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Abstract Fractional stochastic kinetics equations have

proven to be valuable tools for the point reactor kinetics

model, where the nuclear reactions are not fully described

by deterministic relations. A fractional stochastic model for

the point kinetics system with multi-group of precursors,

including the effect of temperature feedback, has been

developed and analyzed. A major mathematical and

inflexible scheme to the point kinetics model is obtained by

merging the fractional and stochastic technique. A novel

split-step method including mathematical tools of the

Laplace transforms, Mittage–Leffler function, eigenvalues

of the coefficient matrix, and its corresponding eigenvec-

tors have been used for the fractional stochastic matrix

differential equation. The validity of the proposed tech-

nique has been demonstrated via calculations of the mean

and standard deviation of neutrons and precursor popula-

tions for various reactivities: step, ramp, sinusoidal, and

temperature reactivity feedback. The results of the pro-

posed method agree well with the conventional one of the

deterministic point kinetics equations.

Keywords Itô stochastic point kinetics equations �
Temperature feedback effects � Wiener process � Fractional
calculus � Mittage–Leffler function

1 Introduction

The dynamical processes described by the linear or

nonlinear point kinetics equations are random processes in

nature, that is, due to the neutron population and precursor

concentrations of delayed neutrons varying randomly with

time. At the levels of high power, the stochastic manner is

imperceptible, while at low-power levels, for example, at

the start-up of reactor operation, random fluctuation in the

neutron population density and neutron precursor concen-

trations can be useful. The behavior variations of neutron

population and precursor concentrations for nuclear reac-

tors have been described by several innovators through

employing stochastic models. Hayes and Allen [1] are the

first authors who derived the stochastic model of the linear

point reactor kinetics equations. They introduced a sim-

plified stochastic model based on the Itô stochastic differ-

ential equations. The numerical results of this model using

stochastic piecewise constant approximation (SPCA) have

been compared with the Monte Carlo (MC) calculations

and the experimental measurements [2]. Ha and Kim [3, 4]

have presented the stochastic space-dependent kinetics

model (SSKM) to solve the one-dimensional monoener-

getic space-time reactor kinetics. In 2012, Ray [5] devel-

oped Taylor 1.5 strong order methods and the Euler–

Maruyama to solve the stochastic point kinetics equations

with step reactivity, while in 2013, Ray and Patra [6]

presented the same techniques with sinusoidal reactivity.

The stochastic partial differential equation and stochastic
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difference equations have been presented by Ref. [7] for

neutron transport equation. Furthermore, the power dou-

bling time for a subcritical reactor is identified through the

point kinetics system by Allen as a stochastic first-passage

time problem [8]. In 2013, Ray and Patra [9] were the first

authors who presented a numerical solution of fractional

stochastic neutron point kinetic equations. Ayyoubzadeh

and Vosoughi [10] simplified the system of Itô stochastic

differential equations via alternative derivation of the

stochastic differential equations. In 2016, Nahla and Edress

[11] utilized the analytical exponential model (AEM) for

the simplest formula of the stochastic point reactor kinetics

system with various reactivities. They also proposed an

efficient stochastic model (ESM) for the point kinetics

model in Ref. [12]. da Silva et al. [13] presented a solution

for the stochastic neutron point kinetics model. In 2017,

Nahla [14] developed the analytical exponential technique

(AET) to solve a stochastic nonlinear system of the point

reactor kinetics equations with Newtonian temperature

feedback reactivity. Finally, Singh and Ray [15] presented

a comparison of two split-step methods for the numerical

simulation of stochastic point kinetics equations in the

presence of Newtonian temperature feedback effects.

The fundamental objective of this work is speculation of

the stochastic point kinetics system to a fractional

stochastic point kinetics system including multi-group of

the precursor concentration. To overcome the difficulty

arising from the merging of the fractional and stochastic

techniques, a developed mathematical technique is pre-

sented for solving the equation in the matrix form of the

proposed fractional stochastic model. This technique is

based on split-step technique, Laplace transforms, the

Mittage–Leffler function, eigenvalues of the coefficient

matrix, and its corresponding eigenvectors. The proposed

method is applied to the fractional stochastic point kinetics

system with various reactivities and different fractional

orders.

The paper is sorted out as follows: The preliminaries of

the stochastic model, as well as the definitions of the

Wiener process and fractional calculus, are introduced in

Sect. 2. The solution of the fractional stochastic point

kinetics equations with multi-group of a delayed precursor

is derived in Sect. 3. The computational numerical results

of the proposed system are discussed and compared with

various stochastic techniques in Sect. 4. General conclu-

sions including future work are presented in Sect. 5.

2 Preliminaries

In the following subsections, preliminaries of the Itô

stochastic model, Wiener process, and fractional calculus

are introduced briefly.

2.1 Itô stochastic model

Let us consider the following Itô stochastic differential

model: [16]

dXðtÞ ¼ gðt;XðtÞÞdt þ f ðt;XðtÞÞdWðtÞ; ð1Þ

where g : Rþ � Rm �! Rm and f : Rþ � Rm �! Rm�m

are locally bounded and measurable functions and WðtÞ is
an m-dimensional Wiener process which is defined as the

diffusion term.

The general solution of Eq. (1) can be written as:

XðtÞ ¼ Xð0Þ þ
Z t

0

gðu;XðuÞÞdu

þ
Z t

0

f ðu;XðuÞÞdWðuÞ:
ð2Þ

Here, the integral
R t
0
gðu;XðuÞÞdu is typically the Rie-

mann–Lebesgue integral, while the integralR t
0
f ðu;XðuÞÞdWðuÞ is considered as an Itô integral. Gen-

erally, the analytical solution of the multi-dimensional

Eq. (2) to a great or significant extent is not possible, and

numerical techniques are robustly utilized.

2.2 Wiener process

Recall that the standard Wiener process is a continuous-

time stochastic process which is also called the standard

Brownian motion. The Wiener process W(t) over [0, T] is a

random variable, W(t), that depends on a continuous time,

t, and is characterized by three conditions as follows [17]:

1. WðtÞ ¼ 0 for t ¼ 0

2. W(t) has independent increments with WðtÞ �
WðsÞ�

ffiffiffiffiffiffiffiffiffiffi
t � s

p
Nð0; 1Þ for s 2 ½0; t� , where Nð0; 1Þ

is the normal distribution with zero mean and unit

variance.

3. For 0� s1\t1\s2\t2 � T , the increments Wðt1Þ �
Wðs1Þ and Wðt2Þ �Wðs2Þ are independent random

variables.

For numerical computational object, it is helpful to assume

the discretized Brownian motion, where W(t) is specialized

at discrete values, t. Accordingly, for some positive integer,

N, consider h ¼ T=N and let Wi denote WðtiÞ with ti ¼ ih.

The first condition states that W0 ¼ 0 with the probability

equal to one and the other conditions state that

Wi ¼ Wi�1 þ dWi; i ¼ 1; 2; . . .;N, where each dWi is an

independent random variable of the form
ffiffiffi
h

p
Nð0; 1Þ.

2.3 Fractional calculus

The Riemann–Liouville fractional integral and Caputo

derivative are defined, respectively, as follows:
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Definition 1 [18] Let g(t) be a continues function, a > 0

and t 2 R. The Riemann–Liouville integral can be defined

as:

Iax gðxÞ ¼
1

CðaÞ

Z x

0

ðx� tÞa�1
gðtÞdt; ð3Þ

where CðaÞ is the gamma function of the fractional order.

Definition 2 [19] Let n be an integer number, where n�
1\a\n and x[ 0. The Caputo fractional derivative of

order a for a function g(x) is defined as

Da
xgðxÞ ¼

1

Cðn� aÞ

Z x

0

ðx� tÞn�a�1
gðnÞðtÞdt; ð4Þ

where gðnÞðtÞ ¼ ongðtÞ
otn

.

The relation between the Caputo fractional derivative

[20] and the Riemann–Liouville fractional integral is

introduced in the following formula:

IaxD
a
xgðxÞ ¼ gðxÞ �

Xn�1

r¼0

gðrÞð0þÞ
xr

r!
; n� 1\a� n: ð5Þ

3 Developed mathematical technique

The fractional stochastic model of the point reactor

kinetics equation can be written as: [1, 2, 21, 22]

Da
t jPðtÞi ¼ AjPðtÞi þ jQi þ B

1
2DtjWðtÞi; ð6Þ

where

jPðtÞi ¼

nðtÞ
c1ðtÞ
c2ðtÞ
..
.

cIðtÞ

0
BBBBBBB@

1
CCCCCCCA
;

A ¼

q� b
K

k1 k2 � � � kI

b1
K

�k1 0 � � � 0

b2
K

0 �k2 � � � 0

..

. ..
. . .

. . .
. ..

.

bI
K

0 � � � 0 �kI

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

;

jQi ¼

q

0

0

..

.

0

0
BBBBBB@

1
CCCCCCA
;

ð7Þ

t is the time, n(t) is the neutron population, q is the total

reactivity, ciðtÞ is the i-group of delayed precursor

concentration, ki is the decay constant of i-group of

delayed neutrons, bi is the fraction of i-group delayed

neutrons, b ¼
PI
i¼1

bi is the total fraction of delayed neu-

trons, I is the total number of delayed neutron groups, K is

the prompt neutron generation time, q is the external source

of neutrons,

jWðtÞi ¼

W1ðtÞ
W2ðtÞ
W3ðtÞ

..

.

WIþ1ðtÞ

0
BBBBBBB@

1
CCCCCCCA
;

B ¼

qþ b
K

� �
n�

PI
i¼1

kici þ q � b1
K
nþ k1c1 � b2

K
nþ k2c2 � � � � bI

K
nþ kIcI

� b1
K
nþ k1c1

b1
K
n� k1c1 0 � � � 0

� b2
K
nþ k2c2 0

b2
K
n� k2c2 � � � 0

..

. ..
. . .

. . .
. ..

.

� bI
K
nþ kIcI 0 � � � 0

bI
K
n� kIcI

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

;

ð8Þ

and jDWðtÞi ¼
ffiffiffi
h

p
jgi such that W1ðtÞ;W2ðtÞ; . . .;WIþ1ðtÞ

are the Wiener processes [5, 17].

Notice that the initial condition can be determined as

nð0Þ ¼ n0,
dnðtÞ
dt

jt¼0 ¼ 0, and
dciðtÞ
dt

jt¼0 ¼ 0; i ¼ 1; 2; . . .; I.

This means that

jPð0Þi ¼

n0
b1n0
Kk1
b2n0
Kk2

..

.

bIn0
KkI

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

: ð9Þ

Of course, when the variance matrix B ¼ 0 and the frac-

tional derivative order a ¼ 1, Eq. (6) is reduced to the

standard point reactor kinetics model.

In what follows, we aim to solve the fractional

stochastic differential Eq. (6). The technique of split-step

was utilized, that is, Eq. (6) is separated into deterministic

and stochastic parts, followed by solving each of them

separately. Applying the Laplace transformation on the

deterministic part, i.e., consider B ¼ 0, of Eq. (6) is as

follows [23–25]:

sajPðsÞi � sa�1j�Pð0Þi � AjPðsÞi ¼ 1

s
jQi; ð10Þ

where jPðsÞi ¼ L½j�PðtÞi�, j�PðtÞi is the solution of the

deterministic part for Eq. (6). Consequently, we get:

123

Developed mathematical technique for fractional stochastic point kinetics model in nuclear... Page 3 of 17 132



jPðsÞi ¼ sa�1½saI � A��1j�Pð0Þi þ 1

s
½saI � A��1jQi:

ð11Þ

Using the inverse Laplace transformation, we have:

j�PðtÞi ¼ Ea;1ðAtaÞj�Pð0Þi þ
Z t

0

ðt � sÞa�1
Ea;aðAðt � sÞaÞdsjQi:

ð12Þ

Let us introduce the parameter z ¼ t � s into Eq. (12) to

have:

j�PðtÞi ¼ Ea;1ðAtaÞj�Pð0Þi þ
Z t

0

za�1Ea;aðAzaÞdzjQi: ð13Þ

Using the integration property of the Mittage–Leffler

function which is:
Z t

0

zb�1Ea;bðAzaÞdz ¼ tbEa;bþ1ðAtaÞ; ð14Þ

for b[ 0, then Eq. (13) reads as follows:

j�PðtÞi ¼ Ea;1ðAtaÞj�Pð0Þi þ taEa;aþ1ðAtaÞjQi: ð15Þ

Equation (15) introduces the general solution of the frac-

tional stochastic point reactor kinetics equations, which

depends on the stiff coefficient matrix A. To overcome the

stiffness of this matrix, the coefficient matrix A was

changed by its eigenvalues, xj [26–28], and the corre-

sponding eigenvectors, jVii, of the matrix A [29–32].

Furthermore, over a small time interval with step size h, the

matrices B and A are considered constant over the specified

time interval ½tm; tmþ1� where tmþ1 ¼ tm þ h and

m ¼ 0; 1; 2; . . .;M � 1. As a result of this substitution, the

Mittage–Leffler function can be written as:

Ea;bðAzaÞ ¼
XI
j¼0

Ea;bðxjz
aÞjVjihUjj; ð16Þ

where the coefficient matrix A satisfies the following

property in bra–ket space [33]

AjVji ¼ xjjVji; hUjjAT ¼ hUjjxj; ð17Þ

and

hUljVji ¼ dl;j ¼
1; l ¼ j

0; l 6¼ j

�
: ð18Þ

The ket eigenvector, jVji, can be written by the following

analytical form [33]

jVji ¼ rj

1
b1

Kðxj þ k1Þ
b2

Kðxj þ k2Þ
..
.

bI
Kðxj þ kIÞ

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

; ð19Þ

and the bra eigenvector, hUjj, is

hUjj ¼ rj 1
k1

ðxj þ k1Þ
k2

ðxj þ k2Þ
� � � kI

ðxj þ kIÞ

� �
:

ð20Þ

From the normalization hUjjVji ¼ 1, we can deduce:

rj ¼ 1þ
XI
i¼1

biki
Kðxj þ kiÞ2

 !�1
2

; 8j ¼ 0; 1; 2; . . .; I:

ð21Þ

After introducing Eq. (16) into Eq. (15), we get:

j�Pðtmþ1Þi ¼
XI
j¼0

½Ea;1ðxjh
aÞjVjihUjj�PðtmÞi

þ haEa;aþ1ðxjh
aÞjVjihUjjjQi:

ð22Þ

The obtained results, j�Pðtmþ1Þi, from Eq. (22), were used to

evaluate the variance matrix �Bðtmþ1Þ. Furthermore,

according to the split-step method, the general solution of

Eq. (6) is given by:

jPðtmþ1Þi ¼ j�Pðtmþ1Þi þ
ffiffiffi
h

p
�B

1
2ðtmþ1Þjgi; ð23Þ

where jDWðtÞi ¼
ffiffiffi
h

p
jgi.

Equation (23) represents the general solution of the

fractional stochastic point kinetics model with a multi-

group of delayed precursor concentration.

4 Computational results

In order to affirm the exactness and validity of the

proposed technique over the traditional methods, the

developed mathematical technique (DMT) for the frac-

tional stochastic point kinetics model with a multi-group of

delayed precursor concentration is tested through Matlab

code. The mean and standard deviation of the neutron

populations and precursor concentrations in different cases

of reactivities, step, ramp, sinusoidal, and also in the

presence of temperature feedback, are calculated. The

results of the proposed method are compared to five
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Table 1 Mean and standard

deviation of the neutron

population and the sum of the

precursor population for step

reactivity

Method Step size a E[n(t)] r½nðtÞ�
E
P6
i¼1

ciðtÞ
� �

r
P6
i¼1

ciðtÞ
� �

q ¼ 0:007, t ¼ 0:001

MC 1.0 135.67 93.376 4.464�105 7.8073

SPCA 1.0 134.55 91.242 4.464�105 19.444

EM 1.0 139.57 92.042 4.463�105 6.071

T1.5SO 1.0 139.57 92.047 4.463�105 18.337

AEM h ¼ 0:00001 1.0 134.54 91.234 4.464�105 19.235

ESM h ¼ 0:00001 1.0 134.96 6.8527 4.464�105 2.529

DPKM h ¼ 0:000025 1.0 135.0 4.464�105

DMT h ¼ 0:001 0.98 140.122221 7.872980 446362.78 3.794234

DMT h ¼ 0:001 0.99 137.268228 7.746689 446361.57 3.657256

DMT h ¼ 0:001 1.0 134.613600 7.627336 446360.52 3.525117

DMT h ¼ 0:001 1.01 132.144579 7.514619 446359.63 3.397625

DMT h ¼ 0:001 1.02 129.848341 7.408245 446358.87 3.274607

DMT h ¼ 0:0005 0.98 141.287614 7.427251 446362.79 3.262914

DMT h ¼ 0:0005 0.99 138.120575 7.318368 446361.49 3.137738

DMT h ¼ 0:0005 1.0 135.195181 7.216352 446360.39 3.017724

DMT h ¼ 0:0005 1.01 132.493180 7.120848 446359.45 2.902478

DMT h ¼ 0:0005 1.02 129.997682 7.031509 446358.66 2.791808

DMT h ¼ 0:0001 0.98 142.454816 7.029539 446363.37 2.946374

DMT h ¼ 0:0001 0.99 138.562403 6.927727 446361.78 2.796684

DMT h ¼ 0:0001 1.0 135.024891 6.833936 446360.47 2.656922

DMT h ¼ 0:0001 1.01 131.810129 6.747624 446359.39 2.525245

DMT h ¼ 0:0001 1.02 128.888862 6.668273 446358.50 2.401280

q ¼ 0:003, t ¼ 0:1

MC 1.0 183.04 168.79 4.478�105 1495.7

SPCA 1.0 186.31 164.16 4.491�105 1917.20

EM 1.0 208.60 255.95 4.498�105 1233.38

T1.5SO 1.0 199.41 168.547 4.497�105 1218.82

AEM h ¼ 0:001 1.0 186.30 164.14 4.490�105 1911.91

ESM h ¼ 0:001 1.0 179.93 10.555 4.489�105 94.75

DPKM h ¼ 0:0025 1.0 179.95 4.489�105

DMT h ¼ 0:001 0.98 180.922922 12.847182 449304.10 94.953085

DMT h ¼ 0:001 0.99 180.466893 13.190199 449083.17 94.453581

DMT h ¼ 0:001 1.0 180.036327 13.547699 448878.15 93.938513

DMT h ¼ 0:001 1.01 179.629458 13.919605 448687.88 93.403821

DMT h ¼ 0:001 1.02 179.244639 14.305915 448511.28 92.845214

DMT h ¼ 0:0005 0.98 181.064354 11.889735 449347.96 95.974066

DMT h ¼ 0:0005 0.99 180.562722 12.307332 449103.51 95.397178

DMT h ¼ 0:0005 1.0 180.093120 12.742279 448878.30 94.806707

DMT h ¼ 0:0005 1.01 179.653284 13.194207 448670.78 94.198372

DMT h ¼ 0:0005 1.02 179.241129 13.662739 448479.56 93.567468

DMT h ¼ 0:0001 0.98 180.596300 10.464344 449450.09 88.949000

DMT h ¼ 0:0001 0.99 179.988863 10.964650 449149.09 88.353100

DMT h ¼ 0:0001 1.0 179.435711 11.490519 448876.38 87.735258

DMT h ¼ 0:0001 1.01 178.932909 12.042888 448629.26 87.089442

DMT h ¼ 0:0001 1.02 178.476566 12.622634 448405.28 86.409072
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different values of fractional order with the results of the

traditional stochastic methods.

4.1 Step reactivity

The first computational example simulates two cases of

step reactivity q ¼ 0:007 and q ¼ 0:003 for an actual

reactor with six groups of delayed precursors [1]. The

parameters of the two problems are taken from the fol-

lowing references [1, 5, 9, 11, 12] as follows: m ¼ 2:5,

K ¼ 0:00002 s, n0 ¼ 100 ðneutronsÞ, ki ¼[0.0127, 0.0317,

0.115, 0.311, 1.4, 3.87] s�1, bi ¼[0.000266, 0.001491,

0.001316, 0.002849, 0.000896, 0.000182], b ¼ 0:007, and

q ¼ 0. The mean and standard deviation at step size h ¼
0:001 s after 500 trails are given in Table 1 for reactivity

q ¼ 0:007 and time T ¼ 0:001 s. In the calculation of the

developed mathematical technique, the partial requests of

the fractional order are taken, respectively, as: a ¼ 1,

a ¼ 0:98, a ¼ 0:99, a ¼ 1:01, and a ¼ 1:02. The Matlab

code is tested with the conventional results under the same

conditions. The obtained results of the developed mathe-

matical technique (DMT) are compared with the familiar

Monte Carlo (MC) [1], stochastic piecewise constant

approximation (SPCA) [1], Euler–Maruyama (EM) [5],

Taylor 1.5 strong order (T1.5SO) [5], analytical exponen-

tial model (AEM) [12], efficient stochastic model (ESM)

[11], and the deterministic point kinetics model (DPKM)

[33].

In a similar manner, the results of the second case q ¼
0:003 are given in Table 1. The numerical results, in this

case, are calculated at time t ¼ 0:1 s. Moreover, the pattern

of the two individual neutron sample paths and the mean

Time (s)
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(a) Fractional order is 0.98
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(b) Fractional order is 1
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Neutron Mean
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(c) Fractional order is 1.02

First Sample Path
Second Sample Path
Neutron Mean

Fig. 1 Mean neutron population and two individual neutron sample paths for various values of fractional order and step reactivity q ¼ 0:003

123

132 Page 6 of 17 A. E. Aboanber et al.



neutron population are shown in Fig. 1 at different values

of the fractional order a ¼ 0:98, a ¼ 1, and a ¼ 1:02,

symbolized a, b, and c, respectively. The red solid curve is

the mean neutron population, while the blue dashed curve

and black dot-dashed curve represent the two individual

neutron sample paths, which show approximately a real

behavior for neutron density into the actual reactors.

4.2 Ramp reactivity

The second example simulates a ramp reactivity, where

the same parameters are taken from the previous example.

The function of reactivity is taken as: q ¼ 0:1bt and

T ¼ 1 s. The result of a comparison of the proposed

method (DMT), efficient stochastic model (ESM) [11], and

the deterministic point kinetics model (DPKM) [33] is

given in Table 2. To show the effect of the time interval,

the code for the developed method was run at different time

steps as well as at different values of the parameter a. The

Table 2 Mean and standard

deviation of the neutron

population and the sum of the

precursor population for ramp

reactivity q ¼ 0:1bt

Method Step size a E[n(1)] r½nð1Þ�
E
P6
i¼1

cið1Þ
� �

r
P6
i¼1

cið1Þ
� �

SPCA h ¼ 0:01 1.0 113.268077 13.330142 448239.846 3009.93141

AEM h ¼ 0:01 1.0 113.267707 13.327291 448239.798 3002.68282

ESM h ¼ 0:01 1.0 113.116433 4.111150 448253.780 47.203115

DPKM h ¼ 0:001 1.0 113.091124 448236.26

DMT h ¼ 0:01 0.98 113.474956 9.476546 448434.483 46.871815

DMT h ¼ 0:01 0.99 113.384203 9.473676 448331.161 46.840134

DMT h ¼ 0:01 1.0 113.296719 9.470503 448232.846 46.811703

DMT h ¼ 0:01 1.01 113.212358 9.468112 448139.299 46.782352

DMT h ¼ 0:01 1.02 113.131034 9.466234 448050.294 46.753327

DMT h ¼ 0:001 0.98 113.415094 3.971593 448535.015 43.751183

DMT h ¼ 0:001 0.99 113.280768 4.058934 448378.858 43.695078

DMT h ¼ 0:001 1.0 113.153337 4.150857 448233.774 43.632678

DMT h ¼ 0:001 1.01 113.032287 4.247468 448098.976 43.555908

DMT h ¼ 0:001 1.02 112.917106 4.348945 447973.736 43.348216

DMT h ¼ 0:0001 0.98 113.305430 3.263194 448638.295 47.552005

DMT h ¼ 0:0001 0.99 113.112671 3.411900 448425.709 47.488998

DMT h ¼ 0:0001 1.0 112.932052 3.567299 448232.798 47.438442

DMT h ¼ 0:0001 1.01 112.762814 3.729720 448057.756 47.366197

DMT h ¼ 0:0001 1.02 112.604169 3.899621 447898.902 47.283241
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Fig. 2 Mean neutron population and two individual neutron sample paths for fractional order 0.98 and ramp reactivity q ¼ 0:1bt

123

Developed mathematical technique for fractional stochastic point kinetics model in nuclear... Page 7 of 17 132



Time (s)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
eu

tr
on

 P
op

ul
at

io
n

95

100

105

110

115

120

125

First Sample Path
Neutron Mean

Time (s)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
eu

tr
on

 P
op

ul
at

io
n

95

100

105

110

115

120

125

Second Sample Path
Neutron Mean

Fig. 3 Mean neutron population and two individual neutron sample paths for fractional order 1.0 and ramp reactivity q ¼ 0:1bt
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Fig. 4 Mean neutron population and two individual neutron sample paths for fractional order 1.02 and ramp reactivity q ¼ 0:1bt

Time (s)
0 10 20 30 40 50 60 70 80 90 100

N
eu

tr
on

 P
op

ul
at

io
n

0

10

20

30

40

50

60

70

80

First Sample Path
Neutron Mean

Time (s)
0 10 20 30 40 50 60 70 80 90 100

N
eu

tr
on

 P
op

ul
at

io
n

0

10

20

30

40

50

60

70

80

90

100

Second Sample Path
Neutron Mean

Fig. 5 Mean neutron population and two individual neutron sample paths for fractional order 0.98 and sinusoidal reactivity q ¼ 0:68b sin pt
50

� 	
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Fig. 6 Mean neutron population and two individual neutron sample paths for fractional order 1.0 and sinusoidal reactivity q ¼ 0:68b sin pt
50
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Fig. 7 Mean neutron population and two individual neutron sample paths for fractional order 1.02 and sinusoidal reactivity q ¼ 0:68b sin pt
50

� 	

Table 3 Peak of the mean

neutron population and its time

for the nonlinear fractional

stochastic model at step external

reactivity

Method a qexð$Þ 0.5 0.75 1.0 1.5 2.0

DMT 0.98 Peak 53.0279 189.727 895.547 41083.125 158278.694

Time 25.378 7.732 0.942 0.151 0.088

0.99 Peak 49.565 176.089 826.687 36557.357 140582.052

Time 26.284 8.181 1.025 0.162 0.094

1.0 Peak 46.289 163.986 768.739 34289.333 132756.323

Time 28.142 8.762 1.09 0.173 0.101

1.01 Peak 43.137 152.776 712.311 30306.984 117251.348

Time 30.303 9.429 1.211 0.186 0.108

1.02 Peak 40.239 142.525 662.795 28353.797 111465.515

Time 30.708 9.711 1.245 0.199 0.116

AET 1.0 Peak 46.235334 164.209516 770.5188 33119.58 128083.1

Time 28.142 8.867 1.040 0.174 0.101
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relative percentage errors for E[n(t)] with the DMT are

recorded as 0.025, 0.026, and 0.159 compared with the

conventional methods SPCA, AEM, and ESM, respec-

tively, under the same conditions at time step h ¼ 0:01 s,

Table 2 for ramp reactivity, while the relative percentage

error is 0.05 for the DPKM at time step h ¼ 0:001 s.

Furthermore, in the same table, the relative percentage

errors for the DMT method at different step time intervals

(h ¼ 0:01 and h ¼ 0:001) are recorded as 0.126, while at

h ¼ 0:01 and h ¼ 0:0001 it is 0.322. In Table 1 for step

reactivity the effect of the time step interval appears from

the relative percentage error at different time steps, e.g., at

h ¼ 0:001 and h ¼ 0:0005 the RPE is - 0.432, while at

h ¼ 0:001 and h ¼ 0:0001 it is - 0.306. The previous

analysis confirms the stability of the DMT method, and the

effect of time step is acceptable. The behavior of the results

shows an increase with the decreasing value of a and vice

versa. Finally, we conclude that the validity of the pro-

posed method shows a high agreement with the determin-

istic method DPKM as well as with the conventional

methods (e.g., MC, SPCA, EM, T1.5SO, AEM, ESM, and

DMT).

For various values of fractional orders (a ¼ 0:98, a ¼ 1,

a ¼ 1:02), the pattern of the two individual neutron sample

paths and the mean neutron are shown in Figs. 2, 3, and 4.

Furthermore, the intensity of fluctuations for neutron

sample paths increases with the mean neutron population.

This phenomenon arises from the fact that the variance

matrix including stochastic part is dependent on the mean

neutron population and precursors population.
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Fig. 8 Mean neutron population and two individual neutron sample paths for fractional order 0.98 and temperature feedback reactivity

qex ¼ 0:5$ and r ¼ 2:5� 10�6
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Fig. 9 Mean neutron population and two individual neutron sample paths for fractional order 1.0 and temperature feedback reactivity qex ¼ 0:5$

and r ¼ 2:5� 10�6
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4.3 Sinusoidal reactivity

In the third example, the variation of reactivity insertion

in the form of a sinusoidal change as q ¼ q0 sin
pt
T

� 	
[6] is

considered. The parameters of the nuclear reactor with one

group of delayed neutrons are as follows:

q0 ¼ 0:005333ð0:68$Þ, b1 ¼ b ¼ 0:0079, k1 ¼ 0:077,

K ¼ 10�3, q ¼ 0, and n0 ¼ 1ðneutronsÞ with period time of

2T ¼ 100 s. The two individual neutron sample paths and

the mean neutron are shown in Figs. 5, 6, and 7 using

different values of fractional orders (a ¼ 0:98, a ¼ 1,

a ¼ 1:02), respectively, where the time step interval is h ¼
0:01 s after 500 trails. We compared the stochastic and

deterministic solutions to deduce the fact that the

deterministic solution represents the average of the

stochastic approach. Moreover, the individual sample paths

oscillate around the deterministic curve. The intensity of

fluctuations in these classes of figures arises from the

variations of the mean neutron population.

4.4 Temperature feedback reactivity

In the most nuclear literature, there are two cases for the

external reactivity, step, and ramp external reactivities. The

means of the neutron population are calculated for a U235

nuclear reactor with step and ramp external reactivities. In

what follows, the effect of Newtonian temperature feed-

back introduced into the reactivity is analyzed. The new
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Fig. 10 Mean neutron population and two individual neutron sample paths for fractional order 1.02 and temperature feedback reactivity

qex ¼ 0:5$ and r ¼ 2:5� 10�6
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Fig. 11 Mean neutron population and two individual neutron sample paths for fractional order 0.98 and temperature feedback reactivity

qex ¼ 0:75$ and r ¼ 2:5� 10�6
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reactivity form in the presence of temperature feedback is

given by:

qðtÞ ¼ qexðtÞ � r
Z t

0

NðsÞds; ð24Þ

where qexðtÞ represents the external reactivity and r is the

nonlinear coefficient part which represents the product of

the reciprocal of the thermal capacity and the temperature

coefficient.

4.4.1 Step external reactivity

To check the developed mathematical technique for the

nonlinear fractional stochastic model in the presence of

temperature feedback and step external reactivity, let us

take the parameters of the U235 nuclear reactor as follows

[14, 15, 34]: ki ¼[0.0124, 0.0305, 0.111, 0.301, 1.13, 3.0]

s�1, bi ¼[0.00021, 0.00141, 0.00127, 0.00255, 0.00074,

0.00027, 0.00645], b ¼ 0:00645, K ¼ 5:0� 10�5 s, r ¼
2:5� 10�6 ðMWsÞ�1

, and Nð0Þ ¼ 1ðneutronsÞ.
In Table 3, the peak of the mean neutron population with

the corresponding time at various step external reactivities,

qex ¼ 1:0$, qex ¼ 1:5$, and qex ¼ 2$, is given for different

values of fractional order 0.98, 0.99, 1.0, 1.01, and 1.02.

Using time step h ¼ 0:001 s and after 500 trails, the peak

of the mean neutron population is compared with the peak

of the mean neutron population using the analytical expo-

nential technique (AET) [14]. In addition, the mean neu-

tron population and the two individual neutron sample
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Fig. 12 Mean neutron population and two individual neutron sample paths for fractional order 1.0 and temperature feedback reactivity

qex ¼ 0:75$ and r ¼ 2:5� 10�6
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Fig. 13 Mean neutron population and two individual neutron sample paths for fractional order 1.02 and temperature feedback reactivity

qex ¼ 0:75$ and r ¼ 2:5� 10�6
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paths are plotted in Figs. 8, 9, and 10 for the step external

reactivity (qex ¼ 0:5$) and Figs. 11, 12, and 13 for the step

external reactivity (qex ¼ 0:75$) using different values of

fractional derivative order 0.98,1.0, and 1.02, respectively.

The most important notice is that the mean neutron popu-

lation increases with time until it reaches the maximum

value due to the positive external reactivity. Thereafter, the

mean neutron tends to zero with the increasing time due to

the effect of temperature reactivity feedback. Again, these

figures confirm that the amplitude of fluctuations for neu-

tron sample paths is affected by the direct variations of the

mean neutron population.

Table 4 Peak of the mean neutron population and its time for the nonlinear fractional stochastic model at reactivity qðtÞ ¼ at � r
R t
0
NðsÞds

a a ¼ 0:003 a ¼ 0:01 a ¼ 0:1

r ¼ 10�11 r ¼ 10�13 r ¼ 10�11 r ¼ 10�13 r ¼ 10�11 r ¼ 10�13

DMT

0.98 Peak 4.409101�109 5.771654�1011 1.701579�1010 2.144910�1012 1.876758�1011 2.242436�1013

Time 2.446 2.488 0.831 0.852 0.130 0.136

0.99 Peak 4.452107�109 5.813629�1011 1.704601�1010 2.124988�1012 1.918749�1011 2.290324�1013

Time 2.461 2.504 0.839 0.861 0.132 0.138

1.0 Peak 4.477012�109 5.828427�1011 1.689973�1010 2.102489�1012 1.849657�1011 2.146883�1013

Time 2.475 2.520 0.847 0.869 0.135 0.142

1.01 Peak 4.505250�109 5.847340�1011 1.673285�1010 2.081893�1012 1.860123�1011 2.233038�1013

Time 2.491 2.537 0.856 0.879 0.138 0.144

1.02 Peak 4.514868�109 5.844036�1011 1.656222�1010 2.059339�1012 1.786014�1011 2.131587�1013

Time 2.507 2.554 0.864 0.888 0.141 0.148

AET

1.0 Peak 4.482853�109 5.833649�1011 1.687565�1010 2.099857�1012 1.853996�1011 2.217193�1013

Time 2.476 2.521 0.847 0.870 0.135 0.141

Fig. 14 Mean neutron population and two individual neutron sample paths for fractional order 0.98, temperature feedback reactivity qex ¼
0:003t and r ¼ 10�11
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4.4.2 Ramp external reactivity

In the test example for ramp external reactivity, the

parameters for the U235 nuclear reactor are taken as the

same values from the nonlinear case, where

K ¼ 10� 10�5 s, r ¼ 10�11, or 10�13 (MW s)�1 and the

external reactivity is ramp (qex ¼ 0:01t; 0:1t). The peak of

the mean neutron population and its time with various

values of fractional order (0.98, 1.0, 1.02) are compared

with the results of the analytical exponential technique

(AET) [14] in Table 4. The results are calculated with time

step h ¼ 0:001 s , and the number of trails is 500. In

addition, two individual neutron sample paths and the mean

neutron population are drawn for external reactivity

qexðtÞ ¼ 0:003t and the nonlinear coefficient r ¼ 10�11 in

Figs. 14, 15, and 16 and r ¼ 10�13 in Figs. 17, 18, and 19.

In Figs. 14, 15, 16, 17, 18, and 19, the mean neutron

increases with time until it reaches the peak due to the

external reactivity increasing. After that, the mean neutron

decreases due to the effect of temperature feedback.

Therefore, the mean neutron population is almost

stable due to the effect of external reactivity, which is

equivalent with the effect of temperature feedback. More-

over, the fluctuations of neutron sample paths disappear

approximately around the sharp peak due to the logarithmic

scale and a large increase in the neutron population at a

very small time. Figure 14 shows a pattern of the effect of

the neutron population and fluctuations at different sections

with time. A sharp increase in fluctuation with a slight

increase in the neutron population in the ramp section is
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Fig. 15 Mean neutron population and two individual neutron sample paths for fractional order 1.0, temperature feedback reactivity qex ¼ 0:003t

and r ¼ 10�11
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Fig. 16 Mean neutron population and two individual neutron sample paths for fractional order 1.02, temperature feedback reactivity qex ¼
0:003t and r ¼ 10�11
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followed by a slight increase in the intensity of fluctuations

compared with a sharp increase in the neutron population.

Moreover, the same remark is observed at the peak and the

remainder section of the figures.

General description and analysis for the results of the

developed method can be summarized as follows. Fig-

ures 1, 2, 3, 4, 5, 6, and 7 show a large class of changes

consists of small variations of the cross sections, positive or

negative changes in reactivity attributed to the neutron

population, around an expected value E[n(t)], correspond-

ing to a critical case in which the perturbation can be

induced flux fluctuations, where: dnðtÞ ¼ nðtÞ � E½nðtÞ�
and dqðtÞ ¼ qðtÞ � E½qðtÞ�.

High-frequency power fluctuations caused by increasing

the reactivity (the fission rate is sufficiently large for the

average value equations) of the reactor, as shown in Figs. 1,

2, 3, and 4. In the opposite, low-frequency power fluctua-

tions can arise from decreasing the reactivity (i.e., the fis-

sion rate) as shown in Figs. 5, 6, 7, 8, 9, 10, 11, 12, and 13.

Furthermore, Figs. 14, 15, 16, 17, 18, and 19 deal with the

variation of the neutron population, which obtained by

studying the fluctuations arise from the temperature feed-

back. These figures conclude that the randomness of the

input is communicated to the output via the response

characteristics of the system, where the fluctuation is above

or below the mean value at instant time.
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Fig. 17 Mean neutron population and two individual neutron sample paths for fractional order 0.98, temperature feedback reactivity qex ¼
0:003t and r ¼ 10�13
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Fig. 18 Mean neutron population and two individual neutron sample paths for fractional order 1.0, temperature feedback reactivity qex ¼ 0:003t

and r ¼ 10�13
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5 Conclusion

The developed mathematical technique was presented

for a linear/nonlinear fractional stochastic model of the

point reactor kinetics system with a multi-group of delayed

neutron precursors. This system is characterized by its

stochastic behavior and can offer the only average or mean

values of the modeled populations. However, the neutron

population and the delayed neutron precursor concentra-

tions vary randomly with time, meaning the real dynamical

process is stochastic. This system was numerically imple-

mented using a stochastic piecewise constant approxima-

tion (SPCA) due to the stiffness of these equations. In this

paper, the matrix formula for this fractional stochastic

model is solved through a developed mathematical tech-

nique, which is based on the split-step method, Laplace

transforms, Mittage–Leffler function, eigenvalues, and

eigenvectors. The mean and standard deviation of the

neutron population and the sum of the precursor population

were calculated for step, ramp, sinusoidal, and the tem-

perature feedback reactivity insertion which represents the

nonlinear fractional stochastic model. Moreover, this

fractional differential system was calculated with different

values of the fractional derivative order. In order to vali-

date the proposed method (DMT), we present a comparison

with the conventional results in the literature of the

stochastic model and the deterministic point kinetics

model, showing that the method is in agreement with those

already established. The future work will be included the

derivation and the study of a fractional stochastic model for

the time–space kinetics equations.
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