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Abstract The key issue in accelerating method of char-

acteristics (MOC) transport calculations is in obtaining a

completely equivalent low-order neutron transport or dif-

fusion equation. Herein, an equivalent low-order angular

flux nonlinear finite difference equation is proposed for

MOC transport calculations. This method comprises three

essential features: (1) the even parity discrete ordinates

method is used to build a low-order angular flux nonlinear

finite difference equation, and different boundary condition

treatments are proposed; (2) two new defined factors, i.e.,

the even parity discontinuity factor and odd parity dis-

continuity factor, are strictly defined to achieve equiva-

lence between the low-order angular flux nonlinear finite

difference method and MOC transport calculation; (3) the

energy group and angle are decoupled to construct a

symmetric linear system that is much easier to solve. The

equivalence of this low-order angular flux nonlinear finite

difference equation is analyzed for two-dimensional (2D)

pin, 2D assembly, and 2D C5G7 benchmark problems.

Numerical results demonstrate that a low-order angular

flux nonlinear finite difference equation that is completely

equivalent to the pin-resolved transport equation is

established.

Keywords Angular flux � Equivalence � Even parity

discrete ordinates method � Nonlinear finite difference

1 Introduction

Significant advances in high-performance computing

clusters (HPCs) have enabled three-dimensional (3D)

whole-core high-fidelity heterogeneous transport simula-

tions at the subpin level. This is becoming increasingly

important for improving the reactor performance and safety

as well as providing an efficient tool for more complex and

novel designs. A numerical simulation method for solving

the neutron transport equation, i.e., the method of charac-

teristics (MOC), has garnered significant attention in

whole-core high-fidelity simulations as the MOC can be

applied to obtain detailed flux distributions without any

restrictions on the geometry mesh. Hence, efficient per-

formances can be achieved on various HPC systems. In

fact, many famous high-fidelity neutron transport simula-

tion codes were developed based on the MOC and have

been used successfully in practical reactor applications,

such as the CRX code [1], DeCART code [2, 3], nTRA-

CER [4], MPACT [5], NECP-X [6], and STREAM [7].

However, the computational feasibility of whole-core

MOC calculation depends on the acceleration technique

used. The neutron transport equation contains seven inde-

pendent variables associated with space, angle, energy, and

time. The key to accelerating high-fidelity transport cal-

culations is to establish a low-order equivalent equation

relevant to the space, angle, energy, or time while

This work was supported by the National Key R&D Program of China

(No. 2018YFE0180900).

& Chen Hao

haochen.heu@163.com

1 Fundamental Science On Nuclear Safety and Simulation

Technology Laboratory, Harbin Engineering University,

Harbin 150001, China

2 Institute of Nuclear and New Energy Technology (INET),

Tsinghua University, Beijing 100084, China

3 Purdue University, West Lafayette, IN 47907, USA

123

NUCL SCI TECH (2020) 31:125(0123456789().,-volV)(0123456789().,-volV)

https://doi.org/10.1007/s41365-020-00834-2

https://orcid.org/0000-0002-6849-5156
https://orcid.org/0000-0002-4280-4117
http://crossmark.crossref.org/dialog/?doi=10.1007/s41365-020-00834-2&amp;domain=pdf
https://doi.org/10.1007/s41365-020-00834-2


minimizing the computational cost. However, previous

studies focused more on space and energy accelerations.

An equivalent low-order equation relevant to a coarse mesh

or a coarse energy interval has been established to accel-

erate high-order transport calculations. The coarse mesh

finite difference (CMFD) method is a popular method, and

different types of CMFD methods [8–15] are widely uti-

lized to accelerate MOC calculations. Furthermore,

researchers have proposed a transient multilevel (TML)

method to reduce the number of high-order transport cal-

culations significantly [16, 17]. Using the TML method,

acceleration was achieved on the time scale; in this regard,

large time steps were used for the MOC calculations,

whereas small time steps were used for the low-order

CMFD and point kinetics equations.

In the high-fidelity core simulators established, the pin-

homogenized multigroup CMFD (MG CMFD) method is

widely used to accelerate the convergence of pin-resolved

whole-core transport calculations. Excellent acceleration

has been achieved. However, the MG CMFD method only

updates the scalar flux and eigenvalue, and a bottleneck is

encountered. Therefore, the MOC iterations will be

reduced. Subsequently, the number of iterations cannot

continue to decrease if only the MG CMFD is used for

acceleration. In this case, the MOC calculations still incur a

significant computational burden. Therefore, whole core

pin-resolved MOC calculations require a more efficient

acceleration technique. Fourier analysis [18, 19] is a stan-

dard technique regularly used to investigate the stability of

CMFD acceleration. Based on the Fourier analysis, the MG

CMFD which based on flat source region or finer mesh can

be used to further reduce the number of MOC iterations.

Another potential acceleration technique is to directly

update the incident angular flux and sources to further

reduce the iterations of MOC calculations. Hence, an

equivalent angular flux nonlinear finite difference (ANFD)

equation must be established and applied to accelerate the

MOC calculations. Furthermore, the domain decomposi-

tion technique is typically utilized for parallel computa-

tions, and the reactor core can be categorized into

subdomains. Subsequently, the incident angular flux of

each domain can be updated in time.

However, the angular flux acceleration technique has

not yet been investigated; hence, we will attempt to

establish an equivalent ANFD equation in this study. The

even parity discrete ordinates method can be used to derive

a low-order angular flux nonlinear finite difference equa-

tion. However, ensuring the equivalence between this low-

order equation and the high-order pin-resolved transport

equation results in new challenges. The introduction of

discontinuity factors used in popular CMFD methods is a

good concept. Through the strict definition and calculation

of even parity and odd parity discontinuity factors based on

flux information obtained from MOC calculations, a

completely equivalent angular flux nonlinear finite differ-

ence equation can be established. As relevant studies have

not yet been performed, more details regarding the angular

flux nonlinear finite difference equation based on the even

parity discrete ordinates method, as well as the definition

and calculation scheme of even and odd parity disconti-

nuity factors including details for addressing different

boundary conditions are discussed herein. Furthermore, an

equivalent angular flux nonlinear finite difference equation

with the pin-resolved transport equation was established in

this study.

This paper is organized as follows. In Sect. 2, we pro-

vide the necessary theory for establishing the equivalent

low-order angular flux nonlinear finite difference equation.

The numerical method to solve this equation is discussed in

Sect. 3. A code based on this new method is developed,

and two-dimensional (2D) pin, 2D assembly, and 2D C5G7

benchmark problems [20] are selected to verify the

equivalence of the angular flux nonlinear finite difference

method. The numerical results are discussed in Sect. 4, and

important conclusions are provided. Section 5 presents the

summary and conclusions.

2 Methodology of angular flux nonlinear finite
difference equation

2.1 Even parity discrete ordinates method

for neutron transport equation

To provide a detailed description of the angular flux

nonlinear finite difference equation, we begin with the

multigroup neutron transport equation in the Cartesian

coordinate system, as follows:

X � rwg r;Xð Þ þ Rt;g rð Þwg r;Xð Þ ¼ Sg r;Xð Þ; ð1Þ

where vector r is the spatial position relative to the refer-

ence point, and vector X is the unit direction of flying with

respect to the reference. Subscript g denotes the energy

group index using multigroup approximation. This equa-

tion can represent the steady-state or transient neutron

transport equation. When it represents a transient equation,

the time variable is eliminated for brevity, as follows:

Sg r;Xð Þ ¼ � 1

v

o

ot
wg r;Xð Þ þ Ss;g r;Xð Þ þ 1

4p
Sf;g rð Þ

þ 1

4p
Sd;g rð Þ þ Se;g r;Xð Þ; ð2aÞ

where Ss, Sf, Sd, and Se are the scattering, fission, delayed,

and external sources, respectively. The external source is

often disregarded, except when it must be considered. The

fission and delayed neutron sources are isotropic. For the
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steady state, the time derivative term is zero, and the

delayed neutron source is included in the fission source. If

we discretize the time derivative term o
otwg r;Xð Þ with

fluxes at the current and last time steps, the transient

equation will become a transient fixed source equation,

which can be solved in a manner similar to the steady-state

equation. Therefore, we will only discuss the steady-state

equation, and Eq. (2a) can be expressed as follows:

Sg r;Xð Þ ¼ Ss;g r;Xð Þ þ 1

4p
Sf;g rð Þ: ð2bÞ

The scattering and fission source can be expressed in

terms of the angular flux as follows:

Ss;g r;Xð Þ ¼
X

g0

Z

4p
wg0 r;X

0ð ÞRs;g0g r; l0ð ÞdX0; ð2cÞ

Sf;g rð Þ ¼
vg
keff

X

g0
vRf rð Þ/g0 rð Þ; ð2dÞ

where w, /, R, v, l0, and keff are the angular flux, scalar

flux, macro-cross sections, fission spectrum, cosine of

scattering angle in the center of mass system, and eigen-

value with a standard definition in nuclear reactor physics,

respectively. Using the discrete ordinates method, we can

represent the angular space with selected angles as follows:

/g rð Þ ¼
Z

4p
wg r;Xð ÞdX ¼

XM

i¼1

xiwg;i rð Þ; ð3Þ

where Xi and xi are the selected angles and weights,

respectively, and are known as the SN quadrature set; M is

the total number of discrete directions. Here, we use sub-

script i to represent quantities at angle Xi and subscript -i

to represent quantities at angle �Xi. The equations for

angular fluxes in opposite directions are as follows:

Xi � rwg;i rð Þ þ Rt;g rð Þwg;i rð Þ ¼ Sg;i rð Þ; ð4aÞ

�Xi � rwg;�i rð Þ þ Rt;g rð Þwg;�i rð Þ ¼ Sg;�i rð Þ: ð4bÞ

The even and odd parity fluxes are expressed as follows:

wþ
g;i rð Þ ¼ wg;i rð Þ þ wg;�i rð Þ

� �
=2; ð5aÞ

w�
g;i rð Þ ¼ wg;i rð Þ � wg;�i rð Þ

� �
=2: ð5bÞ

The even and odd parity fluxes exhibit the following

properties:

wþ
g;i rð Þ ¼ wþ

g;�i rð Þ; ð6aÞ

w�
g;i rð Þ ¼ �w�

g;�i rð Þ: ð6bÞ

Using Eqs. (4) and (5), we can obtain the even and odd

parity transport equations as follows:

Xi � rw�
g;i rð Þ þ Rt;g rð Þwþ

g;i rð Þ ¼ Sþg;i rð Þ; ð7aÞ

Xi � rwþ
g;i rð Þ þ Rt;g rð Þw�

g;i rð Þ ¼ S�g;i rð Þ; ð7bÞ

where Sþg;i rð Þ and S�g;i rð Þ are the even and odd parity

sources, respectively, expressed as

Sþg;i rð Þ ¼ Sg;i rð Þ þ Sg;�i rð Þ
� �

=2; ð8aÞ

S�g;i rð Þ ¼ Sg;i rð Þ � Sg;�i rð Þ
� �

=2: ð8bÞ

As the fission sources are isotropic, we have

Sþg;i rð Þ ¼ Sþs;g;i rð Þ þ 1

4p
Sf;g rð Þ; ð9aÞ

S�g;i rð Þ ¼ S�s;g;i rð Þ; ð9bÞ

where Sþs;g;i rð Þ and S�s;g;i rð Þ are the even and odd parity

scattering sources, expressed as

Sþs;g;i rð Þ ¼ Ss;g;i rð Þ þ Ss;g;�i rð Þ
� �

=2; ð10aÞ

S�s;g;i rð Þ ¼ Ss;g;i rð Þ � Ss;g;�i rð Þ
� �

=2: ð10bÞ

Here, Ss;g;i rð Þ is the angle-dependent scattering source,

expressed as

Ss;g;i rð Þ ¼
X

g0

Z

4p
wg0 r;X

0ð ÞRs;g0g r; l0ð ÞdX0: ð11Þ

l0 is the cosine of the scattering angle in the center of

mass system, where l0 ¼ X � X0. With a Pn expansion of

the scattering cross sections, we obtain

Rs;g0g r; l0ð Þ ¼
X1

k¼0

2k þ 1

4p
Rs;k;g0g rð ÞPk l0ð Þ; ð12Þ

where Pk are the Legendre polynomials and Rs;k are Pk

scattering moments. By expanding the even and odd parity

scattering sources with a P0 expansion, we have

Sþs;g;i rð Þ ¼ 1

4p

X

g0
Rs;g0g rð Þ

X

i0
xi0wg0;i0 rð Þ; ð13aÞ

S�s;g;i rð Þ ¼ 0: ð13bÞ

Combined with Eqs. (9) and (13), the even and odd

parity sources can be expressed as follows:

Sþg;i rð Þ ¼ 1

4p

X

g0
Rs;g0g rð Þ

X

i0
xi0w

þ
g0;i0 rð Þ

þ 1

4p

vg
keff

X

g0
vRf;g0 rð Þ

X

i0
xi0w

þ
g0;i0 rð Þ; ð14aÞ

S�g;i rð Þ ¼ 0: ð14bÞ

Integrate the even parity transport equation in Eq. (7a)

over a region with constant a cross section as follows:
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ZZ

C
w�
g;i rð ÞXi � n̂dCþ VrRt;g;i;rw

þ
g;i;r ¼ VrS

þ
g;i;r; ð15Þ

where subscript r is the region index; Vr is the volume of

region r; C is the surface of region r; n̂ is the unit normal

direction vector of the surface; w
þ
g;i;r and S

þ
g;i;r are the node

average even parity flux and node average even parity

source weighted by the region volume, respectively. Rt;g;i;r

is the angle-dependent total macro-cross section, defined as

follows:

Rt;g;i;r ¼
RRR
VRt;g rð Þwþ

g;i rð ÞdV
RRR
Vw

þ
g;i rð ÞdV

: ð16Þ

It is noteworthy that the divergence theorem was used

for deriving Eq. (15).

r � w�
g;i rð ÞXi

� �
¼ Xi � rw�

g;i rð Þ � þw�
g;ir �Xi

¼ Xi � rw�
g;i rð Þ; ð17aÞ

ZZ

C
w�
g;i rð ÞXi � n̂dC ¼

ZZZ

V

r � w�
g;i rð ÞXi

� �
dV

¼
ZZZ

V

Xi � rw�
g;i rð ÞdV : ð17bÞ

The surface of region r is divided into nr segments,

where nr is the number of neighbors. Each segment is the

interface between region r and one of its neighbors. Define

the average odd parity flux on each segment as follows:

w
�
g;i;rn ¼

1

Ai;rn

ZZ

Crn

w�
g;i rð ÞXi � n̂dC; ð18aÞ

Ai;rn ¼
ZZ

Crn

Xi � n̂j jdC; ð18bÞ

where n is the neighbor node of node r, and Crn is the

interface between r and n. The average odd parity flux on

the surface can represent the net number of neutrons

passing through the interface in a certain direction, and it

exhibits the following property:

w
�
g;i;rn ¼ �w

�
g;�i;rn ð19Þ

By rearranging Eq. (15), we can obtain the even parity

flux equation as follows:

X

n2neighbors
Ai;rnw

�
g;i;rn þ VrRt;g;i;rw

þ
g;i;r ¼ VrS

þ
g;i;r: ð20Þ

The even parity flux equation exactly preserves the

neutron balance in each direction and in each coarse mesh.

If the relationship between the average odd parity flux

w
�
g;i;rn and the node average even parity flux w

þ
g;i;r is

obtained, then Eq. (20) can be solved further. This rela-

tionship can be obtained from the odd parity transport

equation.

Integrating the odd parity transport equation (Eq. (7b))

over each segment of the surface, we obtain
ZZ

Crn

Xi � rwþ
g;i rð ÞXi � n̂dCþ Ai;rnRt;g;i;rw

�
g;i;rn ¼ 0: ð21Þ

The left hand of Eq. (21) is the average derivative of the

even parity flux on interface Crn in the Xi direction and can

be defined as follows:

w
þ
g;i;rn0 ¼

1

Ai;rn

ZZ

Crn

Xi � rwþ
g;i rð ÞXi � n̂dC: ð22Þ

Substituting Eq. (22) into Eq. (21), we have

w
þ
g;i;rn0 ¼ �Rt;g;i;rw

�
g;i;rn: ð23Þ

Through a finite difference approximation for w
þ
g;i;rn0, we

obtain the following odd parity flux equation:

w
þ
g;i;rn � w

þ
g;i;r

hi;rn
� �Rt;g;i;rw

�
g;i;rn; ð24Þ

where w
þ
g;i;rn is the average even parity flux on the surface

between r and n, and hi;rn is the thickness of the node center

to the surface center in the direction of angle Xi.

w
þ
g;i;rn ¼

1

Ai;rn

ZZ

Crn

wþ
g;i rð Þ Xi � n̂j jdC; ð25aÞ

hi;rn ¼
RR

Crn
r �Xið Þ Xi � n̂j jdC
RR

Crn
Xi � n̂j jdC �

RRR
Vr �XidVRRR

VdV

�����

�����: ð25bÞ

The average even parity flux on the surface exhibits

following priority:

w
þ
g;i;rn ¼ w

þ
g;�i;rn: ð26Þ

2.2 Definition and application of discontinuity

factor

To render all w
þ
g;i;r, w

þ
g;i;rn and w

�
g;i;rn in the odd parity

flux equation (Eq. (24)) satisfy the MOC transport calcu-

lation, we introduced a factor known as the even parity

discontinuity factor, fþg;i;rn, as follows:

fþg;i;rn ¼
w
þ
g;i;rn

w
þ
g;i;r � hi;rnRt;g;i;rw

�
g;i;rn

� � ; ð27Þ

fþg;i;rn will be greater than zero when the denominator of

Eq. (27) is positive. However, the denominator can less

than or equal to zero. In this case, fþg;i;rn will be infinite or

negative. To avoid this, we introduced another disconti-

nuity factor to Eq. (27), i.e., the odd parity discontinuity

factor, f�g;i;rn.
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fþg;i;rn ¼
w
þ
g;i;rn

w
þ
g;i;r � hi;rn

Rt;g;i;r

f�g;i;rn
w
�
g;i;rn

� � ð28Þ

An algorithm was designed to determine the even and

odd parity discontinuity factors. This algorithm begins by

evaluating the following conditional:

w
þ
g;i;r � hi;rnRt;g;i;rw

�
g;i;rn [w

þ
g;i;rn: ð29Þ

If the condition in Eq. (29) is true, then the even and odd

parity discontinuity factors can be calculated from the

MOC solutions as follows:

fþg;i;rn ¼
w
þ
g;i;rn

w
þ
g;i;r � hi;rnRt;g;i;rw

�
g;i;rn

; ð30aÞ

f�g;i;rn ¼ 1: ð30bÞ

If the condition is false, then different equations are

designed to calculate the even and odd parity discontinuity

factors as follows:

fþg;i;rn ¼
w
þ
g;i;rn þ hi;rnRt;g;i;rw

�
g;i;rn

w
þ
g;i;r

; ð31aÞ

f�g;i;rn ¼ fþg;i;rn: ð31bÞ

Using this approach, the even and odd parity disconti-

nuity factors will be positive at all times. Rearranging

Eq. (28) yields

w
þ
g;i;rn

fþg;i;rn
þ hi;rn

Rt;g;i;r

f�g;i;rn
w
�
g;i;rn ¼ w

þ
g;i;r: ð32Þ

If neighbor node n is within the computational domain,

then a similar equation is obtained for the other side of the

interface Crn, as follows:

w
þ
g;i;nr

fþg;i;nr
þ hi;nr

Rt;g;i;n

f�g;i;nr
w
�
g;i;nr ¼ w

þ
g;i;n: ð33Þ

Combining Eqs. (32) and (33) and the continuity con-

dition w
þ
g;i;rn ¼ w

þ
g;i;nr, w

�
g;i;rn ¼ �w

�
g;i;nr, we obtain

fþg;i;rnhi;rn
Rt;g;i;r

f�g;i;rn
þ fþg;i;nrhi;nr

Rt;g;i;n

f�g;i;nr

 !
w
�
g;i;rn

¼ fþg;i;rnw
þ
g;i;r � fþg;i;nrw

þ
g;i;n: ð34Þ

As for the vacuum boundary surface, the incident

angular flux is zero. Therefore, we have the equation

w
�
g;i;rn ¼ w

þ
g;i;rn, which can be derived from Eqs. (18a) and

(25a). Combining this equation with Eq. (32), we obtain

fþg;i;rnhi;rn
Rt;g;i;r

f�g;i;rn
þ 1

 !
w
�
g;i;rn ¼ fþg;i;rnw

þ
g;i;r: ð35Þ

For the reflective boundary surface, the angular fluxes in

the reflect directions are equal. Therefore, we have the

continuity condition w
þ
g;i;rn ¼ w

þ
g;i�;rn and w

�
g;i;rn ¼ �w

�
g;i�;rn,

where subscript i* and i represent a pair of angles in the

incident and reflective directions, respectively. Figure 1

shows an illustration of the reflective boundary condition.

Combined with Eq. (32) for both the angle i and i*, we

obtain

fþg;i;rnhi;rn
Rt;g;i;r

f�g;i;rn
þ fþg;i�;rnhi�;rn

Rt;g;i�;r

f�g;i�;rn

 !
w
�
g;i;rn

¼ fþg;i;rnw
þ
g;i;r � fþg;i�;rnw

þ
g;i�;r: ð36Þ

In general, the relationships between the surface average

odd parity flux and node average even parity flux for both

the interior surface and boundary surface are established

through Eqs. (34), (35), and (36). Moreover, these equa-

tions satisfy the high-order MOC solution through the strict

definitions of the even and odd parity discontinuity factors.

2.3 Construction of angular flux nonlinear finite

difference linear system

Based on Eqs. (34), (35), and (36), the odd parity fluxes

on the interior and boundary surfaces can be expressed as a

linear function of the neighbor average even parity fluxes

using the coupling coefficient C.

For the interior surface, we have

w
�
g;i;rn ¼ Cg;i;rnw

þ
g;i;r � Cg;i;nrw

þ
g;i;n; ð37aÞ

where

Cg;i;rn ¼
fþg;i;rn

fþg;i;rnhi;rn
Rt;g;i;r

f�g;i;rn
þ fþg;i;nrhi;nr

Rt;g;i;n

f�g;i;nr

� � ; ð37bÞ

Fig. 1 (Color online) Illustration of reflective boundary condition
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Cg;i;nr ¼
fþg;i;nr

fþg;i;rnhi;rn
Rt;g;i;r

f�g;i;rn
þ fþg;i;nrhi;nr

Rt;g;i;n

f�g;i;nr

� � : ð37cÞ

For the vacuum boundary surface, we have

w
�
g;i;rn ¼ Cg;i;rnw

þ
g;i;r; ð38aÞ

where

Cg;i;rn ¼
fþg;i;rn

fþg;i;rnhi;rn
Rt;g;i;r

f�g;i;rn
þ 1

� � : ð38bÞ

For the reflective boundary surface, we have

w
�
g;i;rn ¼ Cg;i;rnw

þ
g;i;r � Cg;i�;rnw

þ
g;i�;r; ð39aÞ

where

Cg;i;rn ¼
fþg;i;rn

fþg;i;rnhi;rn
Rt;g;i;r

f�g;i;rn
þ fþg;i�;rnhi�;rn

Rt;g;i� ;r
f�
g;i� ;rn

� � ; ð39bÞ

Cg;i�;rn ¼
fþg;i�;rn

fþg;i;rnhi;rn
Rt;g;i;r

f�g;i;rn
þ fþg;i�;rnhi�;rn

Rt;g;i� ;r
f�
g;i� ;rn

� � : ð39cÞ

Substituting Eqs. (37)–(39) into Eq. (20), we obtain the

following angular flux nonlinear difference linear system:

X

n2neighbors
Ai;rn Cg;i;rnw

þ
g;i;r � Cg;i;nrw

þ
g;i;n

� �
þ VrRt;g;i;rw

þ
g;i;r

¼ bg;i;r:

ð40Þ

If the homogenized cross sections and coupling coeffi-

cients are obtained from the results of the MOC transport

calculation, then the ANFD linear system can be solved. As

the even parity fluxes in opposite directions are equal, only

the ANFD linear system need to be solved on a half-an-

gular space.

3 Solving angular flux nonlinear difference
equation

To solve the angular flux nonlinear difference equation,

different solving strategies for decoupling the energy group

and angle are proposed herein. If the scattering sources are

determined simultaneously with the even parity fluxes, then

all groups and all angles are coupled together. The terms on

the right side of the linear system can be expressed as

follows:

bg;i;r ¼ Vr
1

keff

vg
4p

X

g0
vRf;g0;r

X

i0
xi0w

þ
g0;i0;r: ð41aÞ

If all scattering sources other than the in-group scatter-

ing term are provided, then all angles are coupled together,

and the linear system can still be solved by group sepa-

rately, as follows:

bg;i;r ¼ Vr
1

keff

vg
4p

X

g0
vRf;g0;r

X

i0
xi0w

þ
g0;i0;r

þ Vr
1

4p

X

g0 6¼g

Rs;g0g;r

X

i0
xi0w

þ
g;i0;r: ð41bÞ

If the scattering sources are all treated as specified, then

the linear system can be solved by group and angle sepa-

rately, as follows:

bg;i;r ¼ Vr
1

keff

vg
4p

X

g0
vRf;g0;r

X

i0
xi0w

þ
g0;i0;r

þ Vr
1

4p

X

g0
Rs;g0g;r

X

i0
xi0w

þ
g0;i0;r þ Ai;rnCg;i�;rnw

þ
g;i�;r:

ð41cÞ

It is noteworthy that the last term in Eq. (41c) appears only

when a reflect boundary condition exists on the node surface.

3.1 Decoupling of energy group and angle

To solve the linear system by group and angle sepa-

rately, we would like to keep Cg;i;rn ¼ Cg;i;nr in the interior

surfaces such that the linear system will be symmetric. A

symmetric linear system is much easier to solve than an

asymmetric system. To create a symmetric ANFD linear

system, the coupling coefficients for the interior surface are

redefined as follows:

ð42aÞ

Cg;i;rn ¼ Cg;i;nr ¼
fþg;i;rn þ fþg;i;nr

fþg;i;rnhi;rn
Rt;g;i;r

f�g;i;rn
þ fþg;i;nrhi;nr

Rt;g;i;n

f�g;i;nr

� � ;

ð42bÞ

ð42cÞ

where is the asymmetric term of Eq. (42a), which

can be determined using even parity fluxes. Substituting

Eq. (42) into Eq. (40) and placing the asymmetric term to

the right side of the equation, the ANFD linear system is

rearranged as follows:
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where N, S, W, E, T, and B represent the north, south, west,

east, top, and bottom surfaces of the node, respectively.

The superscript k denotes the power iteration number. As

the symmetric and diagonal dominant matrix is a sym-

metric positive definite matrix, Eq. (43) will become an

expression for a symmetric positive definite linear system.

Furthermore, the preconditioned conjugate gradient (CG)

method [21] can be used to solve this linear system.

It is noteworthy that decoupling the angle and energy

group will increase the iteration number of the ANFD

method. However, the ANFD computing costs are low

compared with those of MOC calculations, and they can be

reduced significantly using the multilevel acceleration

method, which has been implemented in several estab-

lished core simulators [22–24]. The main idea of the

multilevel acceleration method is to use a few-group

CMFD linear system, such as a one- or two-group CMFD,

to reduce the computing burden of the MG CMFD linear

system. The few-group CMFD linear system is used to

provide an effective estimation of the eigenvalue at the

beginning of each power iteration, thereby significantly

reducing the outer iteration number of the MG CMFD

linear system. Therefore, a new approach similar to the

multilevel acceleration method can be used to reduce the

iteration number of ANFD required for convergence. This

will be investigated further in future studies.

Meanwhile, if we wish to solve the linear system with

all angles coupled or all energy groups coupled, it would be

meaningless to maintain Cg;i;rn ¼ Cg;i;nr. In this case, we

will define the interior surface coupling coefficients

directly from Eq. (37), and the preconditioned CG method

will not be used.

3.2 Preconditioned Krylov subspace method

The direct solution of this linear system is unpractical as

the matrix can become highly ill-conditioned, causing

problems in the numerical solution. The Krylov subspace

method has been proven to be extremely effective for

solving large, nonsymmetric, sparse linear systems,

particularly when a good preconditioner is applied. In this

study, the right preconditioned generalized minimal resid-

ual (GMRES) method was used to solve the ANFD linear

system. The right preconditioned GMRES algorithm can be

summarized as follows:

Meanwhile, if we decoupling the energy group and

angle to construct a symmetric positive definite linear

system, then the preconditioned conjugate gradient method

can be used to solve the ANFD linear system. The left

preconditioned conjugate gradient algorithm can be sum-

marized as follows:
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As for precondition technology, a self-developed RSILU

preconditioner has been used to improve parallel comput-

ing capability and minimize computational burden. The

RSILU preconditioner does not require a multicolor

ordering strategy for parallel computing and can provide

convergence rates comparable to the standard incomplete

lower–upper preconditioner. More details are available in

the literature [25].

3.3 Iteration scheme of ANFD method

Once the node and surface angular flux obtained from

the MOC calculation become available, the ANFD

homogenized cross sections as well as the even and odd

parity discontinuity factors can be easily obtained using

Eqs. (16) and (30), respectively. The strategy of decoupling

the energy group and angle was used to construct the

ANFD linear system, and the coupling coefficients were

calculated using Eqs. (37)–(39). Hence, an equivalent

ANFD linear system can be established. It is noteworthy

that the asymmetric term arising from the construction of a

symmetric positive definite matrix should be updated with

the even party angular flux when solving the ANFD linear

system. The right preconditioned GMRES solver was used

to solve the ANFD linear system in this study. The exit

from the GMRES solver to the ANFD cycle occurs when

the required reduction in the relative L2-norm of the

residual vector is achieved.

After solving the ANFD linear system, new even parity

flux distributions and eigenvalues were obtained. To update

the 2D MOC parameters, the average scalar flux on each

node and the average angular flux on each surface were

reconstructed as follows, indicated as /g;r and wg;i;rn,

respectively:

/g;r ¼ 2p
XM

i¼1

wiw
þ
g;i;r

� �
ð44aÞ

wg;i;rn ¼
Xi � n̂j j
Xi � n̂

w
�
g;i;rn þ w

þ
g;i;rn ð44bÞ

The former was used to update the scalar flux in the flat

source regions, whereas the latter was used to update the

incident angular flux on the boundary surface. The M in

Eq. (44a) denotes the total number of discrete directions,

which is consistent with the number of MOC azimuthal

angles. After updating the average node scalar flux /g;r and

average surface angular flux wg;i;rn, 2D MOC calculations

were performed, and the cell-averaged cross sections as

well as the even and odd parity discontinuity factors were

updated. Subsequently, ANFD was performed using the

updated cross sections as well as the even and odd parity

discontinuity factors. This process was repeated until all

convergence criteria were satisfied. The iteration scheme of

the ANFD method is depicted in Fig. 2.

4 Numerical results

To investigate the equivalence of the ANFD method

proposed herein, a code written in the C language was

developed and three different test problems were selected:

2D pin, 2D assembly, and 2D C5G7 benchmark problems.

In addition, a self-defined problem was tested to compare

the acceleration capabilities of ANFD and CMFD in the

void region.

For all these problems, the flux convergence criterion

was 10–5 by comparing the infinite norm of the scalar flux

in the flat source region, and the eigenvalue convergence

criterion was 10–7. For the ray tracing parameter, a 0.01 cm

ray spacing with 72 azimuthal angles and a Tabuchi–Ya-

mamoto polar quadrature [26] with three polar angles per

half-space were used for all the problems. The computer

used to execute the code comprised an Inter(R) Core (TM)

i5-7200U CPU @ 2.50 GHz with an 8.0G RAM. The basic

computing unit for the ANFD was the pin cell.

For the 2D pin cell and 2D assembly problems, the

eigenvalue and flux distribution error in the angle, energy

group, and space were compared with those of the MOC

calculations. In addition, three parameters were selected to

assess the overall relative error of the even parity flux, i.e.,

the average relative error (AVG), root-mean-square of

relative error (RMS), and maximum relative error (MAX),

defined as follows:
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AVG ¼

P
N

enj j

N
; ð45aÞ

MAX ¼ max enf g; ð45bÞ

RMS ¼

ffiffiffiffiffiffiffiffiffiffiP
N
e2n

r

N
; ð45cÞ

where en is the relative error of the even parity flux com-

pared with that of the MOC solution, and N is the total

number of even parity fluxes.

4.1 2D pin cell problem

As indicated in Fig. 3a, the side length of the cell was

1.26 cm, and the radius of the fuel pins was 0.54 cm for the

2D pin cell problem. The cross-sections data for the UO2

fuel and moderator were obtained from the 2D C5G7

benchmark report. A vacuum boundary was applied to the

east and south boundary surfaces, and the reflected

boundary was applied to the north and west boundary

surfaces. Three moderator rings and five fuel rings with 16

azimuthal divisions were selected for 128 flat-source

regions.

For the 2D pin cell problem, Fig. 4a shows the angular

distribution of the even parity flux in the first energy group,

and Fig. 4b shows the energy group distribution of the even

parity flux in the first azimuth angle. It is clear that the even

parity flux distribution of the ANFD was consistent with

the MOC solution in both the angle and energy groups.

Table 1 shows the eigenvalue difference and overall even

parity flux relative error. The difference in the eigenvalue

was 0 pcm, and the flux maximum relative error was

3.683E-06.

4.2 2D assembly problem

As indicated in Fig. 3b, the 2D assembly problem

comprised a 17 9 17 lattice of square pin cells containing

a UO2 fuel pin cell, guide tube, and fission chamber. The

cross-sections data for these materials were obtained from

the 2D C5G7 benchmark problem. The division of the flat-

source region was the same as that of the 2D pin cell

problem. As for the boundary conditions, vacuum bound-

ary conditions were applied to the east and south boundary

surfaces, whereas the reflected boundary conditions were

applied to the north and west boundary surfaces.

Fig. 2 Iteration scheme of ANFD method

Fig. 3 (Color online) Layout of

2D pin and 2D assembly

problems

123

Equivalent low-order angular flux nonlinear finite difference equation of MOC transport calculation Page 9 of 13 125



Figure 5 shows the space relative error of the even

parity flux in the first energy group and first azimuth angle

for the 2D assembly problem. As shown, the even parity

flux distribution of the ANFD indicated a relatively good

agreement in space compared with the MOC solution.

Table 2 shows the eigenvalue difference and overall even

parity flux relative error for the 2D assembly problem. The

difference in the eigenvalue was 0 pcm, whereas the flux

maximum relative error was 1.162E-05.

4.3 2D C5G7 problem

The 2D C5G7 benchmark problem was originally a pin

cell level heterogeneous benchmark for testing the accu-

racy of modern deterministic transport methods and codes

without spatial homogenization. The 2D C5G7 problem

configuration is shown in Fig. 6. The overall geometry of

this problem was 64.26 cm 9 64.26 cm, and each assem-

bly measured 21.42 cm 9 21.42 cm. Each fuel assembly

comprised a 17 9 17 lattice of square pin cells, including a

moderator, guide tube, fission chamber, MOX fuel pin cell

with different enrichment, and UO2 fuel pin cell. For the

reflector pin cases, the six additional pin cells of each

reflector assembly used 1 9 1 sub mesh, whereas the 11

pin cells near the fuel used a 6 9 6 Cartesian sub mesh.

For the other pin cells of the fuel and control rods, 128 flat-

source regions comprising five fuel rings and three mod-

erator rings with 16 azimuthal divisions were used. An

accurate Monte-Carlo reference solution was provided in

the 2D C5G7 benchmark report, which contains a precise

eigenvalue solution and normalized pin power (NPP) that

can be used as a reference solution. The NPP (pr) in each

fuel pin is defined as follows:

pr ¼
Rf;r

Rf

; ð46aÞ

Rf;r ¼
XG

g¼1

Rf;g;r/g;rVr; ð46bÞ

Rf ¼

PN

r¼1

Rf;r

N
; ð46cÞ

where Rf;r is the fission rate in each fuel pin, Rf the average

fission rate of all fuel pins, and N the number of all fuel

pins.

Figure 7 indicates the percent error of the NPP for the

2D C5G7 benchmark problem; as shown, the main error

appeared in the fuel pin cell near the reflector.

Fig. 4 (Color online)

Normalized distribution of even

parity flux in azimuth angle and

energy group for 2D pin cell

problem

Table 1 Eigenvalue difference

and even parity flux relative

error for 2D pin cell problem

keff Flux relative error

MOC ANFD Error (pcm) AVG RMS MAX

0.01561 0.01561 0 3.495E-07 9.145E-07 3.683E-06

Fig. 5 (Color online) Even parity flux distribution relative error in

first energy group and first azimuth angle for 2D assembly problem
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Table 3 shows the eigenvalue difference and NPP error

from our results and the MCNP reference solutions.

Compared with the reference results, the error of the

eigenvalue was 3 pcm, which was less than the stochastic

uncertainty of the MCNP reference results. In general, the

eigenvalue, NPP, etc., agreed well with the reference

results.

4.4 Void region problem

The ANFD method was developed from transport theory

and does not require the calculation of the diffusion coef-

ficient. Therefore, the ANFD method may exhibit a better

acceleration than the CMFD method in certain strongly

anisotropic cases, such as those involving void regions and

anisotropic scattering. In this study, a lattice problem

involving void regions was constructed and tested; 5 9 5

square pin cells were set to the void regions, whereas UO2

fuel cells were used in the other regions. The geometry and

cross sections of the UO2 fuel cell were the same as those

provided in the 2D C5G7 benchmark report. The reflected

boundary conditions were applied to all boundary surfaces.

The layout of this void region problem is shown in Fig. 8.

The convergence history of the MOC, ANFD, and

CMFD is shown in Table 4 and Fig. 9. As expected, the

CMFD failed to converge in this problem, whereas the

ANFD converged and remained effective.

Void regions are typical in real reactors, such as TREAT

[27] and HTR-10 [28]. In a previous study [29], the quasi-

diffusion method was used to address the void region

problem in TREAT core analysis. In this study, the quasi-

diffusion method was implemented using the nodal

expansion method. Meanwhile, the nodal wise average

cross sections, Eddington factors, and discontinuity factors

were generated from 3D whole-core Serpent Monte-Carlo

simulations. By comparison, the ANFD is more concise

and only requires even and odd parity discontinuity factors

generated from MOC calculations.

5 Conclusion

In this study, an innovative equivalent low-order ANFD

method for MOC transport calculations was developed and

implemented. The even parity discrete ordinates method

was used to build a low-order ANFD equation, and dif-

ferent boundary condition treatments were proposed. Even

and odd parity discontinuity factors based on the flux

information obtained from MOC calculations were strictly

defined to ensure the equivalence between this low-order

equation and the high-order pin-resolved transport equa-

tion. The energy group and angle were decoupled to

Table 2 Eigenvalue difference

and even parity flux relative

error for 2D assembly problem

keff Flux relative error

MOC ANFD Error (pcm) AVG RMS MAX

0.96848 0.96848 0 1.030E-06 1.742E-06 1.162E-05

UO2 Fuel Guide Tube

4.3% MOX Fission Chamber

Moderate

8.7% MOX

7.0% MOX

Vacuum B.C.

Reflective B.C.

Re
fle

ct
iv
e
B
.C
.

Fig. 6 (Color online) Layout of 2D C5G7 benchmark problem

1 11 21 31 41 51

51

41

31

21

11

1

X Pin Index

Y
Pi
n
In
de
x

0.00%

0.13%

0.25%

0.38%

0.50%

0.63%

0.75%

0.88%

1.00%

1.13%

1.25%

Relative Error

Fig. 7 (Color online) Percent error of pin power for 2D C5G7

benchmark problem
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construct an easier-to-solve symmetric linear system. The

self-developed RSILU preconditioned GMRES solver was

applied to solve this linear system. The equivalence of the

ANFD method was verified for 2D pin, 2D assembly, and

2D C5G7 benchmark problems. The numerical results

demonstrated that a low-order ANFD equation that was

completely equivalent to the pin-resolved transport equa-

tion was established.

This study provides an important foundation for further

developing a novel acceleration technique based on the

ANFD method. Only an equivalent equation was estab-

lished, and a converged consistent solution was obtained to

achieve acceleration. In the future, the acceleration per-

formance of the ANFD will be tested. Meanwhile, we will

compare the pin-homogenized ANFD method with the pin-

Table 3 Eigenvalue and NPP

data for 2D C5G7 benchmark

problem

Parameters Reference MCNP (Statistic error) ANFD Error

Eigenvalue

keff (error/pcm) 1.18655 (± 9.5 pcm) 1.18652 -3 pcm

Specific NPP data

Maximum NPP (error) 2.498 (± 0.16%) 2.494 - 0.14%

Minimum NPP (error) 0.232 (± 0.58%) 0.234 ? 1.04%

Normalized assembly power data

Inner UO2 power (error) 492.8 (± 0.10%) 492.3 - 0.10%

MOX power (error) 211.7 (± 0.18%) 211.9 ? 0.10%

Outer UO2 power (error) 139.8 (± 0.20%) 139.9 ? 0.10%

NPP error results

MAX error – 1.25% –

AVG error 0.32% 0.21% –

RMS error 0.34% 0.30% –

MRE error 0.27% 0.16% –

UO2 Fuel Void Region
Reflective B.C.

Reflective B.C.

Re
fle

ct
iv
e
B
.C
.

Fig. 8 (Color online) Layout of lattice case involving void regions

Table 4 Acceleration

performances of ANFD and

CMFD

keff Error MOC iteration number Speedup

No acceleration 1.32592 – 91 –

CMFD Divergence – – –

ANFD 1.32602 10 pcm 11 8.3

Fig. 9 (Color online) Convergence histories of MOC, ANFD, and

CMFD
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homogenized MG CMFD method, which is widely used to

accelerate MOC calculations. Our preliminary analysis

indicated that the ANFD method achieved an excellent and

stable acceleration performance compared with the CMFD

method when void regions existed. Other anisotropic cases,

such as anisotropic scattering, will be tested in our future

studies. Subsequently, Fourier analysis will be used for

convergence analysis. Additionally, we will investigate the

use of the multilevel acceleration method to reduce the

computing burden of ANFD and then attempt to extend this

method to 3D cases.
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