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Abstract In this study, a one-dimensional two-phase flow

four-equation model was developed to simulate the water

faucet problem. The performance of six different Krylov

subspace methods, namely the generalized minimal resid-

ual (GMRES), transpose-free quasi-minimal residual,

quasi-minimal residual, conjugate gradient squared,

biconjugate gradient stabilized, and biconjugate gradient,

was evaluated with and without the application of an

incomplete LU (ILU) factorization preconditioner for

solving the water faucet problem. The simulation results

indicate that using the ILU preconditioner with the Krylov

subspace methods produces better convergence perfor-

mance than that without the ILU preconditioner. Only the

GMRES demonstrated an acceptable convergence perfor-

mance under the Krylov subspace methods without the

preconditioner. The velocity and pressure distribution in

the water faucet problem could be determined using the

Krylov subspace methods with an ILU preconditioner,

while GMRES could determine it without the need for a

preconditioner. However, there are significant advantages

of using an ILU preconditioner with the GMRES in terms

of efficiency. The different Krylov subspace methods

showed similar performance in terms of computational

efficiency under the application of the ILU preconditioner.

Keywords Water faucet problem � Krylov subspace

methods � ILU preconditioner

1 Introduction

Two-phase flow behavior is one of the most important

transport phenomena in industry and is found in several

systems, including nuclear power plants. Under normal

operating conditions, two-phase flow occurs in the primary

loop of the boiling water reactor and the secondary loop of

the pressurized water reactor. The evaluation of two-phase

flow behavior is related to the design of nuclear reactors in

both steady and transient states, safety evaluation, and

analysis of events such as loss-of-coolant accidents

(LOCA) and reflooding [1–3]. Two-phase flow models are

often used to evaluate complex thermal–hydraulic phe-

nomena in facilities, such as the steam–gas pressurizers in

nuclear power plants [4]. One-dimensional two-phase flow

behavior simulation is widely employed owing to its effi-

ciency. Numerical model system codes such as RELAP5,

RELAP7, and CATHAR are widely used for evaluating the

safety of nuclear reactors, and the numerical solvers that

are used to calculate the behavior of one-dimensional two-

phase flow play an important role in terms of code per-

formance. The Gauss elimination linear equation solver is

used in TRACE, while CATHAR utilizes the Newton–

Raphson method. Recently modified or developed system

codes also use high-efficiency matrix solvers or numerical

methods. For example, border-profile lower upper (BPLU),

which is now used with RELAP5, has a significantly better

performance than previous numerical methods [1, 5]. The

nonlinear numerical solver JFNK is used for simulations

that involve RELAP7 [1, 6]. Hajizadeh et al. also devel-

oped a new two-phase flow simulation model in which the

SIMPLE algorithm was applied to the drift flux model [7].

The Krylov subspace methods are widely used in

numerical simulations including the simulation of two-
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phase flow. The Krylov subspace methods are considerably

more efficient than traditional numerical solvers such as

Gaussian elimination or row reduction. Dawson et al.

conducted a numerical investigation of three-dimensional

two-phase flow behavior [8], in which the finite difference

method was used for space discretization, and the back-

ward Euler method was applied for time discretization. The

generalized minimal residual (GMRES) method was used,

and the efficiency of the Krylov subspace method was

evaluated. Nordsveen et al. developed a two-phase model

for the investigation of gas–liquid flow behavior using a

semi-implicit time discretization method [9]. Staggered

and finite difference methods were used for space dis-

cretization. Both the GMRES and the biconjugate gradient

stabilized (BICGSTAB) Krylov subspace methods were

used in the evaluation and comparison with the Gaussian

band solver. The BILU3D preconditioned BICGSTAB

method was used by Downar et al. for the numerical

solution of multi-dimensional two-fluid equations in the

EPRI code VIPRE-02 to investigate computational effi-

ciency [10]. The implemented numerical method was used

to simulate a PWR main steam line break problem. The

results of simulation with BICGSTAB indicate that the

average number of inner iterations required per outer iter-

ation is approximately 50% less than that via application of

the ADI method. To increase the computational efficiency

of the two-phase flow simulation in porous media, Berga-

maschi et al. evaluated the effects of using a preconditioner

with the Krylov subspace method. A finite element method

was used for the discretization of the two-phase flow

models [11]. Both 2D and 3D numerical tests were con-

ducted to evaluate the computational performance. Based

on the simulation results, the number of linear iterations

required was reduced using the proposed acceleration in

terms of convergence. Mohitpour et al. evaluated different

Krylov subspace methods (GMRES, flexible GMRES

(FGMRES), direct quasi-GMRES (DQGMRES), conjugate

gradient on the normal equations, biconjugate gradient

(BCG), and transpose-free quasi-minimal residual

(TFQMR)) for the simulation of two-phase flow in pres-

surized water reactor (PWR) fuel bundles [12]. The two-

phase flow behavior was simulated using a three-dimen-

sional two-fluid one-pressure model. The finite difference

method was used for space discretization with semi-im-

plicit time discretization. No significant deviation in the

simulation of two-phase flow behavior was predicted by

these Krylov subspace methods. In addition, GMRES,

FGMRES, and DQGMRES exhibited better performance in

terms of efficiency and stability than the other three Krylov

subspace methods. The Krylov subspace method has also

been used in other aspects of nuclear engineering simula-

tion. For example, Liu et al. used the equivalent low-order

angular flux nonlinear finite difference method with right

preconditioned GMRES in a method of characteristics

transport calculation [13].

The water faucet problem was first proposed by Ranson

for the investigation of two-phase flow behavior [14] and

has been widely used in evaluating the performance of two-

phase flow numerical simulations. However, the analytical

solution has only considered the void fraction and liquid

phase velocity, and this has yielded limitations in terms of

validating the numerical simulation of the gas flow

behavior and pressure distribution that occur in water

faucet two-phase flow. Zou et al. obtained an analytical

solution for both liquid and gas using the water faucet

problem [15]. The liquid and gas pressures were assumed

to differ, and the analysis led to a new solution for the gas

velocity and pressure distribution, which could be benefi-

cial for the further verification of two-phase numerical

simulations that are based on the water faucet problem.

Nourgaliev et al. used a characteristics-based method for

a two-fluid model numerical solution [16]. The primary

step in this method was the separation of the conservative

and non-conservative parts in the governing equations. The

non-conservative part was implemented into the source

term, and the conservative part was treated using the

characteristics-based method. The water faucet problem

was used as a benchmark. Various aspects, such as the time

discretization, treatment of conservative terms, treatment

of non-conservative terms, and convergence of the

numerical solutions, were then evaluated. Gallouet et al.

conducted a numerical investigation of two-phase flow

behavior based on a two-fluid two-pressure model. The

convective, source, and diffusive terms were considered in

the governing equations [17]. The finite volume method

was used as the numerical solution method, and one-di-

mensional conditions were considered. Both the Rusanov

scheme and VFRoe-ncv scheme, which is an approximate

Godunov scheme, were used. Numerical tests, such as the

shock tube test, water faucet problem test, and sedimen-

tation test, were then conducted, including the VFRoe-ncv

scheme test, which was conducted using the water faucet

problem to obtain results including the air volume fraction

and water velocity. Morin et al. developed a Roe

scheme for the solution of a six-equation two-fluid model

[18], in which the water faucet problem was used for the

numerical experiments and validation. Fullmer et al. con-

ducted a numerical investigation of one-dimensional two-

phase flow by considering a higher-order finite difference

method [19]. Owing to the diffusion problem that results

from the first-order method, a higher-order method was

used and evaluated. The water faucet problem was again

used for benchmark purposes. Delchini et al. used RELAP-

7 to simulate the water faucet problem [20]. The simulation

of two-phase flow and heat transfer with RELAP-7 was

based on the two-pressure seven-equation model. RELAP-
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7 applies the all-Mach flow entropy viscosity method

(EVM) for numerical stabilization. The water faucet

problem was used as the benchmark to investigate both the

two-phase model and the numerical stabilization ability of

RELAP-7. Chen et al. conducted a numerical investigation

of the two-phase flow using a one-step coupled solution

method [21]. The water faucet problem and subcooled

boiling problem were used to validate the developed code,

and the effect of different nodes on the gas void fraction

was investigated with the water faucet problem as a

benchmark. In addition, a comparison of the numerical and

theoretical results in terms of the void fraction, liquid

velocity, and gas velocity was conducted, and the numer-

ical results were consistent with the theoretical results.

Owing to the complexity of two-phase flow behavior,

further evaluation of the performance of the Krylov sub-

space method in two-phase flow simulation is still neces-

sary. Therefore, it is important to evaluate the different

Krylov subspace methods that are used to simulate two-

phase flow behavior. The water faucet problem is selected

as the benchmark for these simulations because it is widely

used as a benchmark for the numerical simulation of two-

phase flow. The results of this study can be used as a

reference for the numerical simulation of one-dimensional

two-phase flow in terms of the selection of numerical

solvers.

2 Simulation methods

2.1 Governing equations

The governing equations that are used to simulate water

faucet behavior are the simplifications of RELAP5’s mass

and momentum conservation equations [22]. The terms

describing phase change, interfacial heat transfer, and

interfacial friction are ignored in tests associated with the

water faucet problem.

The gas mass conservation equation is expressed as:

o

ot
agqg
� �

þ o

ox
agqgug
� �

¼ 0: ð1Þ

The liquid mass conservation equation is expressed as:

o

ot
afqfð Þ þ o

ox
afqfufð Þ ¼ 0: ð2Þ

The gas momentum conservation equation is expressed

as:

agqg
oug
ot

þ 1

2
a
g
qg

oug
2

ox
¼ �ag

oP

ox
þ agqggx: ð3Þ

The liquid momentum conservation equation is expres-

sed as:

afqf
ouf
ot

þ 1

2
a
f
qf

ouf
2

ox
¼ �af

oP

ox
þ afqfgx: ð4Þ

2.2 Discretization methods

A fully implicit method was used for time discretization,

and the first-order space discretization method was coupled

with the staggered mesh method for space discretization.

Based on the analytical solution obtained by Zou et al. [15],

the direction of the gas velocity will be opposite to the

direction of the liquid velocity. Therefore, the developed

code should have the capacity to capture the opposite flow

directions of liquid and gas.

The gas mass conservation equation can be discretized

as follows:

(1) If ug;jþ1
2
[ 0

ag;jqg;j � ang;jq
n
g;j

Dt
þ
ag;jqg;jug;jþ1

2
� ag;j�1qg;j�1ug;j�1

2

Dx
¼ 0:

ð5Þ

(2) If ug;jþ1
2
� 0;

ag;jqg;j � ang;jq
n
g;j

Dt
þ
ag;jþ1qg;jþ1ug;jþ1

2
� ag;jqg;jug;j�1

2

Dx
¼ 0:

ð6Þ

The liquid mass conservation equation can be dis-

cretized as follows:

af;jqf;j � anf;jq
n
f;j

Dt
þ
af;jqf;juf;jþ1

2
� af;j�1qf;j�1uf;j�1

2

Dx
¼ 0: ð7Þ

The gas momentum conservation equation can be dis-

cretized as follows:

(1) If ug;jþ1
2
[ 0

agqg
� �

jþ1
2

ug;jþ1
2
� agqg
� �

jþ1
2

ug;jþ1
2

� �n

Dt

þ 1

2
agqg
� �

j

ug;jþ1

� �2 � ug;j
� �2

Dx

¼ � ag
� �

jþ1
2

Pjþ1 � Pj

Dx
þ agqg
� �

jþ1
2

gx: ð8Þ

As an example, agqg
� �

jþ1
2

can be expressed as

agqgð Þ
j
þ agqgð Þ

jþ1

2
.

(2) If ug;jþ1
2
� 0;
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agqg
� �

jþ1
2

ug;jþ1
2
� agqg
� �

jþ1
2

ug;jþ1
2

� �n

Dt

þ 1

2
agqg
� �

jþ1

ug;jþ1

� �2 � ug;j
� �2

Dx

¼ � ag
� �

jþ1
2

Pjþ1 � Pj

Dx
þ agqg
� �

jþ1
2

gx: ð9Þ

The liquid momentum conservation equation can be

discretized as follows:

afqfð Þjþ1
2
uf;jþ1

2
� afqfð Þjþ1

2
uf;jþ1

2

� �n

Dt

þ 1

2
afqfð Þj

uf;jþ1

� �2 � uf;j
� �2

Dx

¼ � afð Þjþ1
2

Pjþ1 � Pj

Dx
þ afqfð Þjþ1

2
gx: ð10Þ

2.3 Krylov subspace method [23, 24]

The Petrov–Galerkin condition can be applied to obtain

the solution for the linear system Ax ¼ b via the following

expression:

b� Axm ? Lm; ð11Þ

where xm is in the subspace x0 þKm with m dimensions,

and x0 is the initial guess. The method is considered to be a

Krylov subspace method when subspace Km is the Krylov

subspace.

Generally, there are two types of Krylov subspace

methods: one in which Lm ¼ Km, and the other where

Lm ¼ KmðAT ; r0Þ. Several different Krylov subspace

methods are used, of which GMRES, BICGSTAB, quasi-

minimal residual (QMR), TFQMR, conjugate gradient

squared (CGS), and biconjugate gradient (BICG) were

used in the simulation. However, when compared to direct

numerical solvers, the main disadvantage of iterative sol-

vers such as the Krylov subspace methods is their robust-

ness. The use of a preconditioner renders the Krylov

subspace method advantageous in terms of both efficiency

and robustness. Therefore, the incomplete LU factorization

(ILU) preconditioner is also investigated in this work. For

sparse matrix A, the ILU factorization process calculates a

sparse upper triangular matrix L and a sparse lower trian-

gular matrix U with certain constraints for application in

the residual matrix R = LU-A. The numerical program-

ming code was developed using MATLAB 2019, and the

numerical solvers used in this code were solvers that are

implemented in MATLAB 2019.

3 Simulation results analysis

The residual analysis, the simulation results of the liquid

and gas flow behavior in the water faucet, and the solution

time were obtained to analyze the numerical performance

of the different Krylov subspace methods with and without

an ILU preconditioner. The effects of the timestep and

node number were also noted during evaluation.

3.1 Residual analysis

Figure 1 shows the relative residuals for different Kry-

lov subspace methods using different node numbers with

and without the application of the ILU preconditioner. The

timestep was set to 1.0 9 10-3 s. The results indicate that

the convergence performance of the Krylov subspace

methods is much better with an ILU preconditioner than

without it. The various Krylov subspace methods demon-

strate differing performances when run without the ILU

preconditioner. The relative residual is much higher when

using CGS and BICG than it is with the other Krylov

subspace methods, which indicates that CGS and BICG

have a serious robustness issue when simulating the water

faucet problem. The relative residual was observed to reach

a level of approximately 1.0 9 10-10 under the GMRES,

which means that GMRES may perform well even without

the application of the ILU preconditioner. For cases in

which the ILU preconditioner was not used, the calculation

performances of TFQMR, QMR, and BICGSTAB were

similar, with better results than those obtained with CGS

and BICG, and worse than the calculation performance of

GMRES. The performance of the GMRES method was

quite different from that of the other methods when an ILU

preconditioner was used. This is because the other Krylov

subspace methods reached the required relative residual

after only a few iterations; however, GMRES could not

reach the required relative residual when the ILU precon-

ditioner was utilized. This is mainly because the results

were the same for two consecutive iterations, after which

GMRES stagnated. GMRES therefore appears to have

irregular or divergent performance under certain condi-

tions, and similar behavior has also been observed in other

studies [12]. CGS exhibited a better calculation perfor-

mance than the other Krylov subspace methods, regardless

of the node number. TFQMR and BICGSTAB demon-

strated similar calculation performances, as did QMR and

BICG; however, no significant difference was observed

among these methods. No significant effect on the calcu-

lation performance was associated with the node number

used with the different Krylov subspace methods.

Figure 2 shows the relative residual for different Krylov

subspace methods with and without the ILU preconditioner
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(a-1) Without ILU preconditioner (a-2) With ILU preconditioner

(a) Node number: 10

(b-1) Without ILU preconditioner (b-2) With ILU preconditioner

(b) Node number: 100

(c-1) Without ILU preconditioner (c-2) With ILU preconditioner

(c) Node number: 1000

Fig. 1 (Color online) Relative residual for different Krylov subspace methods with and without the application of an ILU preconditioner with

different node numbers
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(a-1) Without ILU preconditioner (a-2) With ILU preconditioner 

(a) Timestep: 1.0×10-2 s 

(b-1) Without ILU preconditioner (b-2) With ILU preconditioner 

(b) Timestep: 1.0×10-4 s 

(c-1) Without ILU preconditioner (c-2) With ILU preconditioner 

(c) Timestep: 1.0×10-5 s 

Fig. 2 (Color online) Relative residuals for the different Krylov subspace methods with and without the application of the ILU preconditioner at

different timesteps
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at different time steps. The convergence performance of

the Krylov subspace methods with an ILU preconditioner is

much better than that without an ILU preconditioner,

regardless of the time step investigated. The GMRES

generally has a better performance than the other Krylov

subspace methods without the application of the ILU pre-

conditioner in this study. The relative residual was

observed to reach 1.0 9 10-10 when the GMRES method

was used without the ILU preconditioner. The calculation

performances of CGS and BICG are much worse than those

of the other Krylov subspace methods, while TFQMR,

QMR, and BICGSTAB have similar calculation perfor-

mances. However, GMRES could not reach the required

relative residual with the ILU preconditioner, and the CGS

method showed better calculation performance than the

other Krylov subspace methods when ILU was used.

TFQMR, QMR, BICGSTAB, and BICG have similar cal-

culation performances. The timestep does not have a sig-

nificant effect on the calculation performance in terms of

the different types of Krylov subspace methods.

Figure 3 shows the error tolerance (Newton–Raphson

tolerance) for the first timestep using different Krylov

subspace methods with the ILU preconditioner and dif-

ferent node numbers. The time step was set at 1.0 9 10-3

s, the Newton–Raphson error tolerance was set at

1.0 9 10-12, the maximum iterations per timestep was set

to 1000, and the Krylov subspace method tolerance was set

at 1.0 9 10-12. The selected Newton–Raphson error tol-

erance setting was used to investigate the smallest error

tolerance that the developed code could reach under these

conditions. The error tolerance varies with the Newton–

Raphson iteration. As shown in the figure, the error toler-

ance in the Newton–Raphson iteration is mainly between

1.0 9 10-8 and 1.0 9 10-9 when the node number is 10,

mainly between 1.0 9 10-9 and 1.0 9 10-10 when the

node number is 100, and mainly between 1.0 9 10-9 and

1.0 9 10-10 when the node number is 1000. The error

tolerance could reach a low value in a few steps, regardless

of the Krylov subspace method used with the ILU pre-

conditioner. In addition, there is no significant difference in

the results obtained with the different Krylov subspace

methods in terms of the Newton–Raphson tolerance. This

is mainly because the low relative residual could be

reached using all the different Krylov subspace methods

when the ILU preconditioner was applied.

Figure 4 shows the iteration (Newton–Raphson itera-

tion) number for each time step during the simulation using

different Krylov subspace methods and the ILU precondi-

tioner. The time step was set at 1.0 9 10-3 s, the simula-

tion time was set at 0.1 s, the Newton–Raphson error

tolerance was set to 1.0 9 10-6, the maximum iterations

per timestep was set to 100, and the Krylov subspace

method tolerance was set to 1.0 9 10-6. The Newton–

Raphson iteration number is small in the different Krylov

subspace methods when the ILU preconditioner is applied.

Based on the simulation results, few Newton–Raphson

iterations are required to reach the setting tolerance. In

addition, the node number does not have a significant effect

on the calculation performance of the different Krylov

subspace methods examined. However, the number of

Newton–Raphson iterations reached 100 when the node

number is 100 under the BICG and BICGSTAB methods,

indicating that these methods have issues in terms of

convergence under some conditions. BICG has an irregular

convergence performance [20]. The restarted GMRES

method is used by BICGSTAB for the improvement of

BICG, but BICGSTAB may have a stagnation issue. This

may be the main reason for the convergence problems

observed when using BICG and BICGSTAB at 100 nodes.

Figure 5 shows the error tolerance (Newton–Raphson

iteration) at each time step during the simulation process

using different Krylov subspace methods with the ILU

preconditioner. The time step was set at 1.0 9 10-3 s, the

simulation time was set at 0.1 s, the Newton–Raphson error

tolerance was set to 1.0 9 10-6, the maximum iterations

per timestep was set at 100, and the Krylov subspace

method tolerance was set to 1.0 9 10-6. When the node

number is 10, all the Krylov subspace methods could reach

the set Newton–Raphson error tolerance requirement with

the ILU preconditioner. However, when the node number is

100, the BICG and BICGSTAB methods had an issue with

respect to the Newton–Raphson error tolerance, which

reaches approximately 5 around 80 timestep when using

the two methods. As shown in Fig. 4b, BICG and BICG-

STAB have convergence problems when the node number

is 100, which is probably a result of the convergence issues

that are inherent in BICG and BICGSTAB.

3.2 Simulation results

Figure 6 shows a schematic of the flow behavior in the

water faucet problem. A vertical pipe is initially filled with

both liquid and air. The inner part of the uniform column

part is filled with liquid at an initial velocity of 10.0 m/s.

Air at an initial velocity of 0.0 m/s surrounds the liquid.

The initial void fraction of the liquid is 0.8. At the top of

the pipe, the liquid inlet velocity is 10.0 m/s, and the air

inlet velocity is 0.0 m/s. The bottom of the pipe is left open

at a constant pressure. The liquid rapidly starts to fall under

gravity. The acceleration in the flow that results from

gravity leads to discontinuity at a particular location in the

falling process, as can be observed in Fig. 6, after which

the system eventually reaches a steady state. The theoret-

ical solutions for the liquid velocity and gas void fraction

were first proposed by Ranson [14]. Zou et al. extended
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(a-1) 1000 iterations                                                            (a-2) 50 iterations 

(a) Node number: 10 

(b-1) 1000 iterations     (b-2) 50 iterations

(b) Node number: 100

(c-1) 1000 iterations (c-2) 50 iterations

(c) Node number: 1000

Fig. 3 (Color online) The error tolerance (Newton–Raphson tolerance) for the first timestep for different Krylov subspace methods with

consideration of ILU preconditioner for different node numbers
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Ranson’s work and provided theoretical solutions for the

gas velocity and pressure distribution [15].

The discontinuity location can be expressed as

xd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2f;int þ 2gx

q
: ð12Þ

The liquid velocity can be expressed as

uf x; tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2f;int þ 2gx

q
if x� xd

uf;int þ gt otherwise

(

: ð13Þ

The gas velocity can be expressed as

ug x; tð Þ ¼
0 if x� xd

� 1� ag;int
ag;int

otherwise

8
<

:
: ð14Þ

The gas void fraction can be expressed as

ag x; tð Þ ¼
1�

1� ag;int
� �

ul;intffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2f;int þ 2gx

q if x� xd

ag;int otherwise

8
><

>:
: ð15Þ

The pressure distribution can be expressed as

p x; tð Þ ¼

poutlet �
qgg L� xð Þ

ag;int
þ 1

2
qg

1� ag;int
ag;int

gt

� �2

þqg
1� ag;int
ag;int

gt ul;int þ gt
� �

� qgg xd � xð Þ
if x� xd

poutlet �
qgg L� xð Þ

ag;int
otherwise

8
>>>>>>><

>>>>>>>:

ð16Þ

(a) 

(b) 

Fig. 4 (Color online) Iteration (Newton–Raphson iteration) number

at each timestep during the simulation using different Krylov

subspace methods with the ILU preconditioner. a Node number: 10;

b node number: 100

(a) 

(b) 

Fig. 5 (Color online) Error tolerance (Newton–Raphson iteration) at

each timestep during the simulation process using different Krylov

subspace methods with the ILU preconditioner. a Node number: 10;

b Node number: 100
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Figure 7 shows the flow behavior at 0.1 s for the dif-

ferent Krylov subspace methods with the ILU precondi-

tioner. The node number was set at 100, the time step was

set at 1.0 9 10-3 s, the simulation time was set to 0.1 s, the

Newton–Raphson error tolerance was set to 1.0 9 10-6,

the maximum iterations per timestep was set at 100, and

the Krylov subspace method tolerance was set to

1.0 9 10-6. Based on the simulation results, regardless of

the Krylov subspace method, the simulation results are

generally consistent with the analytical solution. The dis-

continuous behavior was reasonably captured by the sim-

ulation code. This is mainly because the application of the

ILU preconditioner means that the error tolerance (New-

ton–Raphson iteration) can reach a low value in most

cases, as shown in Fig. 5. Although the relative residual of

the GMRES with ILU could not reach 1.0 9 10-12 as

shown in Fig. 1, it could reach approximately 1.0 9 10-10,

which is less than the current tolerance setting used withFig. 6 Schematic of the flow behavior in the water faucet problem

[15]

(a) (b) 

(c) Gas void fraction (d) Pressure

Fig. 7 (Color online) Flow behavior at 0.1 s for the different Krylov subspace methods with the ILU preconditioner. a Liquid velocity; b gas

velocity; c gas void fraction; d pressure
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the Krylov subspace method, and it can therefore be con-

sidered able to capture the water faucet behavior based on

the simulation results.

For the liquid flow behavior, the inlet liquid velocity

was fixed at 10.0 m/s in the simulation settings. In the

analytical solution, the liquid velocity increases from 10.0

m/s to approximately 11.0 m/s as the liquid flows to a

position 1.0 m away from the inlet. The velocity of the

liquid thereafter remained the same. The liquid velocity

distribution obtained by the numerical simulation was

consistent with the analytical solution. The liquid void

fraction in the simulation domain decreases over time

before steady state is achieved, while the gas needs to flow

into the simulation domain to fill the space. Because the

gas velocity at the inlet position is set to 0.0 m/s, gas flows

into the simulation domain from the outlet position. In the

analytical solution, the gas velocity remained at 0.0 m/s

from the inlet position to a distance of approximately 1.0 m

and reached approximately - 4.0 m/s at distances greater

than approximately 1.0 m from the inlet. There is an

obvious discontinuity in the gas velocity distribution at

approximately 1.0 m. The gas velocity obtained by the

simulation changes smoothly from 0.0 m/s to approxi-

mately - 4.0 m/s at around 1.0 m from the inlet. These

simulation results are mainly due to numerical diffusion. In

the analytical solution, the gas void fraction increases from

0.2 at the inlet to approximately 0.27 at a position

approximately 1.0 m from the inlet. The gas void fraction is

0.2, and this remains the same at distances greater than 1.0

m. The maximum gas void fraction is approximately 0.27,

which occurs at the discontinuity. In the numerical simu-

lation, the gas void fraction is also 0.2 at distances greater

than 1.0 m. The maximum gas void fraction obtained by

the numerical simulation is between 0.24 and 0.25, which

is smaller than that found via analysis. There is also an

obvious discontinuity in the pressure distribution, which

lies approximately 1.0 m from the inlet. The pressure dis-

tribution along the distance obtained by numerical simu-

lation matches the analytical solution reasonably well.

Figure 8 shows the flow behavior at 0.1 s for different

Krylov subspace methods without the ILU preconditioner.

The node number was set to 100, the timestep was set at

1.0 9 10-3 s, and the simulation time was set to 0.1 s. The

Newton–Raphson error tolerance was set to 1.0 9 10-6,

the maximum iterations per timestep was set at 100, and

the Krylov subspace method tolerance was set to

1.0 9 10-6. Based on the simulation results, the developed

code was found to capture the liquid velocity and liquid

void fraction regardless of the Krylov subspace method

used. However, except for the GMRES method, all the

Krylov subspace methods have issues in capturing the gas

velocity and pressure distribution. This is mainly because

the liquid in the system is mainly driven by gravity, and the

pressure difference does not have a significant effect on the

flow behavior of the liquid. However, the gas velocity is

based on the conditions under which the liquid flows and

the pressure distribution. If the code cannot capture the

pressure distribution properly, then it also has problems in

terms of capturing the gas velocity. The GMRES could

capture the pressure distribution and gas velocity accu-

rately; this is mainly because it could also obtain a small

relative residual even without the ILU preconditioner, as

shown in Figs. 1 and 2. However, the other Krylov sub-

space methods used in this study could not reach a small

relative residual without the ILU preconditioner, as shown

in Figs. 1 and 2.

Figure 9 shows the flow behavior at 0.5 s for the dif-

ferent Krylov subspace methods with the ILU precondi-

tioner. The node number was set at 100, the timestep was

set at 1.0 9 10-3 s, the Newton–Raphson error tolerance

was set to 1.0 9 10-6, the maximum iterations per time-

step was set to 100, and the Krylov subspace method tol-

erance was set at 1.0 9 10-6. Based on the simulation

results, the velocity flow behavior of both liquid and gas

can be captured, regardless of the Krylov subspace method

used. Compared to the flow behavior at 0.2 s, the discon-

tinuous point propagates to approximately 6.0 m at 0.5 s. In

the analytical solution, the liquid velocity is approximately

15 m/s following a discontinuity after increasing from 10.0

m/s to approximately 15.0 m/s. The liquid velocity

obtained using the numerical solution matched that

obtained using the analytical solution. In the analytical

solution, the gas velocity is approximately - 20 m/s after

the discontinuity. The gas velocity distribution obtained by

numerical simulation therefore matches that found via the

analytical solution well, except around the point of dis-

continuity. The diffusion behavior caused by the numerical

method around the discontinuity can also be observed in

the gas velocity distribution. The analytical solution sug-

gests that the maximum gas void fraction occurs at the

point of discontinuity, with a value of approximately 0.45.

The maximum gas void fraction in the numerical simula-

tion is at around 5.0 m, which exceeds the discontinuous

point predicted by the analytical solution. The maximum

gas void fraction obtained by numerical simulation is less

than that predicted by the analytical solution, and this is

mainly caused by the numerical diffusion in the simulation;

however, errors may have occurred in the pressure distri-

bution captured before the discontinuous point. The main

reason for this is that the single-pressure model is used in

the simulation code. Different pressure conditions were

also considered for the liquid and gas in the analytical

solution.

Figure 10 shows the flow behavior at 1.2 s for the dif-

ferent Krylov subspace methods with the ILU precondi-

tioner. The node number was set at 100, and the timestep
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was set at 1.0 9 10-3 s. The Newton–Raphson error tol-

erance was set to 1.0 9 10-6, the maximum iterations per

timestep was set at 100, and the Krylov subspace method

tolerance was set to 1.0 9 10-6. Regardless of the Krylov

subspace method used, both the liquid and the gas velocity

flow behavior could be captured. The analytical solution

indicates that the liquid velocity increases from 10.0 m/s to

approximately 18.5 m/s along the distance traveled. There

is no discontinuity in the liquid velocity along the distance

in a steady state. The liquid velocity obtained by the

numerical simulation matches well with the analytical

solution, which gives a gas velocity of 0.0 m/s along the

distance. This is mainly because the gas void fraction does

not change over time, and gas injection was not necessary.

A gas velocity of approximately 0.0 m/s was also obtained

along the distance by numerical simulation. The maximum

absolute gas velocity is approximately 4.0 9 10-3 m/s,

which is very close to that obtained via the analytical

solution. The gas void fraction increases along the distance

from 0.2 to more than 0.55 in the analytical solution. The

gas void fraction obtained by the numerical simulation

matches the analytical solution well. The pressure increases

linearly along the distance in the analytical solution, with a

similar result obtained via numerical simulation. However,

there are differences between the results of the analytical

solution and the numerical simulation. The main reason for

this is that the two-pressure model was applied in the

analytical solution, whereas the single-pressure model was

applied in the numerical simulation.

3.3 Simulation time

Figure 11 shows the computational time taken by

GMRES with and without application of the ILU precon-

ditioner. The timestep was set at 1.0 9 10-3 s. The total

simulation time was 0.1 s. The Newton–Raphson error

tolerance was set to 1.0 9 10-6, the maximum iterations

per timestep was set at 100, and the Krylov subspace

method tolerance was set to 1.0 9 10-6. As shown in

Fig. 8, only the GMRES without the ILU preconditioner

(a) (b)

(c) (d) 

Fig. 8 (Color online) Flow behavior at 0.1 s for different Krylov subspace methods without the ILU preconditioner. a Liquid velocity; b gas

velocity; c gas void fraction; d pressure
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could sufficiently capture the pressure distribution and gas

velocity. Therefore, the GMRES method was selected for

the comparison of computational time with and without the

application of the ILU preconditioner. Based on the sim-

ulation results, there is a significant difference in the

computational time taken for cases with and without the

application of the ILU preconditioner, especially when the

node number is large. When the node number is less than

50, there is no significant difference between the two

conditions. However, increasing the number of nodes led to

an increase in the computational time. This is mainly

because without the ILU preconditioner, the GMRES sol-

ver requires a large number of iterations to reach or become

close to the set tolerance, while only few steps are required

to reach or become close to the setting tolerance when the

ILU preconditioner is used with the GMRES solver. In

addition, the computational time taken without the ILU

preconditioner has a nearly cubic relationship with the

node number. The computational time for the GMRES with

the ILU preconditioner is therefore much smaller than that

taken when the ILU preconditioner was not applied, for

which a large number of nodes is required.

Figure 12 shows the computational time taken for dif-

ferent Krylov subspace methods with the ILU precondi-

tioner. The time step was set at 1.0 9 10-3 s, and the total

simulation time was set at 0.1 s. The Newton–Raphson

error tolerance was set as 1.0 9 10-6, the maximum iter-

ations per timestep was set to 100, and the Krylov subspace

method tolerance was set to 1.0 9 10-6. The node num-

bers were set at 25, 50, 100, 200, and 300 for the different

tests. The CPU calculation time taken for cases with 25

nodes was similar to that with 50 nodes. The CPU calcu-

lation time increased almost linearly when the number of

nodes increased from 50 to 200. Based on the simulation

time, there is no significant difference in the computational

time taken by the different Krylov subspace methods when

the ILU preconditioner was used. This is mainly because

the Krylov subspace methods did not require many itera-

tions to reach or approach the required tolerance when the

ILU preconditioner was used, as shown in Figs. 1 and 2.

(a) (b) 

(c) (d) 

Fig. 9 (Color online) Flow behavior at 0.5 s for different Krylov subspace methods with ILU preconditioner. a Liquid velocity; b gas velocity;

c gas void fraction; d pressure
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(a) (b) 

Fig. 10 (Color online) Flow behavior at 1.2 s using different Krylov subspace methods with the ILU preconditioner. a Liquid velocity; b gas

velocity; c gas void fraction; d pressure

Fig. 11 (Color online) Computational time for GMRES with and

without application of the ILU preconditioner
Fig. 12 (Color online) Computational time taken by the different

Krylov subspace methods under application of ILU preconditioner
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CGS and BICGSTAB are slightly better than other Krylov

subspace methods in terms of efficiency.

Table 1 summarizes the simulated performances of the

six Krylov subspace methods in terms of relative residuals,

simulation results, and computational efficiency. The

symbol ‘ ? ’ in the table indicates that the simulated

performance is acceptable for the relative residual and the

results of the water faucet problem simulation. The symbol

‘ ? ’ in the computational efficiency column indicates the

relative efficiency performance. For the relative residual,

all six Krylov subspace methods with the ILU precondi-

tioner showed a relatively good performance, whereas only

GMRES could provide a relatively good simulation per-

formance without the ILU preconditioner. Although the

relative residual obtained with GMRES could not reach the

level of 1.0 9 10-12, it could reach an acceptable level for

the water faucet problem simulation. Regarding the results

of the water faucet problem simulation, all six Krylov

subspace methods were found able to capture the liquid

velocity and gas void fraction with an ILU preconditioner,

whereas only GMRES could capture the gas velocity and

pressure without an ILU preconditioner. Regarding the

computational efficiency, the time cost of using GMRES

without an ILU preconditioner was much greater than that

using GMRES with an ILU preconditioner. All six Krylov

subspace methods demonstrated a similar performance

with an ILU preconditioner in terms of computational

efficiency.

4 Summary and future work.

In this study, a one-dimensional two-phase flow four-

equation model was developed to simulate the water faucet

problem. An evaluation of different Krylov subspace

methods with and without the application of an ILU

preconditioner was conducted, and the simulation results

were obtained and analyzed.

1. The convergence performance of Krylov subspace

methods with an ILU preconditioner is much better

than that of the Krylov subspace methods without a

preconditioner. The analysis of the relative residuals

for different Krylov subspace methods was performed

with and without the application of the ILU precon-

ditioner; with different node numbers; and the relative

residual for different Krylov subspace methods with

and without consideration of the ILU preconditioner at

different time steps. Based on the analysis results,

GMRES was found to have better calculation perfor-

mance than the other Krylov subspace methods when

the ILU preconditioner was not applied. The CGS

method had a better calculation performance than the

other Krylov subspace methods when the ILU precon-

ditioner was used, but there was no significant

difference among the Krylov subspace methods.

2. Based on the simulation results and comparison with

the analytical solution, the Krylov subspace methods

used in this study could capture the water faucet

behavior in terms of liquid velocity, gas velocity, gas

void fraction, and pressure distribution when the ILU

preconditioner was applied. Differences between the

analytical solution and numerical simulation were

observed in terms of predicating the pressure distribu-

tion. This is mainly because the single-pressure model

was used in the numerical simulation. All the Krylov

subspace methods except GMRES could capture the

liquid velocity and gas void fraction without the ILU

preconditioner; however, they could not capture the

behavior in terms of gas velocity and pressure

Table 1 Simulated performances of different Krylov subspace methods

Relative residual Water faucet problem simulation results Computational efficiency

Liquid velocity Gas velocity Gas void fraction Pressure

GMRES With ILU 1 1 1 1 1 1

Without ILU 1 1 1 1 1 2

TFQMR With ILU 1 1 1 1 1 1

Without ILU 2 1 2 1 2 N/A

QMR With ILU 1 1 1 1 1 1

Without ILU 2 1 2 1 2 N/A

CGS With ILU 1 1 1 1 1 1

Without ILU 2 1 2 1 2 N/A

BICGSTAB With ILU 1 1 1 1 1 1

Without ILU 2 1 2 1 2 N/A

BICG With ILU 1 1 1 1 1 1

Without ILU 2 1 2 1 2 N/A
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distribution. GMRES could capture both the gas

velocity and the pressure distribution without the need

for an ILU preconditioner.

3. The computational time taken by GMRES with the

ILU preconditioner was much less than that taken

when the ILU preconditioner was not applied. There

was no significant difference in the computational time

taken by the different Krylov subspace methods with

the ILU preconditioner. The CPU calculation times

taken by CGS and BICGSTAB were slightly shorter

than the CPU calculation time taken under the other

Krylov subspace methods.

In the future, evaluating the Krylov subspace methods

with the two-pressure model and the energy conservation

equations in the simulation of two-phase flow and heat

transfer behavior would be beneficial to better understand

their application in terms of performance.
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