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Abstract Single-particle resonances in the continuum are

crucial for studies of exotic nuclei. In this study, the

Green’s function approach is employed to search for sin-

gle-particle resonances based on the relativistic-mean-field

model. Taking 120Sn as an example, we identify single-

particle resonances and determine the energies and widths

directly by probing the extrema of the Green’s functions. In

contrast to the results found by exploring for the extremum

of the density of states proposed in our recent study [Chin.

Phys. C, 44:084105 (2020)], which has proven to be very

successful, the same resonances as well as very close

energies and widths are obtained. By comparing the

Green’s functions plotted in different coordinate space

sizes, we also found that the results very slightly depend on

the space size. These findings demonstrate that the

approach by exploring for the extremum of the Green’s

function is also very reliable and effective for identifying

resonant states, regardless of whether they are wide or

narrow.

Keywords Single-particle resonances � Extrema of

Green’s functions � Relativistic-mean-field theory

1 Introduction

Recently, explorations for single-particle resonances are

attracting increasing attention because of their significant

role in studies of exotic nuclei. Many exotic phenomena

such as halos [1], deformed halos [2], and giant halos [3–5]

are explained by the occupations of valence neutrons in the

continuum. For example, giant halos predicted in neutron-

rich Zr and Ca isotopes are caused by valence neutrons

scattered to the continuum and occupying p orbitals [3, 4],

and the possible deformed halos in 40;42Mg and 22C are

mainly caused by the occupations of single-particle states

around the Fermi surface [6–8]. Numerous studies have

shown that, in weakly bound exotic nuclei with very small

gaps, between the Fermi surface and the continuum

threshold, the valence nucleons can be scattered to the

continuum effortlessly by pairing correlations. Halos can

be formed if the valence nucleons occupy an orbit with a

small angular momentum l, which can contribute a large

radius [9, 10].

To explore single-particle resonances, researchers have

developed a series of approaches. One technique starts

from scattering theory, such as K-matrix theory [11], S-

matrix theory [12, 13], R-matrix theory [14, 15], the Jost

function approach [16, 17], and the scattering phase shift

method [18, 19]. Meanwhile, approaches for bound states

are also widely used; these include the real stabilization

method [20, 21], the complex scaling method [22–25], the

analytical continuation of the coupling constant method

[26, 27], the complex momentum representation method

[28, 29], and the complex-scaled Green’s function method

[30].

The Green’s function approach [31, 32], which has wide

applications in various fields of physics [33, 34], has also
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been demonstrated to be very effective for studying the

continuum and single-particle resonant states. Owing to its

advantages, such as its being able to handle bound states

and the continuum uniformly by using the density of states

(DOS) tool, the resonance energies and widths can be

determined easily, the asymptotic behavior of the spatial

extended density in weakly bound nuclei can be properly

described, and, most importantly, it can be combined with

different nuclear models very conveniently. The Green’s

function method has yielded significant achievements in

nuclear physics in investigating the effects of the contin-

uum on the properties of atomic nuclei. For example, to

describe the continuum exactly in exotic nuclei near the

drip line and study the possible effects of the continuum on

the properties of the ground state, Zhang et al. developed

the self-consistent continuum Skyrme Hartree–Fock–Bo-

goliubov (HFB) theory [35, 36], based on which a series of

research projects have been conducted. These include

establishment of the energies and wave functions for sin-

gle-particle canonical bound and resonant states with dif-

ferent space sizes [37], study of the possible impacts of

mean field and pairing on the resonances [38, 39], and the

extension to the odd-A systems by including the blocking

effect [40]. To explore the contribution of the continuous

spectrum to nuclear collective excitations, Matsuo applied

the HFB Green’s function [41] to the quasiparticle random-

phase approximation [42, 43], enabling further study of the

collective excitations coupled to the continuum [44–47],

microscopic structures of monopole pair vibrational modes

and associated two-neutron transfer amplitudes [48], and

neutron capture reactions [49].

Given the great successes that the Green’s function

method achieved in the nonrelativistic framework, it is

naturally applied in covariant density functional theory

[50–52], which has been demonstrated to be a powerful

tool in researching various nuclear systems and properties,

such as superheavy nuclei [53–55], pseudospin symmetry

[56–58], hypernuclei [59–61], and neutron stars [62, 63]. In

Refs. [64, 65], the relativistic continuum random-phase

approximation theory is developed by adopting the Green’s

function of the Dirac equation [31] to investigate collective

excitations. In Ref. [66], we introduced the Green’s func-

tion approach to the relativistic-mean-field (RMF) model

and studied single-particle resonances for the first time.

Later, this approach was further extended to studies of

single-particle resonances of protons [67], hyperons [68],

and those in deformed nuclei with a quadrupole-deformed

Woods–Saxon potential [69]. In addition, the pseudospin

symmetries hidden in resonant states were also investigated

by applying the Green’s function method [70]. In Ref. [71],

to study the halo structures in neutron-rich nuclei, we

further included the pairing correlation and introduced the

Green’s function approach to the continuum relativistic

Hartree–Bogoliubov theory.

In our previous studies of single-particle resonant states

[66–68], the resonant states are determined by comparing

the DOS of particles in the mean field to those for free

particles. In this framework, resonance energies and widths

are simply determined as the position and full width at half-

maximum of the resonant peak, respectively. With this

method, one can describe narrow resonances very well, but

the accuracy is poor for wide ones. Therefore, in our recent

studies [69, 72], we proposed an effective and direct way to

identify the resonant states by exploring for the extremum

of the DOS. The exact energies and widths for the resonant

states in all types can be obtained, whether for wide or

narrow resonant states. However, the DOS in the calcula-

tions are approximate ones because they are calculated in a

finite space size. In this work, we will directly analyze

Green’s functions and search for their poles or extrema to

determine the resonant states.

The paper is organized as follows: The RMF model

formulated with Green’s functions is briefly presented in

Sect. 2. Numerical details are given in Sect. 3. After the

results and discussion are presented in Sect. 4, a brief

summary and perspectives are given in Sect. 5.

2 Theoretical framework

In the RMF model, neutrons and protons are described

as Dirac particles moving in a mean-field potential char-

acterized by scalar S and vector V potentials. The Dirac

equation for a nucleon with mass M is as follows:

½a � pþ VðrÞ þ bðM þ SðrÞÞ�wnðrÞ ¼ enwnðrÞ; ð1Þ

where a and b are Dirac matrices.

Various methods have been used to solve the Dirac

equation. These include the shooting method [10], the

Green’s function method [66], and the finite element

method [73], which are performed in the coordinate space,

as well as those in the harmonic oscillator basis [74] or

Woods–Saxon basis [75]. When introducing the Green’s

function method to mean-field density functionals, the

densities and single-particle spectrum can be determined

directly by the Green’s functions [35, 36, 40, 66]. Fol-

lowing the definition of the single-particle Green’s

function,

½e� ĥðrÞ�Gðr; r0; eÞ ¼ dðr� r0Þ; ð2Þ

a relativistic Green’s function Gðr; r0; eÞ for the Dirac

equation can be constructed at arbitrary single-particle

energies e when ĥðrÞ is chosen as the Dirac Hamiltonian.

Taking a complete set of solutions of the Dirac equation,
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including the eigenstates wnðrÞ and eigenvalues en, we can

write the Green’s function in Eq. (2) as

Gðr; r0; eÞ ¼
X

n

wnðrÞwyn ðr0Þ
e� en

: ð3Þ

With the single-particle energy e approaching the energy

en, the absolute value of Gðr; r0; eÞ will increase signifi-

cantly and reach the extremum. Therefore, one can deter-

mine the single-particle energies en by calculating different

Green’s functions at various energies e and search for the

extremum. For resonant states with resonant energies E and

widths C, one can write their energies as en ¼ E � iC=2.

Correspondingly, the energies e in Eqs. (2) and (3) are

complex: e ¼ er þ iei with er and ei being the real and

imaginary parts of the energy, respectively.

Because the Dirac spinor wnðrÞ has upper and lower

components, the corresponding Green’s function has the

form of a 2 � 2 matrix,

Gðr; r0; eÞ ¼ Gð11Þðr; r0; eÞ Gð12Þðr; r0; eÞ
Gð21Þðr; r0; eÞ Gð22Þðr; r0; eÞ

 !
: ð4Þ

With spherical symmetry, one can expand the Green’s

function as

Gðr; r0; eÞ ¼
X

jm

Yjmðh;/Þ
Gjðr; r0; eÞ

rr0
Y�
jmðh

0;/0Þ; ð5Þ

where Gjðr; r0; eÞ is the radial part, Yjmðh;/Þ is the spin

spherical harmonic, and the quantum number j ¼
ð�1Þjþlþ1=2ðjþ 1=2Þ labels different ‘‘channels’’.

For a given single-particle energy e and quantum num-

ber j, we can construct the radial Green’s function

Gjðr; r0; eÞ as [31]

Gjðr; r0; eÞ ¼
1

WjðeÞ
hðr � r0Þ/ð2Þ

j ðr; eÞ/ð1Þy
j ðr0; eÞ

h

þhðr0 � rÞ/ð1Þ
j ðr; eÞ/ð2Þy

j ðr0; eÞ
i
;

ð6Þ

with /ð1Þ
j ðr; eÞ and /ð2Þ

j ðr; eÞ being two Dirac spinors given

by

/ð1Þ
j ðr; eÞ ¼ g

ð1Þ
j ðr; eÞ
f
ð1Þ
j ðr; eÞ

 !
;

/ð2Þ
j ðr; eÞ ¼ g

ð2Þ
j ðr; eÞ
f
ð2Þ
j ðr; eÞ

 !
;

ð7Þ

which are linearly independent and obtained by solving the

Runge–Kutta integrals in the full coordinate r space start-

ing, respectively, from the asymptotic behaviors at r ! 0

and r ! 1; hðr � r0Þ is a step function; and WjðeÞ is the

Wronskian function,

WjðeÞ ¼ gð1Þj ðr; eÞf ð2Þj ðr; eÞ � gð2Þj ðr; eÞf ð1Þj ðr; eÞ; ð8Þ

which is independent of r. It can be checked that the

constructed Green’s function Gjðr; r0; eÞ of Eq. (6) meets

the definition Eq. (2) in the radial form.

In practical calculations, one will adopt the exact

asymptotic behaviors of the Dirac spinors to construct

Green’s functions. As a result, weakly bound states around

the Fermi surface as well as the resonances above the

continuum threshold, which are essential for the unsta-

ble nuclei, can be addressed when calculating densities and

single-particle spectra. At r ! 0, the asymptotic behavior

of the Dirac spinor /ð1Þ
j ðr; eÞ satisfies

/ð1Þ
j ðr; eÞ �!r

jlðkrÞ
j
jjj

e� V � S

k
j~lðkrÞ

0

@

1

A; ð9Þ

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe� V � SÞðe� V þ Sþ 2MÞ

p
is the single-

particle momentum, the quantum number ~l ¼ lþ
ð�1Þjþl�1=2

denotes the angular momentum for the lower

component of the Dirac spinor, and jlðkrÞ is the spherical

Bessel function of the first kind, which satisfies

jlðkrÞ �!
ðkrÞl

ð2lþ 1Þ!! ; when r ! 0: ð10Þ

At r ! 1, the Dirac spinor /ð2Þ
j ðr; eÞ is oscillating out-

going for the continuum and exponentially decaying for the

bound states, which can be represented uniformly as

/ð2Þ
j ðr; eÞ �!

rkh
ð1Þ
l ðkrÞ

j
jjj

rk2

eþ 2M
h
ð1Þ
~l
ðkrÞ

0
B@

1
CA; ð11Þ

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðeþ 2MÞ

p
and h

ð1Þ
l ðkrÞ is the spherical Han-

kel function of the first kind.

3 Numerical details

In this work, the single-particle resonant states were

studied by employing the Green’s function method based

on RMF theory, where the resonance energies E and widths

C were obtained directly by probing the extrema of the

Green’s functions. To compare with the previous results

obtained by using Green’s functions calculations [66, 72],

where the resonances were identified by probing the

extremum of the DOS, njðeÞ, defined in a finite space size

Rbox, the same nucleus 120Sn and density functional PK1

[76] were adopted.

The Green’s functions and RMF equations were solved

in the coordinate r space with a space size of Rbox ¼ 20 fm

and a step of d r ¼ 0:1 fm. To check the dependence of
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the obtained resonances on the space sizes, calculations

with Rbox ¼ 25; 30 fm were also performed. To search for

the energy position corresponding to the poles of the

Green’s functions, the complex single-particle energies e ¼
er þ iei were scanned widely on the complex energy plane

to calculate the Green’s functions Gðr; r; eÞ. The energy

step was d e ¼ 1 � 10�4 MeV for both the real er and

imaginary ei parts. With this scanning energy step, the

accuracy of the obtained resonance energies and widths

were up to 0.1 keV. In addition, the accuracy can be

increased further once the scanning energy step de is

decreased.

4 Results and discussion

On the complex single-particle energy plane, single-

particle resonances are located in the fourth quadrant, with

the real energy being the resonance energy E and the

imaginary energy being half of the resonance width C=2.

According to Eq. (3), the single-particle energies en ¼
E � iC=2 of the resonant states also correspond to the

extrema of the Green’s functions Gðr; r; eÞ. As a result, one

can search for these poles or extrema to determine the

locations of the resonant states by scanning the complex

energies e ¼ er þ iei in the fourth quadrant and calculating

the Green’s functions Gðr; r; eÞ.
In Fig. 1, taking the neutron single-particle resonant

state 2f5=2 in 120Sn as an example, we plot the Green’s

functions Gðr; r; eÞ at various scanned single-particle

complex energies e ¼ er þ iei. With the real energy er
varying from 0.8703 to 0.8707 MeV and the imaginary

energy ei varying from �0:0324 to �0:0328 MeV, the

height of the Green’s function changes significantly.

Comparing panels (a), (b), and (c) in the left column, we

can see that the modulus of the Green’s function jGð11Þj has

a larger amplitude at a real energy er ¼ 0:8705MeV, as

shown in panel (b). More specifically, the Green’s function

reaches its extremum at an imaginary energy

ei ¼ �0:0326MeV (plotted by the red line). All these

analyses indicate that the Green’s function reaches its

extremum at an energy of e ¼ 0:8705 � i0:0326 MeV. In

the same way, we show the moduli of the Green’s functions

for the ‘‘22’’ component jGð22Þj in the right column, which

are determined by the small component of the Dirac spinor.

The amplitudes are much lower than those in the left col-

umn. However, the Green’s function reaches its maximum

amplitude at the same energy e ¼ 0:8705 � i0:0326 MeV.

Therefore, we can conclude that e ¼ 0:8705 � i0:0326

MeV corresponds to the energy of the single-particle res-

onant state 2f5=2 in 120Sn, which is almost the same value as

the result obtained by exploring for the extremum of the

DOS [72] with a difference of 0.1 keV for the width.

To be more intuitive, one can integrate the Green’s

function Gðr; r; eÞ over coordinate r and compare the inte-

gral values at different scanning single-particle energies e.

Fig. 1 (Color online) Green’s

functions Gðr; r; eÞ at different

complex energies e ¼ er þ iei
plotted as a function of

coordinate r for the resonant

state 2f5=2 in 120Sn. The left and

right columns are, respectively,

the moduli of ‘‘11’’ and ‘‘22’’

components of Green’s

functions jGð11Þj and jGð22Þj. The

complex energy e is scanned

widely, and the results with the

real energies er ¼ 0:8703;
0.8705, and 0.8707 MeV, and

imaginary energies

ei ¼ �0:0324, �0:0326, and

�0:0328 MeV are shown
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The integral function GjðeÞ for each partial wave j at

energy e can be written as

GjðeÞ ¼
Z

d r½jGð11Þ
j ðr; r; eÞj þ jGð22Þ

j ðr; r; eÞj�; ð12Þ

where jGð11Þ
j ðr; r; eÞj and jGð22Þ

j ðr; r; eÞj, respectively, cor-

respond to the moduli of the ‘‘11’’ and ‘‘22’’ matrix ele-

ments of the Green’s functions, as shown in Eq. (4). A

sharp peak should be observed for the integral function

GjðeÞ at the energy where the Green’s function reaches its

extremum. In Fig. 2, the result for the single-particle res-

onant state 2f5=2 in 120Sn is plotted on the complex energy

plane. A peak with an extremum located at er ¼ 0:8705

MeV and ei ¼ �0:0326 MeV is observed, indicating that

the energy of the resonant state 2f5=2 is en ¼ 0:8705 �
i0:0326 MeV, which is the same as the result obtained in

Fig. 1.

To check the universality of this approach, the same

analysis was performed for a relatively wide single-particle

resonant state 2g9=2 in Fig. 3. Similarly, a sharp peak is

identified with the extremum located at er ¼ 5:4428 MeV

and ei ¼ �1:6948 MeV, indicating that the energy of the

resonant state 2g9=2 is en ¼ 5:4428 � i1:6948 MeV. How-

ever, compared with the narrow resonant state 2f5=2, the

peak of the wide resonant state 2g9=2 is much sharper,

which can be explained by the greater integral values GjðeÞ
for the wide resonant states caused by the extended dis-

tributions of Green’s functions. From Figs. 2 and 3, we can

conclude that it is very direct and effective to search for the

single-particle resonant states and determine the energies

and widths for both narrow and wide resonances by

searching for the extrema of the Green’s functions.

In Fig. 4, the dependence of the Green’s functions on the

coordinate space sizes Rbox is checked by taking the reso-

nant state 2f5=2 as an example and plotting jGð11Þðr; r; eÞj
and jGð22Þðr; r; eÞj with Rbox ¼ 20, 25, and 30 fm, respec-

tively. Obviously, we can see that exactly the same dis-

tributions for both the ‘‘11’’ and ‘‘22’’ components are

obtained, indicating that the Green’s function method
Fig. 2 (Color online) Integral function GjðeÞ distributed on the

complex energy plane for the resonant state 2f5=2 in 120Sn

Fig. 3 (Color online) Integral function GjðeÞ distributed on the

complex energy plane for the resonant state 2g9=2 in 120Sn

Fig. 4 (Color online) Green’s functions Gðr; r; eÞ for the resonant

state 2f5=2 in 120Sn at the resonant energy e ¼ E � iC=2 calculated

with space sizes Rbox ¼20, 25, and 30 fm
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depends slightly on the space sizes, which is consistent

with the conclusions obtained by analyzing the density

distributions qjðr; eÞ plotted in different space sizes [72].

In Table 1, neutron single-particle resonant states in
120Sn with energies and widths E � iC=2 obtained by

searching for the extrema of the Green’s functions are

listed, and these are compared with those obtained by

exploring for the maximum of the DOS [72]. For most of

the resonant states, exactly the same energies and widths

are obtained while very small differences (within 0.2 keV)

exist for others. Compared with the results obtained by

comparing the DOSs for nucleons and free particles in Ref.

[66], four wide resonant states (2g7=2, 2g9=2, 2h11=2, and

1j13=2) are identified. Furthermore, the accuracy of the

width for the narrow resonant state 1h9=2 is highly refined

to be 1 � 10�8 MeV. All these results prove that the

approach by probing the extremum of the Green’s func-

tions is as effective and reliable as that by exploring for the

extremum of the DOS in identifying the resonant states,

irrespective of whether the resonant state is wide or narrow.

Moreover, compared with the approach by exploring for

the extremum of the DOS, the approach by searching for

the extremum of the Green’s functions is easier, more

direct, and less time-consuming. However, without the

DOS, this approach cannot describe intuitively the struc-

tures of the single-particle spectrum for the bound and

resonant states.

5 Summary and perspectives

Significant roles are played by the single-particle reso-

nances in the structure of exotic nuclei. The Green’s

function method has been demonstrated to be one of the

most effective approaches in searching for single-particle

resonant states. In our recent work [72], by probing the

extremum of the DOSs njðeÞ defined in a finite space size

Rbox, the Green’s function method has been proven to be

very reliable, regardless of whether the resonances are wide

or narrow. In this work, another direct and effective

approach by probing the extremum of the Green’s func-

tions is proposed to identify the resonant states.

Taking the same nucleus 120Sn as an example, by

searching for the poles or extrema of the Green’s functions,

we obtain almost the same energies and widths for the

resonant states as obtained by exploring for the extremum

of the DOS. In addition, the dependence of the Green’s

functions on the space size is checked and found to be very

stable. Compared with the results obtained by comparing

the DOSs for nucleons and free particles [66], four wide

resonant states (2g7=2, 2g9=2, 2h11=2, and 1j13=2) are iden-

tified, and the accuracy of the width of the narrow resonant

state 1h9=2 is highly refined to 1 � 10�8 MeV. All these

results prove that the approach by probing the extremum of

the Green’s functions has the same reliability and effec-

tiveness as that by probing the extremum of the DOS to

identify the resonant states, regardless of whether the res-

onant states are wide or narrow.

As is well known, both pairing correlations and the

continuum play core roles in exotic nuclei. Therefore,

studies on the possible effects of pairing on the resonant

states are significant and very interesting. In the investi-

gations with the continuum Skyrme HFB approach in Refs.

[38, 39], the authors concluded that the pairing correlation

can enhance the resonant energies and widths for all

quasiparticle resonances, whether hole-like or particle-like.

However, in Ref. [77], an opposite conclusion was

obtained for the particle-like quasiparticle resonances

studied with a fixed resonant energy. In the future, we will

take the self-consistent relativistic continuum Hartree–

Bogoliubov model with the Green’s function method [71]

to explore the possible effects of pairing on the resonant

states. Moreover, we would like to apply the Green’s

function method to dynamic reactions and search for res-

onance structures, for which vast theoretical and experi-

mental works have been performed [78, 79]. In Ref. [80],

Table 1 Neutron single-particle resonances nlj in 120Sn with energies

and widths E � iC=2 obtained by probing the extrema of the Green’s

functions, compared with the results by exploring for the extremum of

the DOS in our previous study [72]. The PK1 effective density

functional was used. All quantities are in MeV

Positive parity Green’s function DOS Negative parity Green’s function DOS

2g7=2 6:3585 � i3:1053 6:3585 � i3:1052 3p1=2 0:0504 � i0:0164 0:0504 � i0:0164

2g9=2 5:4428 � i1:6948 5:4428 � i1:6948 2f5=2 0:8705 � i0:0326 0:8705 � i0:0325

1i11=2 9:8544 � i0:6413 9:8544 � i0:6413 1h9=2 0:2507 � i4 � 10�8 0:2508 � i4 � 10�8

1i13=2 3:4686 � i0:0025 3:4686 � i0:0024 2h11=2 10:5130 � i6:7683 10:5130 � i6:7681

1j13=2 18:1846 � i3:1532 18:1846 � i3:1531

1j15=2 12:8929 � i0:5323 12:8929 � i0:5322
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the complex molecular resonances in the 12Cþ12C fusion

reaction were explored with the thick-target method.
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