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Abstract Helium bubbles, which are typical radiation

microstructures observed in metals or alloys, are usually

investigated using transmission electron microscopy

(TEM). However, the investigation requires human inputs

to locate and mark the bubbles in the acquired TEM ima-

ges, rendering this task laborious and prone to error. In this

paper, a machine learning method capable of automatically

identifying and analyzing TEM images of helium bubbles

is proposed, thereby improving the efficiency and relia-

bility of the investigation. In the proposed technique,

helium bubble clusters are first determined via the density-

based spatial clustering of applications with noise algo-

rithm after removing the background and noise pixels. For

each helium bubble cluster, the number of helium bubbles

is determined based on the cluster size depending on the

specific image resolution. Finally, the helium bubble

clusters are analyzed using a Gaussian mixture model,

yielding the location and size information on the helium

bubbles. In contrast to other approaches that require

training using numerous annotated images to establish an

accurate classifier, the parameters used in the established

model are determined using a small number of TEM

images. The results of the model formulated according to

the proposed approach achieved a higher F1 score vali-

dated through some helium bubble images manually

marked. Furthermore, the established model can identify

bubble-like objects that humans cannot facilely identify.

This computationally efficient method achieves object

recognition for material structure identification that may be

advantageous to scientific work.

Keywords TEM � GMM � DBSCAN � Helium bubble �
Machine learning

1 Introduction

A number of researchers have reported that the analysis

of the evolution behavior of metals or alloys exposed to the

complex and extreme environment in a reactor is a con-

siderably exigent task [1–3]. The irradiation-induced

damage to nuclear reactor components is one of the major

problems that extremely detrimental to nuclear power

generation because of the high cost of component

replacement and the introduction of uncertainty in
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predicting the lifecycle of components. Neutron interac-

tions with the material lead to atomic collisions that create

point defects and defect clusters. A problem of particular

interest is the accumulation of nanoscale helium bubbles in

nickel-based superalloys used in nuclear reactors. Helium

is mainly produced through the interaction of thermal

neutrons emitted by the reactor core with nickel atoms

when collisions occur. The nuclear reaction channel indi-

cates that the nickel nucleus can crack into two nuclei of

iron and helium after the absorption of one neutron. The

presence of transmutation-generated helium has a critical

role in the microstructural evolution of metals exposed to

neutron irradiation [4–6]. When the concentration of

helium atoms exceeds a certain threshold, helium coalesces

into bubbles in the microstructure. Moreover, nanosized

helium bubbles tend to appear and develop in the matrix,

dislocations, and grain boundaries of the material, leading

to swelling, hardening, or embrittlement [7–9]. Helium

bubbles in metals have a complex evolution mechanism

during service life of the material that is crucial to reactor

safety. To prevent the decline in the performance of metals

or alloys caused by helium bubbles, gaining insight into the

dynamic evolution of helium bubbles, especially their

movement and aggregation, is critical. To accomplish the

foregoing, the use of a suitable technique to identify and

analyze the microstructure of helium bubbles is essential.

Several experimental tools including small-angle neu-

tron scattering [10–12], positron annihilation spectrometry

[13–15], grazing incidence small-angle X-ray scattering,

and transmission electron microscopy (TEM) are available

to study the behavior of helium bubbles in metals or alloys

[16–18]. Among these tools, TEM is typically employed to

capture helium bubble images for investigating their mor-

phological evolution at the nanometer scale spatial reso-

lution [19, 20]. Technically, bubbles images appear as

white and black dots at the same location under under-

focused and over-focused imaging conditions, respectively;

hence, they are clearly distinguishable. However, owing to

the powerful magnification in microscopy, the helium

bubble images acquired by TEM are extremely sensitive to

the quality of sample preparation and exposure setting. A

typical TEM image in which the artifact caused by the

mixed foreground and background and the nonuniform

distribution of illumination intensity are easily differenti-

ated is shown in Fig. 1. However, in the current practice,

because the location, size, and density of helium bubbles

are marked and analyzed manually by researchers, the task

of characterizing the helium bubbles remains labor-inten-

sive and prone to error. Presently, sample preparation and

helium bubble marking in the image require days or even

weeks. The analysis results are susceptible to inaccuracies

due to several factors, such as visual fatigue during

marking, subjective human judgment, uncontrollable

image quality, and bubbles with irregular shapes.

To facilitate the characterization of helium bubble

morphology, an image processing algorithm or a machine

vision system may be introduced as an alternative to

automatically count and identify the bubbles in TEM

images. By exploiting electronic engineering and machine

intelligence, the tedious task performed by humans can be

easily accomplished. The necessity of detecting and char-

acterizing objects, such as bubbles and cells from images,

has been observed in various industrial fields [21]; gener-

ally, shape-based and template-based approaches are

employed. In the former, object shapes are normally pre-

sumed to follow certain shapes, such as circles or ellipses.

This assumption allows the use of shape detectors, such as

the Hough transform, to project the candidate points inside

circles in the image into the parameter space of center

coordinates and the radius of circles [22]. As the number of

objects to be identified increases, these shape detectors

generally have high computational consumption and

require large memory storage. Moreover, small targets are

typically undetected because the number of points is

insufficient to cluster them in the parametric space. Both

problems are associated with helium bubble images cap-

tured by TEM. In contrast, the template-based method

relies on the sliding window technique rather than voting

for each point on the circle. This means that a patch win-

dow containing the pattern of the object of interest is

convoluted across all pixels in the image. The result with

the highest similarity to the pattern is selected as the target

object. This approach utilizes all the pixel information in

the template to identify the location and shape of all objects

of interest without the necessity of using high-frequency

Fig. 1 Typical TEM image of helium bubbles
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filters to extract the edges of objects. As a result, the

robustness of detection is improved [23]. Similarly, the

kurtosis wavelet energy [24], kurtosis curvelet energy [25],

and hidden Markov random field-expectation maximization

[26] are three efficient methods that may be implemented

to analyze the statistical characteristics of helium bubbles.

However, if the electronic lens magnification or the illu-

mination conditions are altered during image acquisition,

or if the objects are deformed or partially occluded, then

the template-based approach may experience difficulty in

correctly matching candidates.

As the shape and size of helium bubbles continue to

evolve in the course of the investigation, sample prepara-

tion and image acquisition become difficult to control to

achieve satisfactory reproducibility. Moreover, the image

features of helium bubbles actually deviate from the

hypothesis of traditional image processing approaches.

This limits the applicability of these traditional techniques

for automatic helium bubble detection. To resolve this, a

more delicate machine learning approach has been pro-

posed to augment the helium bubble identification process.

The method is capable of achieving accuracy and repro-

ducibility comparable to that accomplished by humans but

requires a considerably less amount of time to generate the

TEM data [27]. By combining traditional image processing

and the latest convolutional neural network techniques,

objects can be detected with improved exactness [28, 29].

To further enhance the detection precision, large datasets

with qualified annotations are normally required for train-

ing and testing deep neural networks. However, although

training using synthetic data has been employed in bio-

logical experiments, the complexity of the procedure

involving TEM images may preclude the possibility of

utilizing simulated images [30–34].

In contrast to the deep learning approach, where learn-

ing numerous labeled real or synthetic images is generally

required to establish an accurate classifier, this paper pro-

poses a new machine learning method. This proposed

technique is implemented to automatically identify and

analyze helium bubbles in the TEM images of nickel-based

alloys implanted with helium ions at high temperatures.

The images were processed and analyzed using the density-

based spatial clustering of applications with noise

(DBSCAN) algorithm and Gaussian Mixture Model

(GMM). After determining the key parameters of the

model, the optimized model could be used to identify and

count the helium bubbles in the TEM images of the nickel-

based alloy. In case only a few marked TEM images were

available for training, the performance achieved by the

proposed approach is comparable to manual identification

and analysis of helium bubbles.

This paper is mainly composed of three parts. Section 1

describes the research background of the identification and

analysis of helium bubbles. Section 2 presents the proposed

analysis methods as well as the details of the datasets used

for modeling and training. Section 3 elaborates on the

experimental results obtained using the proposed model;

further discussions are also presented. Finally, the paper

concludes with a brief summary.

2 Method

2.1 Dataset preparation

The helium bubble images analyzed in this work were

captured from nickel-based alloy samples irradiated with

helium ions at 650 �C on a 4-MV electrostatic accelerator

at the Shanghai Institute of Applied Physics. The samples

containing helium bubbles were prepared using a focused

ion beam, and the microstructure was characterized using a

Tecnai-G2-F20 transmission electron microscope under

bright-field imaging conditions.

Helium bubbles can be identified under either out-of-

focus or under-focused imaging conditions. As demon-

strated in Fig. 1, the helium bubble images analyzed in this

work are mainly captured under bright-field under-focused

TEM imaging conditions. All bright-field TEM images

contained three channels with the same size (1024 9 1024

pixels). For convenient processing, each image was equally

cropped into 16 small images (256 9 256 pixels).

To evaluate the detection performance of the proposed

algorithm, two experts in TEM analysis were requested to

manually mark and double check the bubbles found in the

TEM images. The annotated images were used for training

and evaluating the capability of the new method in iden-

tifying TEM bubble images.

2.2 Statistical analysis of helium bubbles

In this study, the helium bubble TEM image was pro-

cessed and analyzed in three steps: First, the image was

preprocessed, eliminating the background and noise pixels

from the image. Second, the remaining pixels were clus-

tered by DBSCAN. Finally, the GMM was applied to

analyze the helium clusters. A schematic of the entire

model and a detailed description of the implementation

steps are shown in Fig. 2.

2.2.1 Background and noise pixel elimination

The pixel matrix of the helium bubble image has three

channels, each with different intensity values. To afford

utmost convenience in data processing and maintaining the

three-dimensional signal information, merging the three

channel datasets into a single channel dataset is more
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advantageous. The intensity of each pixel is converted into

a single value using the following:

gray ¼ 0:229� Rþ 0:587� Gþ 0:114� B; ð1Þ

where gray represents the combined intensity value of the

components of the three channels; and R, G, and B are the

red, green, and blue channel intensities, respectively.

Before attempting to remove the background intensity

from the image matrix, the background threshold should be

defined. The helium bubbles are assumed to be evenly

distributed in the TEM image and have different intensity

depths from the background. The matrix data of helium

bubble intensities are considerably distinguishable from the

background, and the most appropriate threshold value is

derived by the training process.

After determining the background threshold value, the

image matrix can be processed using the following:

New image i; j½ � ¼ 0; if image i; j½ � � vth
image i; j½ � � vth; if image i; j½ �[ vth

�
;

ð2Þ

where vth corresponds to the threshold of background.

The background pixel value of the helium bubble image

has a nonuniform distribution owing to the nonuniform

illumination intensity; hence, determining an appropriate

background threshold is difficult. To resolve this, the his-

togram equalization technology is introduced to adjust the

helium bubble brightness against the background. This

approach enhances the imaging contrast and facilitates the

identification of helium bubbles.

Histogram equalization is a simple and effective image

enhancement technology for improving the contrast of an

image with small dynamic range intensity. It alters the

grayscale value of each pixel to distribute the intensity

histogram across the entire intensity range; consequently,

the new image tends to be clearer. For example, the

grayscale level of an overexposed image is concentrated in

the high brightness range, whereas that of an underexposed

image is concentrated in the low brightness range. Through

histogram equalization, the histogram of an original image

can be transformed into a uniformly distributed (equalized)

form. This transformation increases the dynamic range of

the grayscale value difference among pixels to enhance the

overall image contrast. In other words, histogram equal-

ization enhancement is achieved by compressing the

grayscale value with numerous pixels (i.e., the grayscale

value that performs a major function in the image) and

expanding the grayscale value with a small number of

pixels (i.e., the grayscale value that does not have a pri-

mary function in the image). The original bright-field

under-focused TEM image and the results of histogram

equalization operation are shown in Fig. 3. The separation

of the helium bubble from the background is evidently

more difficult in some regions, especially in the upper-left

area. Nevertheless, the image contrast is significantly

improved after performing histogram equalization on the

original TEM micrograph. Thus, to a certain extent, pre-

processing through histogram equalization can aid in set-

ting a proper threshold value for distinguishing helium

bubbles from the background.

2.2.2 Clustering

Clustering analysis and detection, which are known to

have led to the rapid development of data mining tech-

niques, are widely applied to fields, such as pattern

recognition, data analysis, market research, and image

processing. As an unsupervised machine learning

Fig. 2 Schematic of designed model

123

54 Page 4 of 11 Z.-H. Wu et al.



algorithm, its basic principle is to group similar objects into

the same cluster. The more similar the objects in the

cluster, the better the clustering effect. Highly similar

helium bubbles evidently belong to a particular bubble

type. Accordingly, a clustering detection algorithm is

adopted to analyze the irradiated-alloy TEM micrograph

for helium bubble detection and statistics. Specifically, the

DBSCAN algorithm was applied to this study. This algo-

rithm assigns cluster labels based on dense regions of

points. In DBSCAN, the notion of density is defined as the

number of points within a specified radius.

Numerous helium bubble clusters can be obtained after

the background and noise are eliminated; thus, clustering

the remaining pixels in the preprocessed TEM image data

is necessary. This section presents the application of

DBSCAN to cluster the calculated helium bubble pixels.

A special label is assigned to each sample point using

the following criteria.

(1) A point is considered as a core point if a specified

number of neighboring points falls within the

specified radius.

(2) A border point is one that has fewer neighbors than

the specified number within a specified threshold;

however, it lies within the threshold radius of the

core point.

(3) All points that are neither core nor border points are

considered as noise points.

After labeling the points as core, border, or noise, the

DBSCAN algorithm processes them following two simple

steps.

Step 1: A separate cluster for each core point or con-

nected group of core points is formed (core points are

connected if they are not more distant than the threshold).

Step 2: Each border point is assigned to the cluster of its

corresponding core point.

The DBSCAN algorithm can be used to identify the

degree of pixel density and classify the pixels according to

their distribution based on the pixel distribution density. At

the same time, the relatively isolated pixels are marked as

noise points, rather than helium bubbles.

Two parameters are extremely important in the

DBSACN algorithm: eps and neibth. The first, eps, is the

scanning radius whose value is set to 1 in this model; that

is, only eight pixels around the current pixel were con-

sidered. The second, neibth, is a threshold value for iden-

tifying kernel points; its value is obtained by the training

process. The main steps of DBSCAN are as follows:

1. Randomly choose an unvisited pixel as a starting point,

and then find all of its neighbors within the scanning

radius (eps) range.

2. If the number of neighboring pixels is greater than or

equal to neibth, mark the current point and its

neighboring pixels as kernel points, and put the

neighbors in a queue. Otherwise, the current pixel is

temporarily marked as a noise point.

3. Consider another unvisited point from the queue, find

its neighboring pixels, mark the unvisited pixels as

kernel points, and put them in the queue.

4. Repeat step 3 until the queue is empty; at this instance,

the marked kernel points form a new cluster.

5. Repeat steps 1–4 until all pixels are marked as kernel

points or noise points, and terminate the algorithm.

The shape of the cluster able to be detected from the

above steps can be any of the forms; hence, DBSCAN

remains considerably suitable for clustering helium bub-

bles with irregular shapes.

2.2.3 GMM

The GMM is a well-known basic statistical machine

learning model widely applied to visual media fields. It is a

Fig. 3 a Original TEM image

and b TEM image after

histogram equalization

processing
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type of unsupervised clustering model and density model

consisting of a number of Gaussian function components.

Within its framework, the feature density function is

regarded as belonging to different component variables

whose combination provides multimodal density. The

GMM can afford greater flexibility and precision in mod-

eling as well as deriving the underlying statistics of sample

data; accordingly, it is popularly used in object recognition

and classification.

Virtually all helium bubbles in metals or alloys irradi-

ated by helium ions are spherical or ellipsoidal; thus, their

two-dimensional images are represented by circles or

ellipses. Based on this observation and GMM characteris-

tics, the assumption that helium bubble images follow a

normal distribution is reasonable. In addition, considering

that some helium bubbles in TEM images may intersect or

coincide, the multidimensional GMM, which is a proba-

bilistic model for representing normally distributed sub-

populations within the overall population, is applicable to

helium cluster analysis. In the multidimensional GMM,

knowing the subpopulation to which a data point belongs to

is unnecessary; hence, the subpopulations are automatically

learned.

The multidimensional GMM involves two types of

parameters: the mixture component weights and compo-

nent means as well as its covariance. For a GMM with

K components, the kth component has a mean of lk
! and a

covariance matrix of Rk. The mixture component weights

are defined as /k for component Ck. To ensure that the total

probability distribution normalizes to 1,
PK
i¼1

/i ¼ 1 is

applied as constraint. The mathematical expressions of

multidimensional GMM can be summarized as Eqs. (3)–

(5):

pðx~Þ ¼
XK
i¼1

/iN x~jl~i;Rið Þ; ð3Þ

N x~jl~i;Rið Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð ÞD Rij j

q exp � 1

2
x~� l~ið ÞTR�1

i x~� l~ið Þ
� �

;

ð4Þ
XK
i¼1

/i ¼ 1; ð5Þ

where D is the dimension of the Gaussian distribution (in

this work, D = 2 because the helium bubble cluster pixels

have two dimensions).

If the component weights are not learned, then they can

be considered as the a priori distribution over components

such that p(x) = /k (where x is generated by component

Ck). If they are learned, then they are the a posteriori

estimates of the component probabilities given by the data.

Parameters, such as /k, lk
!, and Rk, may be evaluated

using the expectation maximization (EM) algorithm. The

EM algorithm is a numerical technique for maximum

likelihood estimation and typically used when closed-form

expressions for updating model parameters can be calcu-

lated. The EM is an iterative algorithm with the property

that the maximum likelihood of data strictly increases with

subsequent iterations. This guarantees that the local max-

imum or saddle point is approached.

The EM for GMM consists of two steps: the expectation

step (E step) and the maximization step (M step). The main

objective of E step is to compute the expectation of the log-

likelihood estimation. It uses the current estimated distri-

butions of latent variables based on the parameters inferred

from the previous step. For the E step, the probability, x̂ik,

that xi is generated by component Ck is evaluated using the

following equation:

x̂ik ¼
/̂kN xijl~k;Rkð Þ
PK
j¼1

/̂jN xijl~j;Rj

� � ; ð6Þ

where x̂ik ¼ PðCkjxi;/
*

; l
*
;R
*

Þ. In the M step, the main

function is to calculate the parameters maximizing the

expected log-likelihood from the E step. These parameters

are then utilized to determine the distribution of latent

variables in the next E step. Specifically, along with x̂ik

calculated in the E step, /k, lk
*
, and Rk are renewed by

Eqs. (7)–(9), respectively:

/̂k ¼
1

N

XN
i¼1

x̂ik; ð7Þ

l~k ¼

PN
i¼1

x̂ikxi

PN
i¼1

x̂ik

; ð8Þ

Rk ¼

PN
i¼1

x̂ik x~� l~ið ÞT x~� l~ið Þ

PN
i¼1

x̂ik

: ð9Þ

The E and M steps are alternately run until the param-

eters converge. The EM algorithm is employed to itera-

tively optimize the parameter estimate. Note that the EM

requires the a priori selection of the model order. Usually,

the user selects a suitable number approximately corre-

sponding to the length of the training expression.

In this work, the pixel value, pixel ið Þ, is used as the pixel
mesh weight required in the GMM. Therefore, Eqs. (7)–(9)

can be transformed into Eqs. (10)–(12), respectively, in this

model.
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/̂k ¼
XN
i¼1

x̂ikpixelðiÞ
,XN

i¼1

pixelðiÞ ð10Þ

l~k ¼

PN
i¼1

x̂ikxipixelðiÞ

PN
i¼1

x̂ikpixelðiÞ
ð11Þ

Rk ¼

PN
i¼1

x̂ik x~� l~ið ÞpixelðiÞ½ �T x~� l~ið Þ

PN
i¼1

x̂ikpixelðiÞ
ð12Þ

Based on the foregoing statement and formulae, an

automatic bubble detection model is developed, and the

clustering classification algorithm is formulated. The

results yielded by the GMM-based model provide the

helium bubble information; that is, lk
! describes the central

points, and the covariance matrix contains the size and

shape information of helium bubbles, respectively.

2.3 Assessment criteria

As described above, several parameters have to be

determined to formulate the proposed model. The various

parameters evidently lead to considerably different detec-

tion results and statistics. Therefore, it is necessary to first

determine the assessment criteria for identifying the opti-

mal parameters to achieve excellent detection results.

In machine learning, the three important indices that are

frequently used for clustering evaluation are recall, preci-

sion, and F1 values. The precision index indicates the

portion of positive identifications in a classification set that

are actually correct. In contrast, the recall index represents

the proportion of actual positives that are correctly iden-

tified. In the statistical analysis of binary classification, the

F1 value (also called F1-score or F1-measure) considers

the precision and recall of the test. The F1 value can be

interpreted as a weighted average of precision and recall;

the best F1 value is 1, whereas the worst score is 0.

The precision and recall values were calculated and

monitored during the training and formulation of the pro-

posed model. The deduced F1 value was calculated using

these two parameters and utilized as the comprehensive

performance evaluation criterion to determine the optimal

parameters of the model. The F1, precision, and recall

indices are expressed in the following forms:

F1 ¼ 2PR

Pþ R
; ð13Þ

P ¼ Nml

Nmodel

; ð14Þ

R ¼ Nml

Nlabel

; ð15Þ

where P and R represent the precision and recall of the

model, respectively, and F1 is the harmonic mean value of

precision and recall; Nmodel is the number of helium bub-

bles recognized by the desired model; Nlabel is the number

of helium bubbles manually marked by the TEM analysis

experts; and Nml indicates the number of helium bubbles

detected by the clustering analysis algorithm (these bubbles

are concurrently marked manually by the experts). Preci-

sion P and recall R cannot be promoted at the same time;

hence, F1 is defined to balance these two assessment

criteria.

3 Results and discussion

As described in the previous section, first, the determi-

nation of four parameters is necessary: bgth (the threshold

value of the pixel background), neibth (the minimum

number of neighboring points of a pixel), clusterth (the

minimum number of a cluster), and ndot (the number of

pixels of a helium bubble). These parameters vary with a

limited number of discrete integer values. The rational

values can be conveniently determined by testing the

combinations of all values. In this study, eight TEM images

and corresponding annotated images were employed for

model training to determine the best combination of the

four parameters. Based on the generated results, eight

candidate models were established and denoted as Models

1–8. For each TEM image, a combination of parameters is

given at the highest F1 value, as well as the P and R results,

as listed in Table 1.

Second, eight candidate models were formed using a

combination of the four parameters after the training pro-

cess. As listed in Table 2, four TEM images are selected to

determine the optimal parameters for the proposed model

with the F1 value as the evaluation criterion. The param-

eters of Model 5 are easily identified as having the best

values; hence, they are chosen as candidates for the final

model for bubble clustering selection.

Finally, four different TEM images were used to test the

performance of the formulated model for bubble clustering.

The corresponding performance evaluation results includ-

ing the four datasets and their mean values are listed in

Table 3.

The position of the helium bubble was evaluated under

the Gaussian mixture analysis framework, and the coordi-

nate deviation was compared with the manually marked

images in this model. The mean bias for describing the

deviation is computed using the following:
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bias ¼ 1

Nml

X
m distðPl;PMÞ; ð16Þ

where Pl and PM are the central points of helium bubbles

manually marked and estimated using the model, respec-

tively. Here, the Manhattan distance is adopted to compute

the distance between Pl and PM.

The list in Table 3 indicates that the mean coordinate

bias is 3 pixels and the results yielded by the model

approximate those marked manually.

For example, Figs. 4–7 show the helium bubble detec-

tion results yielded by the formulated model and manual

marking. In Fig. 4, the red points represent the helium

bubbles detected by the described model, and the blue

points represent those marked by the TEM analysis experts.

The numbers of red and blue points are expressed as nred
and nblue, respectively.

As shown in Figs. 4–7, the number of red points exceeds

that of the blue points. Virtually all helium bubbles have

been recognized by the formulated model. Moreover, some

objects similar to the bubbles, but with no manual mark-

ings, have also been identified by the established model.

The superior recall (i.e., 94%) achieved by the proposed

model means that it is capable of automatically locating

and marking most of the manually marked helium bubbles.

Table 1 Parameters of each

sample image and F1, P, and
R values

Image1 Image2 Image3 Image4 Image5 Image6 Image7 Image8

bgth 169 166 165 165 170 166 169 168

clusterth 6 7 6 6 8 6 8 7

neibth 4 6 5 4 5 4 4 4

ndot 44 35 35 35 41 39 44 45

P 0.7692 1.0000 1.0000 1.0000 0.9615 0.8983 0.8302 0.8936

R 0.7143 0.9333 0.7143 0.8182 0.8929 0.8983 0.9167 0.9545

F1 0.7407 0.9655 0.8333 0.9000 0.9259 0.8983 0.8713 0.9231

Table 2 F1 values of each test

image evaluated on eight

models

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

Image 9 0.7027 0.8043 0.6964 0.5674 0.8315 0.6393 0.7647 0.7156

Image 10 0.7789 0.8276 0.7115 0.6325 0.8409 0.6789 0.7872 0.7708

Image 11 0.7819 0.8163 0.7500 0.6565 0.8571 0.6772 0.8350 0.8073

Image 12 0.5567 0.6667 0.5400 0.4615 0.7606 0.4909 0.6429 0.5745

Mean F1 0.7070 0.7841 0.6776 0.5810 0.8266 0.6239 0.7624 0.7206

The bold font of the numbers is used to emphasize that Model 5 has the best performance

Table 3 Performance results of formulated model

P R F1 bias

Image 13 0.8696 0.8889 0.8791 3

Image 14 0.5714 0.9730 0.7200 3

Image 15 0.7879 0.9630 0.8667 2

Image 16 0.6053 0.9583 0.7419 3

Mean 0.6944 0.9398 0.7987 3

Fig. 4 (Color online) a Original
TEM, and b detected results

with nred1 = 63 and nblue1 = 37

123

54 Page 8 of 11 Z.-H. Wu et al.



In contrast to the excellent recall performance, the

precision level achieved by the model was relatively low.

This may have been caused by two factors. First, some

objects with a similar morphology as the bubbles are

extremely dark or minuscule to be observed by human

sight, but they can be identified by the machine learning

method. Second, helium bubbles with irregular shapes may

be manually marked as a single bubble; however, they are

distinguished as multiple bubbles by the model. Using the

proposed model, these two aspects may yield higher

counting results compared with those manually marked.

The foregoing may also explain the relatively low precision

associated with the manual approach. Accordingly, the

model established in this work is observed to be extremely

sensitive. It can detect bubble-like objects and identify

more candidates of helium bubble clusters than the manual

marking approach. By considering Fig. 4 as an example,

Fig. 8 indicates that the model developed in this work is

considerably sensitive and capable of dealing with situa-

tions in which helium bubbles may have irregular shapes or

small sizes.

4 Summary

This study is the first to employ the DBSCAN clustering

method and the GMM model for efficient identification and

analysis of helium bubbles in the TEM images of alloys in

a high-temperature irradiation environment. In the current

practice, considering that the manual counting of bubbles is

time-consuming, the ability of the formulated model to

identify and count these bubbles automatically consider-

ably saves time. The new method is found to have a higher

recall but low precision performance because it can

Fig. 5 (Color online) a Original TEM and b detected results with nred2 = 33 and nblue2 = 27

Fig. 6 (Color online) a Original TEM and detected results with nred3 = 38 and nblue3 = 24
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identify objects with irregular shapes and those unnoticed

by the naked eye. The nature of automatic identification

and the substantial time saved afforded by the designed

method highlights new opportunities in the use of machine

learning to expedite helium bubble identification and

counting.

The results obtained in this study are based exclusively

on TEM datasets under the under-focused condition of

bright-field TEM micrographs. Nevertheless, the model is

also expected to be capable of adapting to the circum-

stances of the over-focused condition. A more accurate

helium bubble counting performance can be derived by

considering the results of these two conditions together.

Furthermore, the variation in the shape and size of bubbles

must also be considered because helium bubbles evolve

dynamically and diversely throughout the entire service.

Hence, considerable work awaits completion and verifica-

tion through follow-up research.
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