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Abstract Tomographic perfusion imaging is a significant

imaging modality for stroke diagnosis. However, the low

rotational speed of the C-arm (6–8 s per circle) is a chal-

lenge for applying perfusion imaging in C-arm cone beam

computed tomography (CBCT). Traditional reconstruction

methods cannot remove the artifacts caused by the slow

rotational speed or acquire enough sample points to restore

the time density curve (TDC). This paper presents a

dynamic rollback reconstruction method for CBCT. The

proposed method can improve the temporal resolution by

increasing the sample points used for calculating the TDC.

Combined with existing techniques, the algorithm allows

slow-rotating scanners to be used for perfusion imaging

purposes. In the experiments, the proposed method was

compared with other dynamic reconstruction algorithms

based on standard reconstruction and the temporal

interpolation approach. The presented algorithm could

improve the temporal resolution without increasing the

X-ray exposure time or contrast agent.

Keywords Rollback reconstruction � CBCT � Time

resolution � Time density curve

1 Introduction

Stroke is one of the leading causes of death and may

cause serious long-term disability. According to statistics,

there are approximately 2.5 million new stroke cases in

China every year, and about 1.7 million patients die from

stroke. In the treatment of acute strokes, time saved equates

to lives saved. Perfusion CT is a well-accepted method in

clinical practice for assessing the blood supply to tissues

for stroke diagnosis [1–3]. Perfusion CT and perfusion

magnetic resonance imaging (MRI) constitute the primary

imaging techniques for patients displaying the symptoms

of stroke. After injecting a contrast agent, the tissue is

scanned multiple times in succession to obtain the TDC

[4–6] of each slice. The curve reflects the change in the

contrast agent concentration in tissues [7–9], which in turn

reflects the changes in blood supply to these tissues. Hence,

perfusion CT can be used to identify tissue regions that can

be salvaged and may thereby contribute to stroke therapy.

However, there are still some challenges in perfusion CT.

One limitation is that perfusion CT can only produce

functional maps of a limited number of slices. Cone beam

CT (CBCT) [10, 11] can be used to address this problem.

The application of large-area detectors allows users to

perform perfusion CBCT studies on three-dimensional
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regions of interest. However, two problems must be

addressed.

The first problem is known as the temporal resolution

problem [12]. To reconstruct an image at any time t, the

projection at every projection angle a is required. However,
the source turns at a limited rotational speed x. When the

rotational speed x is low, the attenuation of the contrast

agent during the scanning process cannot be ignored. The

scanning time in traditional perfusion CT is limited to 2 s

per circle. In such a short time, the attenuation of the

contrast agent is negligible. Therefore, direct reconstruc-

tion will not influence the final recovery of the time density

curve. However, the scanning time for CBCT is 6–8 s per

circle, which is much longer than that of traditional per-

fusion CT. The concentration of the contrast agent in the

blood has a significant influence on the reconstruction

quality. For example, changes in the concentration may

result in artifacts or inaccurate values in the reconstructed

images. This directly influences the subsequent production

of perfusion parameter maps.

The second problem is called the time-sampling prob-

lem. The acquisition times for traditional perfusion CT and

CBCT after injecting the contrast agent are almost the

same. However, owing to the different rotational speeds x,
the total number of CBCT perfusion images is much

smaller than that of traditional perfusion CT. This leads to

a lack of sampling points. When the same interpolation

method is used to fit the time density curve, the smaller

number of sample points will lead to inaccurate results.

The degraded time density curve results in erroneous

assessment of the patient’s condition.

Various strategies have been proposed to address these

problems. Grangeat et al. [13] proposed a more sophisti-

cated approach for dynamic reconstruction compared to the

traditional FDK algorithm [14, 15]. The dynamic recon-

struction algorithm is based on short-scan reconstruction

with the tent Feldkamp (T-FDK) algorithm [16]. First, the

cone-beam projections are rearranged into fan-parallel

beam projections. A filtering operation is then performed

on the projection data. The subsequent back-projection

calculation is divided into three parts in which each part

covers 60�. These incomplete back-projections are called

partial block back-projections (PBBs). In the dynamic

acquisition scheme, the values of each PBB are known for

every half-rotation. Hence, for every PBB, a time series of

values is observed at every tp. To obtain the reconstruction

result at a certain time point, linear regression is performed

on the closest k values of the time series. This method is

called k-mode linear regression. K-mode linear regression

effectively reduces the impact of the temporal resolution

problem, but does not solve the time-sampling problem. It

reduces the attenuation of the contrast agent during the

scanning process, but does not increase the number of

sample points. Although a sample point can be obtained

every tp by using the rearrangement method, the number of

sample points is still insufficient. Only a dozen sample

points can be obtained under the CBCT scanning protocol.

At present, there is no good way to solve the time-sampling

problem. From the perspective of data collection, Fiesel-

mann [17] proposed a method in which the patient is

injected with the contrast agent twice during data collec-

tion. After the second injection of the contrast agent, a time

offset is added, and data acquisition is not performed

immediately. This time offset is half the time of a single

scan. In this way, the time sample points obtained are

doubled. However, this method has several drawbacks.

First, it does not solve the temporal resolution problem.

More importantly, the contrast agent is harmful to the

human body, especially the liver and kidneys, and some

patients may also have allergic reactions. Therefore, mul-

tiple injections of the contrast agent are not recommended.

In addition, the author did not show if the first injection of

contrast agent would remain in the patient’s body and if it

would influence the results of the second injection of the

contrast agent. Tang [18] proposed a temporal recovery

method to recover time density curves in C-arm CBCT

perfusion studies. This method does not increase the

number of sample points but provides a better fitting

through the use of two optimization methods (CG and

Bregman) to solve the temporal recovery problem. Li [19]

introduced a new technique known as enhanced SMART-

RECON(eSMART-RECON) to enhance the temporal per-

formance in a multi-sweep CBCT data acquisition proto-

col. However, this method is an iterative reconstruction

method that consumes a significant amount of computing

resources. In addition to traditional methods, the rise of

deep learning and neural networks has also led to their use

in perfusion studies. For example, Zhu [20] proposed an

optional method to reduce the computed tomographic

perfusion (CTP) imaging radiation dose in which 30-pass

images are downsampled to 15 passes in the temporal

domain and then restored to 30 passes using a deep residual

convolutional neural network model. This method also

allows the sample points to be recovered. However, deep

learning and neural networks require a large amount of

training data to ensure the accuracy of the results, and their

anti-risk capability is poor. The presence of a small amount

of interference may lead to incorrect results from the

network.

In this article, we address the problem of dynamic

reconstruction within the context of perfusion CT and

present a dynamic rollback reconstruction approach for

perfusion CBCT to improve the time density curve. By

combining this approach with the existing reconstruction

method, we retain the advantages of the latter. We consider

the contrast agent attenuation caused by its propagation and
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assume that there is no movement or deformation during

the scanning process. Temporal interpolation is then per-

formed on the partial block back-projections to increase the

number of sampling points. The promising performance of

the proposed rollback reconstruction algorithm is demon-

strated in experiments.

2 Methods and materials

2.1 The T-FDK method

3D reconstruction from 2D projections obtained along a

single circular source trajectory is most commonly per-

formed using the FDK algorithm. However, the FDK

algorithm cannot preserve reconstruction accuracy well

when the cone angle is large. In 2000, Grass et al. proposed

an alternative approach based on a cone-beam to parallel-

beam rebinning step, a corresponding rebinning step into a

rectangular virtual detector plane, and filtered back-pro-

jection. The computational complexity is lower than that of

Feldkamp’s original approach. As shown in Fig. 1, the fan-

beam data acquired along a circular source-detector tra-

jectory can be rearranged into a set of ray fans. Similar to

the algorithm for rearranging the fan beam into a parallel

beam, the cone-beam X-rays emitted from different posi-

tions on the circular trajectory of the ray source can be

rearranged into parallel beams with the same cone angle

that are parallel to one another in space. Although the cone-

beam X-ray and parallel-beam X-ray do not completely

correspond to each other, the correspondence between

individual beams can be constructed through interpolation.

The X-ray source moves along a circular trajectory of

radius R, and the cone-beam projection data Pconeðb;m; nÞ
at various angles b are collected on the flat panel detector.

These projection data are then rearranged into parallel

beam projections that are used to reconstruct the tomo-

graphic images of the object. As shown in Fig. 2, the ray

received by virtual detector 1 can be converted to a cor-

responding ray on virtual detector 2. The projection of the

rearranged parallel beam on the X–Y plane is perpendicular

to virtual detector 2. The projection value of the rearranged

parallel beam on virtual detector 2 can be expressed as

Pparaðh; g; sÞ, where h is the projection angle of the parallel

beam, and g and s are the horizontal and vertical coordi-

nates of the rearranged parallel beam on virtual detector 2,

respectively. The specific process can be divided into three

steps, namely data rearrangement, weighted filtering, and

back-projection reconstruction:

(1) Data rearrangement

The cone-beam projections Pconeðb;m; nÞ are first rear-

ranged into parallel-beam projection data Pparaðh; g; sÞ.
During the transformation of ðb;m; nÞ space into ðh; g; sÞ
space, not every parallel-beam projection has a corre-

sponding cone-beam projection because the data collected

by the detector are discrete. Usually, nearest interpolation

or linear interpolation is employed to address the above

problem. The choice of the interpolation method influences

the spatial resolution of the reconstructed volume.

(2) Weighted filtering

The rearranged parallel-beam projection data Pparaðh; g; sÞ
are then weighted and filtered according to the following

formula to obtain ~Pparaðh; g; sÞ:
Z

~Pparaðh; g; sÞdh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � g2

R2 � g2 þ s2

s
� Pparaðh; g; sÞ

" #

� hðgÞ; ð1Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�g2

R2�g2þs2

q
represents the cosine value of the beam

cone angle j, and h(g) is the filter function. It is necessary

to multiply the projection data by the cosine weight

because ~Pparaðh; g; sÞ represents parallel beam projections.

(3) Back-projection reconstruction

Finally, the voxel (x, y, z) is reconstructed using the cor-

responding filtered parallel-beam projections ~Pparaðh; g; sÞ.
The tomographic images are obtained after all voxels are

reconstructed. This process can be formulated as follows:

Fðx; y; zÞ ¼
Z 2p

0

~Pparaðh; gðx; y; zÞ; sðx; y; zÞÞdh: ð2Þ

2.2 TIA-TFDK algorithm

As mentioned above, contrast agent attenuation will lead

to the temporal resolution problem when the scanning

program consumes too much time. The best solution is to

reduce the scanning time; however, when the hardware

conditions cannot satisfy this requirement, the problem

needs to be tackled from the algorithm perspective. Pau
Fig. 1 The fan beam can be rearranged into a parallel beam
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et al. introduced a block reconstruction strategy and pre-

sented a temporal interpolation approach (TIA) algorithm

to address the temporal resolution problem. The cone-beam

projections are first rearranged into parallel beam projec-

tions, i.e., Pconeðb;m; nÞ ! Pparaðh; g; sÞ. kp-mode linear

regression is then used to reduce the impact of the temporal

resolution problem. As shown in Fig. 3, partial block back-

projection operations are performed at angular intervals of

2p=N:

PBBjðX; tp
Nð2jþ1ÞÞ ¼

1

2

Z ðjþ1Þ�2pN

j�2pN

~Pparaðh; g; sÞdh

j ¼ 0; 1; . . .;N � 1:

ð3Þ

Using the general time interpolation method [21], each

block is calculated independently of the other blocks. The

interpolation process can also be performed after filtering

or after back-projection because of its linear nature. The

computational complexity is reduced because the calcu-

lated values only need to be accumulated after back-pro-

jection. If interpolation is performed for each partial block

back-projection instead of each projection, the computa-

tional complexity can be further reduced. The full scan is

equally divided into N parts. The values of the jth and

(j ? N/2)th partial block back-projections are combined

into a unique time sequence, and a continuous signal is

estimated by interpolation. Hermite interpolation was used

in the experiment. The interpolation process is as follows:

H3ðxÞ ¼ 1þ 2
x� x0
x1 � x0

� �
y0 þ ðx� x0Þy

0

0

� �
x� x1
x0 � x1

� �2

þ 1þ 2
x� x1
x0 � x1

� �
y1 þ ðx� x1Þy

0

1

� �
x� x0
x1 � x0

� �2

;

ð4Þ

where x0 and x1 are the positions of the two adjacent points

to the point to be interpolated, y0 and y1 correspond to the

dependent variables of x0 and x1, respectively, and y
0

0 and

y
0

1 are their corresponding derivatives. The PBB interpo-

lation is summarized as follows:

PBBjðX; tÞ ¼ H3ðPBBjðX; tp
Nð2jþ1ÞÞÞ j ¼ 0; 1; . . .;N � 1:

ð5Þ

The required results can be obtained by accumulating the

partial block back-projections at a given time point. The

reconstructed FDK result for a full scan can be obtained by

adding all the PBBs:

Fðx; y; zÞ ¼
XN�1

j¼0

PBBjðX; tÞ: ð6Þ

The partial block back-projection approach reduces the

data inconsistency in the projection domain. Even though

the projections in a block are acquired at different times,

the time resolution problem is mitigated because the time

between angular intervals is shorter than the time required

for a short-scan reconstruction. The linear regression esti-

mation compensates for temporal evolution. In the exper-

iments, Pau et al. also proved that the data inconsistency

Fig. 2 Transformation of

ðb;m; nÞ space to ðh; g; sÞ space

Fig. 3 Partial block back-projection
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was significantly reduced as N increased. However, the

calculation cost also increased in tandem. The TIA-TFDK

algorithm is equivalent to the FDK algorithm at N = 1.

Furthermore, Pau et al. concluded that the reconstruction

quality and time are well balanced when N = 6.

2.3 Rollback reconstruction

The purpose of perfusion CBCT is to obtain an image

sequence based on projection data acquired during several

full rotations. However, the time-sampling problem may

lead to severe degradation of the time density curve. We

adopt a rollback reconstruction strategy to address this

problem. The cone-beam projection Pt is indexed by the

time t. The source rotates at the constant angular speed x
from time t = 0. The acquisition can be performed either

in continuous mode (the X-ray source is always on) or in

discontinuous mode. (The X-ray source is switched off

regularly.) We assume that the region of interest is within

the field of view(FOV) of the cylindrical detector. The

projections at every angle are required for reconstructing

the image frame at a given time t. However, in practice, the

sampling points are discrete. Thus, at time ta, only the

projection at the angular position a can be acquired. The

same projection can be acquired again at time ta þ T2p after

the source has completed a full rotation. Hence, at the

angular position a, a discrete sequence Pta ¼ PtaþT2p can be

obtained. This dynamic acquisition process can be inter-

preted as the sampling of the time-dependent projection Pt

with the period of Ts ¼ T2p.

Because the cone-beam projections are rearranged into

parallel-beam projections, the 180� reconstruction condi-

tion is extended from the 2D to the 3D case. Hence, two

reconstruction results can be obtained after a full-scan

process. One is reconstructed using the projection data

from 0 to p, and the other reconstructed using the projec-

tion data from p to 2p. Here, we take the middle time as the

reference time point, such that tp=2 represents the time point

for scanning 0–p, and t3p=2 represents the time point for

scanning p–2p. Therefore, after a single full scan, the

reconstructed images at the two time points tp=2 and t3p=2
are obtained. This dynamic acquisition process can be

interpreted as the sampling of the time-dependent projec-

tion Pt with a period of Ts ¼ Tp. These samples can be used

to plot the density curves. Ideally, the time density curve

should become closer to the reference dynamic curve as the

number of sampling points increases. Therefore, we pro-

pose a rollback reconstruction method to increase the

sampling points without increasing the radiation dose.

Specifically, we achieve a fixed-angle rollback by reusing

the projection data used for reconstruction. The rollback

reconstruction method is explained in the following steps:

Start: j = 0

(1) Starting from 0�, reconstruct the angular range from

0þ j � p
3
to pþ j � p

3
, and record the result as tp

2
þj�p

3
.

(2) Rollback 2p
3
; in other words, j = j ? 1.

(3) Repeat steps 1 and 2.

The rollback reconstruction method can be expressed as

Fp
2
þj�p

3
¼

Z pþj�p
3

0þj�p
3

~Pparaðh; g; sÞdh: ð7Þ

The number of reconstructed images increases with the

rollback angle. Hence, the presented rollback reconstruc-

tion can better preserve the accuracy of the time density

curve compared to the traditional reconstruction method.

However, the computational cost is increased because of

the increase in reconstruction operations. Rollback recon-

struction increases the number of reconstruction sampling

points by reusing projection data and solves the time-

sampling problem, but it cannot solve the time resolution

problem (Fig. 4).

2.4 Rollback reconstruction with TIA-TFDK

We propose an improved reconstruction method for

perfusion CBCT by combining rollback reconstruction

with the TIA-TFDK algorithm, as shown in Fig. 5. This

approach can improve the reconstruction quality by tack-

ling both the temporal resolution and the time-sampling

problems simultaneously. The improved rollback recon-

struction method is explained in the following steps:

Fig. 4 Rollback reconstruction
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(1) Rebin the cone-beam projections to parallel-beam

projections:

Pconeðb;m; nÞ ! Pparaðh; g; sÞ: ð8Þ

(2) Taking N = 6 and the rollback angle as p
6
, recon-

struct the PBBs using T-FDK:

PBBj ¼
Z p

3
þj�p

6

0þj�p
6

~Pparaðh; g; sÞdh j ¼ 0; 1; . . .: ð9Þ

(3) Combine samples of the jth and (j ? 6)th PBBs:

PBBjðXÞ ¼ fPBBj; PBBjþ6; PBBjþ12; . . .g
j ¼ 0; 1; . . .; 5:

ð10Þ

(4) Interpolate the PBB values:

PBBjðX; tÞ ¼ H3ðPBBjðXÞÞ j ¼ 0; 1; . . .; 5: ð11Þ

(5) Accumulation:

F1ðx; y; zÞ ¼
X

j¼0;2;4

PBBjðX; tÞ;

and F2ðx; y; zÞ ¼
X

j¼1;3;5

PBBjðX; tÞ:
ð12Þ

(6) Interpolate F1 and F2.

After the cone-beam projections are rearranged into

parallel-beam projections, the sampling time of the original

TIA-TFDK algorithm is tp. That is, two reconstruction

results can be obtained from each obtained scan. Further-

more, the number of sampling points is doubled after

introducing the rollback method while retaining the opti-

mization effect of the TIA-TFDK algorithm on the time

resolution problem. Thus, the accuracy of the time density

curve obtained by interpolation is well preserved.

2.5 Data preparation

In this study, CTP images were collected from eight

eligible slice locations from patients with acute stroke. The

parameters of the scan protocol were as follows: tube

voltage, 80 kV; tube current, 250 mA; slice thickness,

5 mm. 30 CTP images with 512 9 512 pixels corre-

sponding to 30 passes in a time sequence were collected

from each slice location. We apply the CBCT protocol on

the CTP data in which the number of samples in the time

sequence under the same scanning time was reduced to

model the lower scanning speed in CBCT. We simulate the

scanning process of an 8 s acquisition cycle, that is, the

time to obtain a reconstruction sample point is 8 s. The

original 512 9 512 9 30 data volume for each slice

location was downsampled to a 512 9 512 9 7 dataset.

The detailed steps are as follows:

(1) Through interpolation, expand the 512 9 512 9 30

dataset with the sampling period of 2 s into a

512 9 512 9 300 dataset with the sampling period

of 0.2 s.

(2) Perform projection calculations. Because the exper-

iment simulated a CBCT scanning process with the

sampling period of 8 s, during the projection

process, the frame for projection was switched every

0.2 s; that is, each frame of data only contributed 9�
of projection data. In other words, a complete set of

projection data was constructed from 40 frames of

data.

3 Result analysis

3.1 Rollback reconstruction for phantom

We first used a digital model to simulate the attenuation

of the contrast agent in the perfusion image acquisition

process. A circular trajectory scanner was simulated with

the detector at the focus distance of 1250 mm and the

source-to-origin distance of 750 mm. A 648 9 474 pixel

cylindrical detector was used. The image matrix was

512 9 512, and the pixel size was 0.5 9 0.5 mm2. The

numerical phantom A shown in Fig. 6 was used for the

simulation. Phantom A is a sphere of 8 cm radius that has

six 0.5 cm-radius spherical inserts. The centers of the

inserts are 5.5 cm away from the center of the big sphere.

The HU value of the big sphere is 50 HU, and the HU

values of the inserts are

liðtÞ ¼ ð50þ 50 sinð2pvitÞÞHU; ð13Þ

where l is the HU value, and v is the frequency. The

frequencies of the inserts are in the range of vi 2 ½0; 0:8�.

Fig. 5 Rollback reconstruction with TIA-TFDK
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Specifically, vi 2 f0:133; 0:267; 0:4; 0:534; 0:667; 0:8g.
The time density curves of the simulated results are shown

in Fig. 7. They demonstrate that as the frequency v in-

creased, the traditional sampling strategy was no longer

adequate for recovering accurate time density curves; in

comparison, the rollback reconstruction effectively

improved the accuracy of the time density curve compared

to the traditional sampling strategy.

3.2 Rollback reconstruction with TIA-TFDK

(RBTFDK)

In the previous section, it was demonstrated that roll-

back reconstruction can reduce the impact of the time-

sampling problem. Rollback reconstruction is also

promising for tackling the temporal resolution problem

with the introduction of the TIA-TFDK algorithm. A pre-

clinical dataset was utilized to validate the proposed roll-

back reconstruction algorithm. Figure 8 presents the results

from the RBTFDK method and the traditional FDK

reconstruction algorithm. The experiments demonstrate

that TIA-TFDK can effectively improve the reconstruction

accuracy and enhance rollback reconstruction. From Fig. 9,

we can observe that rollback reconstruction based on TIA-

TFDK not only preserved the reconstruction accuracy but

also improved the time density curves.

3.3 Perfusion parameter results

Perfusion maps have great significance in the diagnosis

and treatment of stroke. Some software may overestimate

or underestimate the ischemic core, possibly because of

differences in the tracer delay sensitivity and post-pro-

cessing algorithms. The common perfusion post-processing

algorithms can be classified into maximum slope and

deconvolution methods. Because maximum slope methods

Fig. 6 Phantom A

Fig. 7 (Color online) Time density curves of simulated results. a vi ¼ 0:133, b vi ¼ 0:267, c vi ¼ 0:4, d vi ¼ 0:534, e vi ¼ 0:667, f vi ¼ 0:8
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can only be used to calculate CBF, it is necessary for

further assumptions on the perfusion model to be made

when calculating the CBV and other perfusion parameters;

therefore, deconvolution methods are often used. Kudo

et al. assessed the accuracy and reliability of results from

13 perfusion post-processing algorithms for a digital

phantom. The experimental results show that the single

value decomposition (SVD) of PMA can achieve the

closest CBF, CBV, and MTT values to the truth. Hence,

PMA was employed to calculate CBF and other perfusion

maps in this study. The results in Fig. 10 demonstrate that

the perfusion maps obtained from the RBTFDK

Fig. 8 (Color online) The result from FDK (a); The error between the FDK result and the original image (b); The result from RBTFDK, which is

the same as that from TIA-TFDK (c); The error between the RBTFDK result and the original image (d); The original image (e)

Fig. 9 (Color online) Time

density curves from different

methods
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reconstructed images have the best match with the refer-

ence perfusion maps. The result from the RBTFDK method

combined with TIA-TFDK is closer to the actual perfusion

results in terms of the details and overall appearance of the

perfusion images.

A quantitative analysis was also performed for valida-

tion. Table 1 lists the mean perfusion values of the dif-

ferent methods. The results demonstrate that the perfusion

values in the RBTFDK-reconstructed images were well-

preserved. Tables 2 and 3 list the root mean square error

(RMSE) and mean absolute percentage error (MAPE)

values of the different methods. Both the RMSE and

MAPE show the promising performance of the proposed

RBTFDK algorithm in preserving reconstruction accuracy.

Fig. 10 (Color online)

Perfusion maps. From top to

bottom are the results from

FDK, TIA-TFDK, and

RBTFDK, and the ground truth,

respectively. a CBF, b CBV,

c MTT, d TTP

Table 1 Mean perfusion parameters from different methods

Ground truth FDK TIA-FDK RBTFDK

CBF 29.19 32.64 32.26 33.01

CBV 1.67 3.83 2.10 2.09

MTT 3.50 7.21 3.70 3.46

TTP 4.81 9.58 5.97 5.60

Table 2 RMSE of perfusion parameters from different methods

FDK TIA-FDK RBTFDK

CBF 36.60 29.18 26.35

CBV 34.54 25.94 20.04

MTT 42.53 46.98 42.38

TTP 47.00 41.80 34.50

Table 3 MAPE of perfusion parameters from different methods

FDK (%) TIA-FDK (%) RBTFDK (%)

CBF 39.23 32.48 27.65

CBV 46.50 29.76 21.99

MTT 40.22 32.95 28.64

TTP 146.60 76.79 66.67
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4 Comparison of algorithms

As mentioned above, the original 512 9 512 9 30 data

volume for each slice location was downsampled to

512 9 512 9 7. Compared with the traditional FDK

algorithm, TIA-TFDK has the additional calculation steps

of data rearrangement, partial block back-projection, and

an interpolation step. Combination with the rollback

reconstruction further increased the computational com-

plexity. Table 4 shows the reconstruction times of the three

algorithms on a PC with a 3.0 GHz Intel Core i5 processor.

The computational complexity of partial block back-pro-

jection in the TIA-TFDK algorithm was almost negligible.

The increased computation time was mainly due to the

interpolation step. The incorporation of rollback recon-

struction increased the computational complexity to dif-

ferent extents according to the rollback angle. In our

experiment, we took the rollback angle as half of the partial

block back-projection. The increase in reconstruction time

was within the acceptable range.

5 Conclusion

In this paper, we proposed a rollback reconstruction

method based on the TIA-TFDK algorithm for perfusion

CBCT. In the TIA-TFDK algorithm, cone-beam projec-

tions are binned to parallel-beam projections. Subse-

quently, the back-projection is divided into N partial block

back-projections. At this point, we incorporate the idea

behind rollback reconstruction. Rollback reconstruction

can resolve the time-sampling problem by increasing the

number of sampling points. By reusing the projection data

that have been used for reconstruction, the number of

reconstruction samples is increased without additional

scanning time and contrast agent. Then, temporal interpo-

lation is performed on the PBBs to estimate the values at

the desired frame times. Finally, the values are accumu-

lated separately and interpolated again. In our experiment,

we set the partial block angle to p=6 and the rollback angle

to half of the partial block back-projection to achieve a

balance between the quality of the experimental results and

the calculation time.

The algorithm was compared with standard reconstruc-

tion and temporal interpolation approaches. The experi-

mental results demonstrate that the proposed RBTFDK

algorithm could effectively preserve the accuracy of

reconstructed images and perfusion maps as well as

improve the time density curve. The results also show that

with a decrease in the partial block angle and rollback

angle, the reconstruction results become closer to the real

results. However, even with the same source data, different

infusion tools yield different results. This may be caused by

differences in the contrast agent delay sensitivity and post-

processing algorithms.

In the future, we will focus on reducing the acquisition

time and radiation dose in perfusion CBCT imaging while

preserving the image quality.
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