse width adjustment. The third stage
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presents the main amplifier, which adjusts the amplitude of

the pulse signal; then, with the high-speed ADC transfor-

mation in the fourth stage, the information of the pulse

signal data is delivered to DPP to implement processes

including digital filter shaping, baseline restoration, pile-up

rejection, and multi-channel pulse amplitude analysis.

Finally, the data are transferred to a portable computer for

spectrometer analysis.

Generally, the output pulse signal of the first stage

(detector and RC feedback charge-sensitive amplifier) is an

exponential decay voltage pulse signal with a fast-rising

edge and a slow-falling edge that finally lands to the

baseline [2]. Under the circumstance of a high counting

rate, the slow-falling pulse trailing edge increases the

probability of pulse pile-up, which results in baseline

drifting, and the subsequent amplifier may be blocked. The

synthesis of these factors will finally cause drifting of the

energy peak channel and degradation of the energy reso-

lution of the nuclear spectrometer [3–6]. In traditional

nuclear electronics, analog PZC circuits are often used to

narrow the width of the preamplifier output signal, which

finally reduces pulse pile-up. However, it is difficult to

realize accurate pole-zero compensation exactly; unsuit-

able compensation processing seriously affects the stability

of the baseline and may degrade the energy resolution.

With the rapid development of digital signal processing

and programmable hardware logic circuits (including

FPGA and DSP), it is possible to realize the digitization of

signal processing circuit modules in traditional nuclear

electronics. Compared with the traditional analog PZC

circuit, digital PZC (DPZC) performs better in terms of

reliability and flexibility. Geraci et al. designed an auto-

matic pole-zero/pole-zero digital compensator that can be

implemented in an FPGA for high-resolution spectroscopy

and introduced an equivalent pole-zero couple to accu-

rately compensate for the nuclear pulse signal of the long

decay time constant sampled in real time [7]. Zhou et al.

established a mathematical model of a PZC circuit using a

numerical differential method, which can easily realize the

effect of an analog PZC circuit [8]. Saxena and Hawari

presented a block diagram of the digital implementation of

PZC for RC feedback preamplifier pulses and the transfer

function of the DPZC network in the Z domain. The pulse

deconvolution technique was developed to reconstruct the

original detector signal from the RC preamplifier, and a

real-time high-resolution and high-throughput adaptive

DPP system was designed and implemented [9]. These

DPZC algorithms are directly derived from the mathe-

matical model of the traditional analog PZC circuit;

therefore, the decay time constant of the output pulse signal

is generally smaller than that of the input pulse signal. In

this study, a modified cascade model of PZC was obtained

using an inverse system analysis method, and its digital

recursive algorithm was derived. The novel algorithm

module can easily adjust the decay time constant of the

output pulse signal arbitrarily to be larger or smaller than

the original decay time constant of the input pulse signal.

Furthermore, the shaping filter of the nuclear pulse can

correct the ballistic deficit, reduce the probability of pulse

pile-up, and improve the signal-to-noise ratio (SNR) to

optimize the performance of the nuclear spectrometer.

Theoretically, the optimal shaping filter for the nuclear

pulse signal should be an ideal infinite peaked filter;

however, it cannot be realized in a limited time domain.

Generally, CR–(RC)n, trapezoidal (triangular), and cusp-

like shaping filters are commonly applied in practical

applications. The CR–5(RC)n shaping filter comprises a

simple C–R differential circuit connected in series with a

group of n-order R–C integral networks, and it can realize

the transformation from a negative exponential decay pulse

signal to a quasi-Gaussian pulse signal. Owing to their

simple circuit structure, CR–(RC)n shaping filters have

been widely used in analog nuclear spectrum systems.

Nakhostin designed a digital recursive algorithm by cal-

culating the Z-transform transfer function of a CR–(RC)n

shaping filter within the fourth-order, focusing on the

analysis of the noise performance [10]. Liu et al. designed a

modified shaping filter algorithm of CR–(RC)m by replac-

ing the C–R differential circuit with a PZC circuit and

deployed the algorithm in FPGA [11]. The trapezoidal

(triangular) shaping filter changes a negative exponential

decay signal into a trapezoidal (or triangular) pulse output.

It has the advantages of a simple algorithm structure,

convenient parameter adjustment, short shaping time,
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Fig. 1 Typical block diagram of a digital nuclear spectrum system
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immunity to the ballistic deficit, and easy implementation

in programmable hardware logic circuits (such as FPGA or

DSP). It has been widely applied to digital nuclear spec-

trum systems. Jordanov et al. designed a trapezoidal (tri-

angular) shaping algorithm using a digital synthesis

method. The algorithm structure is very simple, and the

shaping parameters are easily valued. In the programmable

hardware logic circuit, only a delay pipeline, adder/sub-

tractor, accumulator, and multiplier are needed [12–14].

Imperiale and Imperiale designed a trapezoidal (triangular)

shaping algorithm using the Z-transform method after

establishing a trapezoidal (triangular) shaping combination

function [15]. Kafaee proposed a bipolar cusp-like shaping

filter algorithm that can achieve baseline recovery and pile-

up correction. The filter adopts a recursive shaping algo-

rithm in the time domain and convolution shaping in the

frequency domain. The shaping parameters can be adjusted

flexibly and easily implemented in an FPGA or other DPP

systems [16]. Liu et al. proposed a cusp-like pulse shaping

method based on the recursive formula of the time-domain

digital difference and studied in detail the effect of the time

constant (s) on the shaping pulse flat top [17]. These digital

filter shaping algorithms for nuclear pulse signals are

useful for the design of the DPZC trapezoidal shaping filter

algorithm in this study.

Referring to our previous C–R differential inverse sys-

tem analysis method, the numerical differential and inverse

system method was employed to study the digital realiza-

tion of a traditional PZC circuit. By establishing a new

improved PZC equivalent model, we derived the digital

recursive algorithm of PZC that can be easily implemented

in a programmable hardware logic circuit (such as FPGA

or DSP). Then, two types of novel trapezoidal (triangular)

shaping algorithms were designed using the DPZC algo-

rithm module through a digital synthesis method, which

provides a new idea for the design of shaping algorithms

for high-resolution digital nuclear spectrum systems.

2 Digital recursive algorithm of PZC circuit

2.1 Fundamental principle of PZC

The detector converts radiation energy into an impulse

signal and outputs a negative exponential decay pulse

signal via an RC feedback amplifier. The rising edge of the

nuclear pulse signal rises quickly, and the trailing edge

falls slowly to the baseline, producing a long tail. The

analog PZC circuit is used to process the long minus

exponential decay pulse signal in traditional nuclear elec-

tronics, as shown in Fig. 1.

The output of the RC feedback amplifier can be

expressed using Eq. (1), where sf = RfCf.

vi tð Þ ¼
Q

Cf

� expð�t=sfÞ ð1Þ

Equation (2) can be obtained using the Laplace trans-

form of Eq. (1).

Vi sð Þ ¼ Q

Cf

� 1

sþ 1=sf
ð2Þ

The Laplace transform equation of the transfer function

of the traditional analog PZC circuit shown in Fig. 1 is as

follows:

H sð Þ ¼ Vo sð Þ
Vi sð Þ ¼

Rd

Rd þ s � Cd==RPZ

¼ sþ 1=s1
sþ 1=s2

; ð3Þ

where s1 = RPZCd and s2 = (Rd//RPZ)�Cd.

According to Eqs. (2) and (3), the expression of the

output signal of the analog PZC circuit is given by Eq. (4).

Vo sð Þ ¼ Vi sð Þ � H sð Þ ¼ Q

Cf

� 1

sþ 1=sf
� sþ 1=s1
sþ 1=s2

ð4Þ

If s1 = sf, then Eq. (4) can be expressed by Eq. (5).

Vo sð Þ ¼ Q

Cf

� 1

sþ 1=s2
ð5Þ

After the inverse Laplace transform of Eq. (5), the time-

domain expression of the output pulse signal can be

obtained as follows:

vo tð Þ ¼ Q

Cf

� expð�t=s2Þ: ð6Þ

When the pole of the transfer function of the pream-

plifier and the zero of the transfer functions of the analog

PZC circuit are canceled, the output signal can be trans-

formed into a short minus exponential decay pulse signal

(the time constant is s2).

2.2 Digital recursive algorithm for traditional PZC

circuit

According to Kirchhoff’s current law, the voltage

transfer equation of the analog PZC circuit displayed in

Fig. 1 can be established as follows:

Vi tð Þ � Vo tð Þ
RPZ

þ Cd �
d Vi tð Þ � Vo tð Þð Þ

dt
¼ Vo tð Þ

Rd

: ð7Þ

The continuous analog pulse signal can be discretized

quickly using a high-speed ADC, and Vi(t) and Vo(t) can be

expressed as x[n] and y[n], respectively. Let k1 = Dt/(RPZ-

Cd) and k2 = Dt/(Rd�Cd), then the PZC digital recursive

equation derived from Eq. (7) is given by:

y n½ � ¼ 1þ k1ð Þ � x n½ � � x n� 1½ � þ y n� 1½ �
1þ k1 þ k2

n� 1

y n½ � ¼ x n½ � ¼ 0 n� 0

8
<

:
: ð8Þ
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When processing the digital nuclear pulse signal

[Eq. (8)], the algorithm module can completely replace the

traditional PZC circuit. To set the values of the parameters

k1 and k2, Dt is determined by the sampling rate of the

ADC device, and the denominator (s1 = RPZ�Cd) of k1
should match the decay time constant of the output signal

of the RC feedback amplifier. According to Eq. (6), the

exponential decay time constant of the output pulse signal

is s2 = (Rd//RPZ)�Cd, and when the resistance value RPZ is

much greater than that of Rd, the time constant can be

approximately equal to RdCd. More specifically, the

parameter k1 realizes pole-zero compensation, and k2
realizes the pulse signal width adjustment (the time con-

stant can only be smaller than the input signal).

By carefully analyzing Eq. (8) and deeply understanding

the function of the PZC circuit on the nuclear pulse signal,

the traditional PZC circuit can be expressed as an improved

cascade equivalent model, as shown in Fig. 2a; thus, the

long minus exponential decay pulse signal is first recovered

to a step signal by the CRINV system, and then output to a

narrow minus exponential decay pulse signal by the CR

differential circuit.

Referring to our previous study on the RC inverse sys-

tem (RCINV), we investigated the CR system and aimed to

obtain the digital recursive algorithm of the CR inverse

system (CRINV) by analyzing the digital recursive algo-

rithm of the CR system.

The input signal is given by Vdi(t), and the output signal

is Vdo(t). According to the equation of the CR differential

system, which was derived earlier [18]:

dVdi tð Þ
dt

� dVdo tð Þ
dt

¼ Vdo tð Þ
Rd1 � Cd1

: ð9Þ

Taking a sufficiently small time interval (e.g., Dt = 10

ns), Vdi(t) and Vdo(t) can be digitized into x[n] and y[n],

respectively, and Eq. (10) is obtained, where n = 0,1,2,…,

kD = Dt/(Rd1Cd1).

y n½ � ¼ y n� 1 þx n½ � � x� ½n� 1½ �
1þ kD

ð10Þ

The inverse system of the C–R differential circuit was

defined as CRINV. To distinguish from the above C–R

differential circuit, the resistance and capacitance are

expressed as RI and CI, respectively, and kI = Dt/(RICI).

Using the C–R inverse transformation in Eqs. (10, 11) can

be obtained as

x n½ � � x n� 1½ � ¼ 1þ kIð Þ � y n½ � � y n� 1½ �: ð11Þ

Rearranging Eq. (11), we obtain Eq. (12).

x n½ � � x n� 1½ � ¼ kI � y n½ � þ y n½ � � y n� 1½ �ð Þ ð12Þ

If the initial values of the input and output signals are

zero, Eq. (13) can be obtained using the digital integral

transformation of Eq. (12), which is a digital recursive

algorithm of the C–R inverse system. Equation (13) can be

easily realized using a digital system, and the corre-

sponding block diagram is shown in Fig. 2b.

x n½ � ¼ kI �
XN

i¼0

y i½ � þ y n½ � ð13Þ

Suppose the signal y[n] passes through the C–R inverse

system to obtain the output signal x[n], and the signal

x[n] passes through the C–R differential system to obtain

the signal z[n]; the derivation process for the signal trans-

formation can be described as follows.

Using the C–R differential system, the signal x[n] is

converted into signal z[n]. According to Eq. (10), Eq. (14)

can be obtained.

z n½ � ¼ z n� 1 þx n½ � � x� ½n� 1½ �
1þ kD

ð14Þ

The signal x[n] is obtained from the signal y[n] by the

C–R inverse system transformation.

Substituting x n½ � ¼ kI �
Pn

i¼0

y i½ � þ y n½ � into Eq. (14) pro-

duces Eq. (15).

z n½ � ¼
z n� 1½ � þ kI �

Pn
i¼0 y i½ � þ y n½ � � kI �

Pn
i¼0 y i� 1½ � þ y n� 1½ �

� �

1þ kD

ð15Þ

By rearranging Eq. (15), we obtain Eq. (16).

z n½ � ¼ z n� 1½ � þ 1þ kIð Þ � y n½ � � y n� 1½ �
1þ kD

ð16Þ

CRINV

system

CR

Differential 
Circuit

y[n] x[n]

kI

(b)(a)

Fig. 2 Improved cascade model of PZC and block diagram of the digital recursive algorithm for CRINV system. a Improved cascade equivalent

model of PZC circuit. b Block diagram of the digital recursive algorithm for CRINV system
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Equation (16) is the digital recursive algorithm of the

improved cascade equivalent model of the PZC circuit

shown in Fig. 2a, which is different from Eq. (8). The

reasons for this are as follows.

The C–R part of the PZC circuit displayed in Fig. 1 is

equivalent to the result that the capacitor Cd is connected in

series to the parallel of resistances Rd and Rpz.

Therefore,

k ¼ Dt
RPZ==Rdð Þ � Cd

¼ Dt

Cd � RPZ�Rd

RPZþRd

: ð17Þ

By organizing Eq. (17), we obtain Eq. (18).

k ¼ Dt
RPZ � Cd

þ Dt
Rd � Cd

ð18Þ

In Eq. (8), k1 = Dt/(RpzCd), k2 = Dt/(RdCd), and k = k1-
? k2. In Eq. (16), kI = Dt/(RICI), kD = Dt/(Rd1Cd1); RI and

RPZ have the same values. RI and CI are the parameters of

the C–R inverse system shown in Fig. 2a. When the pole-

zero compensation condition is satisfied, k1 = kI. Compar-

ing Eq. (8) with Eq. (16), we can see that the numerator

part is the same, but the denominator part is different. In

Eq. (8), k = k1 ? k2[ k1, and the decay time constant is

inversely proportional to the parameter k; therefore, it can

only achieve a negative exponential signal output with a

shorter decay time constant. The value of kD in Eq. (16)

does not have to be constrained by k1 and k2; that is, the

value of kD can be greater than that of kI to achieve a

shorter decay time constant minus exponential signal out-

put or less than kI to achieve a longer decay time constant

minus exponential signal output. Thus, Eq. (16) is more

powerful, whereas Eq. (8) is only a specific expression for

Eq. (16).

For some purpose, the negative exponential decay pulse

signal is sometimes converted into a step signal and

sometimes into a narrow pulse signal. In nuclear elec-

tronics, the former can be realized using the CR inverse

system, whereas the latter requires the use of a PZC circuit.

Through analysis of the function of the improved cascade

PZC model (i.e., DPZC) represented by Eq. (16), kI and kD
can be set reasonably to realize an arbitrary adjustment of

the decay time constant of the output pulse signal (shorter

or longer than the decay time constant of the input pulse

signal). Thus, DPZC can realize two functions: the CRINV

system and PZC circuit.

MATLAB/Simulink is a software package that is widely

used in dynamic system modeling, simulation, and analy-

sis. It provides numerous continuous and discrete signal

processing blocks for nuclear pulse signal height analysis

and processing. Therefore, it can be used to simulate and

analyze nuclear pulse signals and process nuclear spectrum

data offline. With the single exponential decay pulse signal

(Vi(t) = Vm�exp(-t/s), Vm = 400, s = 200) as excitation,

the simulation test expressed in Eq. (16) represents the

input–output response of the DPZC model. As shown in

Fig. 3 the blue line is the excitation signal, kI needs to

match the decay time constant of the input signal (kI = Dt/
s), and the value of kD determines the decay time constant

of the output signal. When the value of kD is greater than

that of kI, a shorter decay time constant pulse signal (nar-

row pulse) is output (green line). When the value of kD is

less than kI, a longer decay time constant pulse signal (wide

pulse) is output (red line). When the value of kD is zero, the

output is a step signal (black line).

3 Design and implementation of digital PZC
(DPZC) trapezoidal (triangular) shaping filter
algorithm

In the digital nuclear spectrum system, the shaping of

the nuclear pulse signal can correct the ballistic deficit,

improve the SNR, and reduce the probability of pulse pile-

up to improve the resolution. The trapezoidal (triangular)

shaping algorithm transforms the input minus exponential

decay pulse signal into a trapezoidal (or triangular) pulse

output, and the ballistic deficit is naturally immune. It has

the advantages of a simple structure, convenient parameter

value, short shaping time, and easy realization in a pro-

grammable hardware logic circuit (such as FPGA or DSP).

Referring to the design idea of the digital synthesis trape-

zoidal (triangular) shaping algorithm of Jordanov and

Knoll [12], two novel trapezoidal (triangular) shaping

algorithms can be designed using the DPZC digital

A
m

pl
itu

de
(a

.u
.)

Time(a.u.)

 Input(Single-Exponential)
 Output1(DPZC kI=0.005, kD=0.020)
 Output2(DPZC kI=0.005, kD=0.003)
 Output3(DPZC kI=0.005, kD=0)

Fig. 3 (Color online) MATLAB simulation results of output response

of the DPZC model represented by Eq. (16) when the excitation is a

single exponential decay pulse signal
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recursive algorithm module represented by Eq. (16). The

detailed design is as follows.

The single exponential decay pulse signal (vi(t) = Vm �
exp(-t/s)) is digitized into a single exponential decay pulse
sequence vi[n] after sampling using a high-speed ADC.

Then, the DPZC digital algorithm module is used to pro-

cess the discrete sequence vi[n]. The parameters kI and kD
can be set reasonably, and two new trapezoidal (triangular)

shaping algorithms can be designed. A logic diagram of

Simulink is shown in Fig. 4.

Algorithm 1: DPZC quasi-impulse response trapezoidal

(triangular) shaping algorithm.

If kD is much larger than kI, the DPZC algorithm module

converts the input pulse signal vi[n] into a negative expo-

nential pulse signal with a very short decay time constant

(quasi-impulse). A logic diagram of Algorithm 1 is shown

in Fig. 4a. The input pulse signal vi[n] is first transformed

into a narrow pulse by the DPZC algorithm module, then

goes through two stages of delay subtraction unit, and

finally provides two accumulation (digital integration)

modules.

The recursive equations of Algorithm 1 are as follows:

z n½ � ¼ z n� 1½ � þ 1þ kIð Þ � y n½ � � y n� 1½ �
1þ kD

; ð19Þ

dk;l n½ � ¼ z n½ � � z n� k½ � � z n� l½ � þ z n� k � l½ �; ð20Þ

p n½ � ¼ p n� 1½ � þ dk;l n½ �; ð21Þ

vo n½ � ¼ vo n� 1½ � þ p n½ �: ð22Þ

Equation (19) is the DPZC digital recursive algorithm

module, which needs to match the input pulse signal vi(-

t) decay time constant, and kD is much larger than kI, so

that the output signal is a narrow pulse (quasi-impulse).

Equation (20) is a two-stage delay subtraction module. The

parameter k is the width of the trapezoid (triangle) hypo-

tenuse, and l is the width of the sum of the trapezoid flat top

and k. When l is equal to k, Algorithm 1 is trapezoidal

shaping. In addition, the value of (l ? k) should be less

than the pulse width of the input signal. Meanwhile,

Eqs. (21) and (22) are accumulation (digital integration)

modules.

Algorithm 2: DPZC step-response trapezoidal (triangu-

lar) shaping algorithm.

If kD is zero, the DPZC algorithm module transforms the

input pulse signal vi[n] into a step signal. A logic diagram

of Algorithm 2 is presented in Fig. 4b. First, the input pulse

vi[n] is transformed into a step signal by the DPZC algo-

rithm module, and then the trapezoidal (triangular) shaping

can be realized by a two-stage delay subtraction unit and

one-stage accumulation (digital integration) unit.

Algorithm 2 requires only Eqs. (19)–(21) in Algorithm

1; hence, the algorithm structure is simpler. The value of kD
is zero, whereas the other parameters have the same value

as Algorithm 1.

The above two shaping algorithms have simple struc-

tures, clear parameter meanings, convenient value

Fig. 4 Logic diagram of the DPZC trapezoidal/triangular shaper in Simulink. a Logic diagram of DPZC quasi-impulse response trapezoidal

(triangular) shaping algorithm. b Logic diagram of DPZC step-response trapezoidal (Triangular) shaping algorithm
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selection, and easy implementation in programmable

hardware logic circuits such as FPGA or DSP.

The simulation of the DPZC trapezoidal (triangular)

shaping filter algorithm is shown in Fig. 5. The blue line

represents the input single exponential decay pulse signal

(vi[n] = Vm�exp(-n�Ts/s), Vm = 1, Ts = 0.05 ls, s = 5 ls).
Figure 5a shows the simulation results of DPZC shaping

filter Algorithm 1, where kI is 0.01, the input pulse signal

vi[n] matches the decay time constant, kD is 1, and the

black line is the DPZC algorithm module output: a narrow

pulse signal (quasi-impulse). The magenta line is a trape-

zoidal-shaped output pulse of Algorithm 1 (k = 100,

l = 120). The green line is a triangular-shaped output pulse

of Algorithm 1 (k and l are 100). Figure 5b shows the

simulation result of DPZC shaping filter Algorithm 2,

where the value of kD is zero, and the other parameters are

the same as those in Fig. 5a. The black line is the DPZC

algorithm module output step signal, the magenta line is

the Algorithm 2 output trapezoidal shaping pulse, and the

green line is the Algorithm 2 output triangular shaping

pulse.

4 Experiment and performance

Generally, the performance of a shaping filter algorithm

can be evaluated from many aspects, such as correcting

ballistic deficit, improving the SNR, executing algorithm

time, and improving resolution [19]. The trapezoidal (tri-

angular) shaping algorithm is naturally immune to ballistic

deficits. The main performance of the DPZC trapezoidal

(triangular) shaping algorithm is analyzed regarding two

aspects: amplitude–frequency characteristics and improv-

ing resolution.

4.1 Amplitude–frequency characteristic

For the DPZC quasi-impulse response trapezoidal (tri-

angular) shaping algorithm model shown in Fig. 4a, the Z-

transform equation of the shaping filter transfer function

can be derived from Eqs. (19)–(22), as follows:

H zð Þ¼H1 zð Þ �H2 zð Þ �H3 zð Þ �H4 zð Þ

¼ 1þkI�z�1

1þkD�z�1

� �

�
1�z�k�z�lþz�k�l
� �

k2
� 1

1�z�1

� �2

:

ð23Þ

Equation (23) constitutes four subsystems, whose

transfer function Z-transform equations are:

H1 zð Þ ¼ 1þkI�z�1

1þkD�z�1, DPZC algorithm module;

H2 zð Þ ¼ 1�z�k�z�lþz�k�l

k2 , where the numerator is the DS,

and the denominator is the scale factor;

H3 zð Þ ¼ H4 zð Þ ¼ 1
1�z�1, all of which are digital

integrators.

Taking the same shaping parameters, the amplitude–

frequency characteristic curve of the DPZC quasi-impulse

response trapezoidal (triangular) shaping algorithm module

can be drawn according to Eq. (23), as shown by the red

curve (B) in Fig. 6a, while the blue curve (A) in Fig. 6a

represents the amplitude–frequency characteristic curve of

the trapezoidal (triangle) shaping filter algorithm model

designed by Jordanov [11], and the purple curve (C) in

Fig. 6a is the difference between curves (A) and (B). The

two shaping filter algorithm modules exhibit the same

performance in the passband, but curve (B) is slightly

better than curve (A) in the stopband for high-frequency

noise suppression. More specifically, the DPZC quasi-im-

pulse response trapezoidal (triangular) algorithm module
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Fig. 5 (Color online) Simulation of DPZC trapezoidal (triangular)

shaping filter algorithm. vi[n] = exp(-n�Ts/s), Ts = 0.05 ls (ADC

sampling rate: 20 MSPS), s = 5 ls. a DPZC quasi-impulse response

trapezoidal (triangular) shaper. Shaping parameters: kI = 0.01,

kD = 1; trapezoidal shaping k = 100, l = 120; triangular shaping

k = 100, l = 100. b DPZC step-response trapezoidal shaper. Shaping

parameters: kI = 0.01, kD = 0; trapezoidal shaping k = 100, l = 120;

triangular shaping k = 100, l = 100
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exhibits better performance in high-frequency noise sup-

pression for the same shaping parameters.

The reason for the difference in the amplitude–fre-

quency characteristics between the two trapezoidal (trian-

gle) shaping algorithm modules is explained through the

simulation experiment of single exponential decay pulse

signal shaping.

A single exponential decay pulse signal (vi(t) = exp(-t/

s), s = 100) was used as the excitation. The trapezoidal

shaping parameters were k = 100 and 120. The simulation

output of the algorithm module is shown in Fig. 6b. Curves

A (blue line) and B (green line) are the outputs of the

DPZC quasi-impulse response trapezoidal shaping filter

algorithm, kI is 0.01, kD of curve A is 1, and kD of curve B

is 10. Curve C (the magenta line) is the output of Jor-

danov’s trapezoidal shaping algorithm, and M is 100.

Figure 6b shows that the upper corners of the leading edges

of curves A and B rise exponentially to the flat top. The

smaller the kD value, the longer the transition zone.

Meanwhile, the leading edge of curve C increases linearly

to the flat top. Owing to the exponentially rising transition

zone in the upper corner to the flat top of the output signal

of the DPZC quasi-impulse response shaping algorithm

module, there is a difference in the high-frequency noise

suppression performance of the stopband of the amplitude–

frequency characteristics of the two trapezoidal shaping

algorithms.

4.2 Energy spectrum measurement

In the experiment, a u75 mm 9 75 mm NaI (Tl) scin-

tillator detector was employed to measure the radiation of

the 137Cs source. The nuclear pulse signal from the

preamplifier was directly sampled and converted into a

digital pulse signal using a high-speed ADC (AD9235,

12-bit, sampling rate of 20 MSPS), and the nuclear pulse

data were analyzed offline using the nuclear energy

spectrum.

The above analysis shows that when the shaping

parameters are determined, the shaping effect of the DPZC

quasi-impulse response trapezoidal (triangular) shaping

algorithm module is related to the value of parameter kD,

which seriously affects the high-frequency noise suppres-

sion performance of the shaping filter, thus affecting the

change in energy resolution. For the offline spectrum

analysis of the 137Cs pulse data above, the shaping algo-

rithm used the DPZC quasi-impulse response trapezoidal

(triangular) shaping algorithm, and the shaping parameters

k and l were 30 and 35, respectively, kI was set to match the

input signal decay time constant (approximately 320 ns),

and kD was set to different values for the energy spectrum

analysis. The relationship between kD and the energy res-

olution is shown in Fig. 7a. When kD was 0.1, the energy

resolution was 7.94%. As kD increased gradually, the

energy resolution decreased. When kD was 10, the energy

resolution was 7.72%; and, although kD increased, the

energy resolution remained unchanged.
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Fig. 6 (Color online) Comparison of amplitude–frequency charac-

teristics of two shaping filters and analysis of shaping difference.

a Comparison of amplitude–frequency characteristics of the digital

synthesis trapezoidal shaper (Jordanov) and DPZC quasi-impulse

response trapezoidal shaper. Shaping parameters: M = exp(-kI),

kI = 0.01, kD = 10, k = 100, l = 120. b Analysis of shaping differ-

ence. Curve A is DPZC quasi-impulse response trapezoidal shaping,

kD = 1. Curve B is DPZC quasi-impulse response trapezoidal

shaping, kD = 10. Curve C is Jordanov’s trapezoidal shaping,

M = 100
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Experimental platform: DET: u75 mm 9 75 mm NaI

(Tl) scintillation detector; source: 137Cs; shaping parame-

ters: k = 30, l = 35, kD = 10; measured energy resolution:

7.72% @137Cs 0.662 MeV.

The DPZC quasi-impulse response trapezoidal shaping

algorithm was used in the DPP module [20]. When kD was

10, k was 30, l was 35, and the energy spectrum mea-

surement results were obtained after offline processing of

the experimental data, as shown in Fig. 7b.

5 Conclusion

By carefully analyzing the function of the PZC circuit in

traditional nuclear electronics, the modified cascade

equivalent model of the PZC circuit was reestablished.

First, the input single exponential decay pulse signal was

transformed into a step signal with a CRINV system, and

then the step signal was transformed into a negative

exponential decay pulse signal with a variable decay con-

stant with a C–R differential circuit. The digital recursive

algorithm of the improved cascade equivalent model

(DPZC) was derived in detail using digital differential and

inverse system methods. In the algorithm, kI should match

the decay time constant of the input signal, and kD can

adjust the pulse width. When kD is greater than kI, the pulse

width of the signal can be narrowed, and the pulse width of

the signal can be widened when kD is set to less than kI.

Referring to the digital synthesis idea of the filter

shaping algorithm, a trapezoidal (triangular) shaping

algorithm was designed and implemented using the DPZC

algorithm module. Two filter shaping algorithms, specifi-

cally, the DPZC quasi-impulse response trapezoidal (tri-

angular) shaping algorithm and the DPZC step-response

trapezoidal (triangular) shaping algorithm, were obtained.

Moreover, the algorithms have a simple structure, conve-

nient parameter adjustment, and easy implementation in

programmable hardware logic circuits (such as FPGA or

DSP). By analyzing the amplitude–frequency

characteristics of the DPZC trapezoidal (triangular) shap-

ing algorithm module, when the shaping parameters are the

same, the passband performance of the DPZC trapezoidal

(triangular) shaping algorithm module is the same as that of

Jordanov’s trapezoidal (triangular) shaping algorithm

module, but it has a slight advantage in high-frequency

noise suppression.

Finally, the offline data of 137Cs were measured using a

u75 mm 9 75 mm NaI (Tl) scintillation detector and

processed using the DPZC trapezoidal (triangular) shaping

algorithm module. Furthermore, from the result of the

energy spectrum analysis, the relationship curve between

kD and the energy resolution was obtained. When kD
increases from 0.1, the energy resolution decreases from

7.94%; when kD is 10, the energy resolution is 7.72%, and

the increase in kD has a slight effect on the energy reso-

lution. Since the DPZC trapezoidal shaping algorithm is

aimed at the negative exponential decay pulse signal, it can

be widely applied in DPP (such as pulse signals originating

from a LaBr3 or HPGe detector).
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