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Abstract It is of particular interest to investigate nuclear

fusion reactions generated by high-intensity lasers in

plasma environments that are similar to real astrophysical

conditions. We have experimentally investigated
2Hðd; pÞ3

H, one of the most crucial reactions in big bang

nucleosynthesis models, at the Shenguang-II laser facility.

In this work, we present a new calibration of CR-39 solid-

state track detectors, which are widely employed as the

main diagnostics in this type of fusion reaction experiment.

We measure the dependence of the track diameter on the

proton energy. It is found that the track diameters of pro-

tons with different energies are likely to be identical. We

propose that in this case, the energy of the reaction prod-

ucts can be obtained by considering both the diameters and

gray levels of these tracks. The present results would be

very helpful for analyzing the 2Hðd; pÞ3
H reaction products

recorded with the same batch of CR-39 solid-state track

detectors.

Keywords Big bang nucleosynthesis � Laser-driven

nuclear reactions � CR-39 detectors � Gray levels

1 Introduction

Nuclear fusion reactions are the most crucial reactions in

nuclear astrophysics because they are responsible not only

for powering stars but also for the synthesis of the elements

in the universe [1, 2]. The 2Hðd; pÞ3
H fusion reaction plays

a key role in the design of future fusion power plants and in

the understanding of the primordial abundances in big bang

nucleosynthesis models [3]. Therefore, this reaction has

been studied using accelerators in the past several decades

(see [4] and references therein). It is of particular interest to

investigate reactions of this type when they are generated

by high-intensity lasers in plasma environments that are

similar to real astrophysical conditions. In recent years,

with the rapid development of high-intensity laser tech-

nologies, it has become possible to produce this type of

plasma environment in the laboratory [5–9].

Recently, we have performed experimental investiga-

tions of the 2Hðd; pÞ3
H reaction using laser-driven counter-

streaming collisionless plasmas at the Shenguang-II laser

facility at the Shanghai Institute of Optics and Fine

Mechanics of the Chinese Academy of Sciences. In these

measurements, difficulties arise in the identification and

quantification of the reaction products (such as electro-

magnetic pulses), which can interfere with electronic

devices. To date, considerable effort has been made to
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develop detectors and investigate their performance for the

study of laser-driven nuclear reactions, for example, the

CR-39 and 4H-SiC detectors [10, 11]. We used CR-39

solid-state track detectors to record the energy and quantity

of protons generated by the 2Hðd; pÞ3
H reaction. The CR-

39 solid-state track detector [12, 13] is an ideal ion detector

because it is sensitive mainly to ions but is insensitive to

backgrounds such as electrons and photons [14]. When the

ion energy is higher than 100 keV, the efficiency of the

CR-39 solid-state track detector is nearly 100%. The

energy threshold of CR-39 solid-state track detectors could

be approximately 20 keV [14–16]. The performance of

these detectors typically varies from batch to batch even

when they are produced in the same factory [17]. Thus, one

must calibrate each batch of CR-39 solid-state track

detectors with monoenergetic protons like those used to

study the 2Hðd; pÞ3
H fusion reaction. There are several

requirements for the calibration of CR-39 solid-state track

detectors. (1) It is necessary to avoid long-term exposure to

air and ultraviolet radiation. (2) Because the particle track

should be clearly identified, the beam current on the

detectors needs to be less than 105 cm�2. (3) In the cali-

bration experiment, the beam of particles recorded by CR-

39 solid-state track detectors should be monochromatic;

because a proton beam with a large energy divergence is

equivalent to a combination of protons of various energies,

a detector calibrated by this method cannot accurately

indicate the energy characteristics and track parameters of

the detector. (4) In a single energy calibration experiment,

multiple CR-39 solid-state track detectors need to be irra-

diated. There are several methods of irradiating CR-39

solid-state detectors with a proton beam produced by a

traditional accelerator [14, 18–22] or a laser accelerator

[23]. The Rutherford backscattering method [18, 19] and

nuclear reaction method [20] are typical approaches using a

traditional accelerator.

These pioneering results demonstrated that there is not a

one-to-one correspondence between the proton energy and

the track diameter in the energy region [14, 18, 19, 22, 23].

Consequently, there is an uncertainty when different proton

energies are distinguished using their track diameters.

Therefore, to analyze the 2Hðd; pÞ3
H reaction products

recorded with a single batch of CR-39 detectors, research

on methods of identifying the particle information is

desirable.

In this work, we used a monoenergetic proton beam to

irradiate a CR-39 detector, measured the dependence of the

track diameter on the proton energy, and demonstrated a

method of distinguishing different energies by considering

both the track diameters and their gray levels. Note that in

the laser-driven 2Hðd; pÞ3
H experiment, the energies of the

incident deuterons are below 100 keV, and those of the

outgoing protons and tritons are approximately 3 and 1

MeV, respectively. To stop deuterons and tritons, the CR-

39 slices were coated with a 30–40-micron aluminum film.

The proton energies were therefore reduced to approxi-

mately 2 MeV after the Al film. Thus, we used proton

beams with energies ranging from 0.3 to 2.5 MeV for the

calibrations.

2 Experiment

Proton beams with an intensity of approximately 20 pA

and energies ranging from 0.3 to 2.5 MeV in 0.2 MeV steps

were delivered by the GIC4117 tandem accelerator at

Beijing Normal University. A schematic layout of the

experimental setup is shown in Fig. 1. The protons are

vertically incident onto the CR-39 detectors in the cali-

bration because the CR-39 detectors are placed perpen-

dicular to the direction of outgoing products in the laser-

driven 2Hðd; pÞ3
H reaction experiment. The proton beam

reaches the CR-39 detector through an aperture with a

diameter of 1 cm and a slit with a width of 0.439 mm. CR-

39 solid-state track detectors (Fukuvi Chemical Industry,

Tokyo, Japan) are attached to a large rotating plate in a

circular arrangement. The geometrical dimensions of each

CR-39 solid-state track detector slice are

10 mm � 10 mm � 0:8 mm. In each measurement, the

controllable target plate was rotated only once. We mea-

sured the time at which the laser passed through two

adjacent holes using a He–Ne laser. The irradiation time on

each CR-39 detector was deduced to be approximately 12.5

ms, as shown in Fig. 2. The proton irradiation of a CR-39

solid-state track detector can be estimated as

N � S2I

S1Q
t; ð1Þ

where I is the current connected to the slit, t is the time of

the CR-39 solid-state track detector passing through the

A

Slit

Aperture

CR-39

Proton beam

ammeter

Fig. 1 (Color online) Layout of experimental setup. The aperture has

a diameter of 1 cm, and the slit has a width of 0.439 mm
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slit, Q is the charge of a proton, S1 is the area of the

aperture, and S2 is the area of the slit. The proton number N

per unit area of a CR-39 slice is approximately 5 � 104,

according to Eq. 1.

The CR-39 detectors should be chemically etched in an

aqueous solution of NaOH or KOH at an appropriate

concentration and temperature. In this experiment, the CR-

39 solid-state track detectors were etched in a 6.5-mol L�1

NaOH solution and kept at a constant temperature of

70 � 0:1 �C. After etching, we processed the CR-39

detectors in six steps, as shown in Fig. 3. Step 1: Wash the

CR-39 detector in 700 mL of deionized water for 5 min to

stop etching. Step 2: Wash the detector in 500 mL of

deionized water for 5 min to clean it. Step 3: Wash the

detector in 250 mL of dilute nitric acid (10%) for 5 min to

neutralize alkaline substances. Step 4: Soak the detector in

600 mL of deionized water for 5 min. Step 5: Wash the

detector in absolute ethanol (analytical purity) for 1 min.

Step 6: Place it in a Petri dish and place the detector and

dish in a self-sealing bag.

After an appropriate chemical etching treatment, the

damage trail (called a latent track) induced by the ionized

particles in the CR-39 solid-state track detector can be

visualized under an optical microscope. In this work, the

track diameters of protons were measured using an auto-

matic track image analyzer. First, the images from an

optical microscope were acquired using a CCD camera.

Then, the analog pictures were converted to digital ones by

an image acquisition card. Finally, the track diameters were

measured using image processing.

3 Experimental results

In Fig. 4, we plot the dependence of the proton track

diameter on the proton energy (0.3–2.5 MeV) after the

detector was etched at 70 �C in a 6.5-mol L�1 solution of

NaOH for various etching times. An etching time of � 20 h

was suggested in our previous work [24]. The dotted lines

in Fig. 4 are drawn as guides for the eyes. For the cali-

bration curves corresponding to etching times longer than

2.5 cm ET2000

He-Ne laser

30.69ms

(a)

(b)

Fig. 2 (Color online) a This irradiation duration was measured using

a He–Ne laser, a photodiode (ET2000), and an oscilloscope. b The

time interval between two holes 2.5 cm apart is approximately 30.69

ms. The irradiation time on each CR-39 detector was deduced to be

approximately 12.5 ms
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deionized

water rinsing

500 ml 
deionized

water rinsing

250 ml dilute nitric
acid(10%)

600 ml deionized 
water rinsing

Anhydrous 
ethanol

(analytical grade)
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Fig. 3 (Color online) Post-processing of the CR-39 solid-state track

detector

Proton energy (MeV)

Tr
ac

k 
D

ia
m

et
er

s (
μm

)

0

5

10

15

20

25

30

0.2 0.7 1.2 1.7 2.2

4 h
8 h
12 h
16 h
20 h

Fig. 4 (Color online) Track diameter versus proton energy
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or equal to 8 h in Fig. 4, two proton energy values corre-

spond to the same track diameter. Consequently, the energy

cannot be determined using only the diameter. Fortunately,

as shown in Fig. 5, the tracks for higher-energy protons are

much darker than those for lower-energy protons. Thus,

one can distinguish the proton energies by the gray levels

of their tracks, even if the track diameters are identical.

It should also be mentioned that the gray level along

each track varies, and its distribution is not regular. This

fact reflects the complex structure of the track, which

makes the digitization of gray levels at high precision

very difficult. Thus, we combined the quantitative anal-

ysis of the track diameters and the qualitative analysis of

the gray levels to study the incident ions, which was

proved to be an effective method of proton energy iden-

tification (Figs. 4, 5).

4 Summary and conclusion

In summary, we present new calibration results for CR-

39 solid-state track detectors, which are widely employed

as the main diagnostics in fusion reaction experiments and

ion acceleration by superintense lasers, because they are

sensitive mainly to ions but insensitive to backgrounds

such as electrons and photons. We use a slit and a rotating

plate to reduce the beam intensity. Using this method, we

measure the dependence of the track diameter on the proton

energy. The results suggest that it is difficult to determine

the proton energy using only the track diameter. In this

case, the energy of the reaction products can be obtained by

combining a quantitative analysis of the track diameters

and a qualitative analysis of the gray levels. The present

results can be very helpful for analyzing the 2Hðd; pÞ3
H

reaction products recorded with the same batch of CR-39

solid-state track detectors.
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