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Abstract We present a concise review of the recent

development of relativistic hydrodynamics and its appli-

cations to heavy-ion collisions. Theoretical progress on the

extended formulation of hydrodynamics toward out-of-

equilibrium systems is addressed, with emphasis on the so-

called attractor solution. Moreover, recent phenomenolog-

ical improvements in the hydrodynamic modeling of

heavy-ion collisions with respect to the ongoing beam

energy scan program, the quantitative characterization of

transport coefficients in three-dimensionally expanding

quark–gluon plasma, the fluid description of small collid-

ing systems, and certain other interdisciplinary connections

are discussed.
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1 Introduction

Smashing heavy nuclei at high energies in large particle

accelerators routinely creates extreme conditions to study

the properties of many-body systems whose interactions

are governed by quantum chromodynamics (QCD). Within

a few yoctoseconds (10�24 s), the collision systems are

compressed to 1030 atm and reach several trillion degrees

Kelvin. A novel state of matter with deconfined quarks and

gluons is formed under such extreme conditions, which is

called quark–gluon plasma (QGP).

The QGP created in laboratories is a relativistic

dynamical system, which expands and evolves like a nearly

perfect liquid [1]. The size of the liquid droplet depends on

the size of the colliding nuclei, which may vary from O(10)

fm in gold–gold collisions at the Relativistic Heavy-Ion

Collider (RHIC) at the Brookhaven National Laboratory, or

lead–lead collisions at the Large Hadron Collider (LHC) at

CERN, to O(1) fm in small colliding systems such as the

proton–lead or even proton–proton collisions carried out at

these facilities. The fluidity of QGP is one of the main

subjects that has been explored in heavy-ion collisions.

From experiments, it has been analyzed extensively

through various types of long-range multiparticle correla-

tions of the observed hadrons, known as the signatures of

collective flow [2–4]. Theoretical model calculations using

relativistic viscous hydrodynamics successfully character-

ize these flow observables, which makes relativistic

hydrodynamics the ‘‘standard model’’ in heavy-ion colli-

sions [5–10].

Phenomenological analyses within hydrodynamic

frameworks provide the most efficient, robust, and effec-

tive tool to extract many-body QCD. For instance, as the

macroscopic emergence of the interactions among quarks
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and gluons, transport coefficients in the QGP medium can

be inferred from comparisons between hydrodynamic

models and experimental data. To date, the specific shear

viscosity, that is, the ratio between the shear viscosity and

entropy density, g=s, has been constrained to values very

close to a lower theoretical bound �h=4pkB, suggesting that

QGP is a strongly coupled medium [11, 12]. The specific

bulk viscosity has been extracted as well, leading to a

temperature dependence [13]. In addition to the transport

coefficients, the properties of QCD are also hidden in the

equation of state (EoS). These include the relations among

the local energy density, pressure, entropy density, and

speed of sound cs. Certain ongoing attempts through

hydrodynamic modeling have achieved results compatible

with the solutions of lattice QCD [14, 15].

These efforts to study transport coefficients and the EoS

based on hydrodynamics are essential for a quantitative

characterization of QCD matter. In particular, a reliable

hydrodynamic description of the system evolution is cru-

cial for the search for a conjectured QCD critical point and

its associated first-order phase transition between QGP and

hadron gas at a finite baryon density [16]. Searching for the

QCD critical point is the focus of the current Beam Energy

Scan program (BES) at RHIC. However, extensions of the

hydrodynamic model to cases involving finite baryon

densities are challenging, especially considering the sig-

nificant hydrodynamic fluctuations of baryon density

associated with the QCD critical point. The difficulty stems

not only from improving the model itself, such as the

baryon charge in the EoS, but also from the requirement for

fundamental progress in the theoretical formulation of

hydrodynamics such that stochastic hydrodynamic fluctu-

ations may be taken into account systematically [17–23],

and novel hydrodynamic modes due to the effect of critical

slowing down can be included [24–27]. When nonzero

baryon density is involved, the questions of how the col-

lective behavior of the QGP is changed and, correspond-

ingly, how the observed correlations of these generated

hadrons are modified must be answered in the hydrody-

namic modeling. The success of hydrodynamics and its

applications to heavy-ion collisions also yields many sur-

prises. Although in large systems created in high-energy

nucleus–nucleus collisions, various measurables with

respect to the collective flow have been found to be con-

sistent with hydrodynamic modeling [28], the application

of hydrodynamic modeling to small systems such as those

created in proton–nucleus collisions [29–31] is not

straightforward, owing to the significant reduction in sys-

tem size and high expansion rate [32, 33]. The ‘‘unrea-

sonable effectiveness’’ [10, 28, 34, 35] in describing the

collectivity in the small colliding systems has qualitatively

modified the understanding of QCD system thermalization

[36]. The condition of the onset hydrodynamics

(hydrodynamization) is quite relaxed. The traditionally

recognized hydrodynamic and nonhydrodynamic modes

and propagation of these modes [37, 38] have been gen-

eralized largely beyond local thermal equilibrium. Out-of-

equilibrium hydrodynamics, a novel concept associated

with the discovery of attractor solutions in various

dynamical systems [39], has been proposed as a theoretical

candidate to generalize the applicability of hydrodynamics.

In recent years, significant progress has been made in

developing the theoretical formulation of out-of-equilib-

rium hydrodynamics.

The successful phenomenological application of rela-

tivistic fluid dynamics in heavy-ion collisions and the

continuous support and challenges from the RHIC and

LHC experiments have led to a vibrant program that unites

research from traditionally separate disciplines such as

string theory, computational physics, statistics, nuclear

physics, and high-energy physics. Recently, the direct

detection of gravitational waves from black holes and

neutron star mergers [40–42] has added another intercon-

nection with relativistic heavy-ion collisions at large bar-

yon densities.

This review focuses on these recent developments in

out-of-equilibrium hydrodynamics and highlights some of

the current state-of-the-art phenomenological applications

of hydrodynamic frameworks to describe the dynamics of

relativistic heavy-ion collisions.

In Sect. 2, we review the theoretical formulation of out-

of-equilibrium hydrodynamics at an introductory level.

This is presented first from the extension of second-order

viscous hydrodynamics to systems with large local gradi-

ents quantified by the Knudsen number in the Bjorken flow.

An attractive solution from such a dynamical system

emerges naturally, as a consequence of the existence of

fixed points in both the free-streaming and hydrodynamic

regimes. The relation between the attractor and the

asymptotic hydrodynamic gradient expansion is also

addressed in the context of the trans-series solution and

resurgence properties in the theory of asymptotic series. An

alternative approach from kinetic theory is discussed in

terms of a set of moments of the phase-space distribution

function. These moments are coupled through their equa-

tions of motion. The lowest orders of the equation reduce

to the familiar hydrodynamic equation of motion when the

gradients of the system tend to vanish. Out-of-equilibrium

effects can be accounted for by higher-order moments,

whose contribution to the system evolution out of equi-

librium results in an effective correction of the transport

coefficients.

Section 3 covers the state-of-the-art applications of

(3?1)D hydrodynamics and hadronic transport framework

for heavy-ion collisions at intermediate and high collision
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energies. The experimental programs at
ffiffi

s
p

�Oð10Þ GeV
are extremely exciting to map out the phase structure of

QCD matter at finite net baryon densities. In the meantime,

the 3D hydrodynamic framework also opens a new

dimension to study event-by-event fluctuations along the

longitudinal direction. Because it is difficult to calculate

the transport properties of QGP from first principles,

quantitative characterizations of QGP have been driven by

phenomenological analyses. We will summarize the col-

lective effort in constraining the specific shear and bulk

viscosity over the past decades and highlight recent efforts

toward accessing the baryon diffusion constant in QGP.

While hydrodynamics becomes the standard theory to

describe large heavy-ion systems, smaller collisions in

p?A and p?p systems challenge the conventional picture

of the validity region of hydrodynamics. We have started to

see a connection between the leading development of an

out-of-equilibrium hydrodynamics formulation and strong

collectivity in these small systems. Finally, we highlight

some interdisciplinary connections between heavy-ion

physics and nuclear structure physics as well as statistics

and machine learning applications.

2 Out-of-equilibrium hydrodynamics

We start with a brief introduction to the fundamental

concepts of viscous hydrodynamics that have been applied

in the study of high-energy heavy-ion collisions. As an

essential ingredient of hydrodynamic modeling, it should

be emphasized that a truncation at the second order in

gradients is generally considered in these viscous hydro-

dynamics formulations. This is to be distinguished from

certain recent developments in out-of-equilibrium hydro-

dynamics, which often involve gradients to infinite orders.

2.1 Viscous hydrodynamics

Hydrodynamics is a low-energy effective theory that

describes the evolution of long-wavelength modes in a

dynamical system. These are slow modes, commonly

known as hydrodynamic modes, which obey a set of

hydrodynamic equations of motion stemming from con-

servation laws. The conservation of energy and momen-

tum, for instance, olT
lm ¼ 0, plays a key role in

determining the space–time evolution of hydrodynamic

fields: local energy density �, pressure P, and fluid four-

velocity Ul [7].1 The general form of the energy–mo-

mentum tensor Tlm is given in the corresponding consti-

tutive relation as

Tlm ¼ �UlUm � ðP þPÞDlm þ plm: ð1Þ

The projection tensor is defined as

Dlm ¼ glm � UlUm; ð2Þ

such that the spatial gradient can be formulated in a

covariant form rl ¼ Dlmom. For convenience, we also

define the comoving time derivative D ¼ Ulol, with which

a four-vector can be decomposed into a temporal compo-

nent and a spatial component with respect to the fluid four-

velocity Ul. In particular, the normal derivative can be

separated as ol ¼ rl þ UlD.

In addition to ideal hydrodynamics corresponding to a

fluid system in local thermal equilibrium,

Tlm
ideal ¼ �UlUm � PDlm; ð3Þ

there are viscous corrections in the energy–momentum

tensor Tlm to capture deviations of the fluid system from

the local thermal equilibrium. In the framework of viscous

hydrodynamics, these corrections are formulated in terms

of an expansion over spatial gradients of the hydrodynamic

fields. More precisely, this expansion is characterized by

the Knudsen number, Kn, which is essentially the dimen-

sionless ratio of the microscopic to the macroscopic length

scale. For the bulk pressure P and the shear stress tensor

plm, one has up to the first order in gradient, the Navier–

Stokes hydrodynamics,

plm ¼ 2ghrlUmi þ Oðr2Þ;
P ¼ �fr � U þ Oðr2Þ;

ð4Þ

where g and f are the shear and bulk viscosities, respec-

tively. These are the transport coefficients determined by

interactions among fluid constituents, reflecting the

dynamic nature of the underlying theories. For Eq. (4), the

Knudsen number can be approximately read as [32],

Kn� jghrlUmij
P or

jfr � Uj
P : ð5Þ

In Eq. (4) and in what follows, the brackets around tensor

indices indicate a symmetric, transverse, and traceless

projection of a tensor, i.e.,

hAlmi ¼ DlmabAab; ð6Þ

where

Dlmab � 1

2
DlaDmb þ DlbDma� �

� 1

3
DlmDab: ð7Þ

In the spirit of the hydrodynamic gradient expansion,

Eq. (4) can be systematically extended to higher orders. In

particular, considering the fact that the resulted equations

of motion from Navier–Stokes hydrodynamics are acausal,

the extension to elevating the dissipative currents to
1 We normalize the four-velocity as UlUl ¼ 1, corresponding to the

mostly negative metric convention: glm ¼ ðþ;�;�;�Þ.
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dynamical degrees of freedom is necessary.2 For practical

simulations, acausal modes can be remedied by using the

Israel–Stewart formulation [44], with second-order gradi-

ent terms included. These terms relax to the Navier–Stokes

form, with the relaxation effect specified by the shear and

bulk relaxation times, sp and sP. With respect to conformal

symmetry, the second-order shear stress tensor is com-

pletely determined by BRSSS hydrodynamics [45],

plm ¼ ghrlUmi � sp
hDplmi þ 4

3
plmr � U

� �

� k1
g2

phl ap
mia � k2

g
phl aX

mia � k3X
hl

aX
mia;

ð8Þ

where, in addition to the shear relaxation time sp, k1, k2,
and k3 are independent second-order transport coefficients.
For conformal fluids, these transport coefficients are known

[12, 45] and can be parameterized as [46, 47]

g ¼ Cgs; sp ¼ CsCg

T
; k1 ¼ Ck1

s

T
; ð9Þ

where the local entropy density s / T3. For consistency

and considering a weakly coupled system, in the current

review, we shall take the evaluations from kinetic theory

for a conformal system, which are [12, 48],3

Cg ¼
1

4p
; Cs ¼ 5; Ck1 ¼

5

7
CgCs: ð10Þ

There exist other variant forms of second-order viscous

hydrodynamics in addition to Eq. (8), when conformal

symmetry is not guaranteed [49]. Note that Eq. (8) is

consistent with the Müller–Israel–Stewart theory [44],

which relaxes to Eq. (4) when the relaxation time sp ! 0.

Note also that there are more tensor structures arranged in

the second-order terms, such as the vorticity tensor Xlm,

Xlm ¼ rlUm �rmUl, whereas for Navier–Stokes hydro-

dynamics, only one term is involved.

Extension to even higher orders has been considered in

the literature (cf. [50, 51]), with more tensor structures

introduced with correspondingly new transport coefficients.

As a consequence of the increasing number of tensor

structures, it is expected at the nth order, the number of

new transport coefficients, or the number of new tensor

structures scales as n!. This factorial increase essentially

affects the convergence properties of the hydrodynamic

gradient expansion such that it is rather asymptotic than

convergent [39, 52, 53].4 In addition to the shear channel,

the asymptotic property of the hydrogradient expansion

exists in the bulk and diffusion channels as well. In prin-

ciple, the applicability of the classical framework of

hydrodynamics relies on the analysis of gradient

expansion.

In a similar way, the charge conservation gives

olJ
l ¼ 0, where the conserved current of hydrodynamics

undergoes dissipative corrections as well,

Jl � Jlideal þ Il ¼ nUl þ Il; ð12Þ

with

Il ¼ rTrl l
T

� �

þ Oðr2Þ; ð13Þ

and r is the corresponding conductivity of the conserved

charge. For heavy-ion collisions, the net baryon number,

which is related to the QCD critical behavior, is commonly

considered in hydrodynamic analysis. As in the shear

channel, acausal modes can be avoided by extending the

constitutive relation in Eq. (13) to the Cattaneo equation

with a finite relaxation time sQ [56],

Il ¼ rTrlð1þ sQDÞ�1 l
T

� �

: ð14Þ

For most theoretical analyses carried out with respect to

QGP in high-energy nucleus–nucleus collisions, with up to

second-order viscous corrections, the aforementioned

equations provide the essential ingredient of a successful

phenomenological model that captures the system evolu-

tion. Together with the EoS provided by lattice QCD

simulations, e.g., P ¼ PðeÞ, numerical solutions to the

hydrodynamic modeling give rise to the space–time evo-

lution of the hydrodynamic fields, which eventually

reaches freeze-out and yields the observed particles in

experiments. More details on phenomenological modeling

will be provided later in Sect. 3.

2.2 Hydrodynamization and out-of-equilibrium

fluid dynamics

Hydrodynamic modeling has been successfully applied

to small colliding systems. For the high-multiplicity events

of proton–lead [29, 57–59], 3He–gold, deuteron–gold

[60–62], and even proton–proton collisions [30], the

observed multiparticle correlations were found to be
2 Causality and stability can be achieved in first-order viscous

hydrodynamics as well but within a frame other than the choice by

Landau and Lifshitz or Eckart [43].
3 These transport coefficients have different evaluations for a

strongly coupled system. From the N ¼ 4 super-YM field theory,

they are [45]

Cs ¼
2� log 2

2p
; Ck ¼

1

2p
: ð11Þ

.

4 The convergence of the hydrogradient expansion also depends on

the detailed identification of the expansion parameter. For instance,

the dispersion relation consisting of perturbations around equilibrium

gives rise to a series expansion in terms of the wave number, which is

convergent [cf. Ref [54]]. On the contrary, for series expansion in real

space over spatial gradients, the convergence property may depend on

the initial condition [55].
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compatible with hydrodynamic predictions [63, 64].

Compared to nucleus–nucleus collisions, in these systems,

the created QGP fireball is expected to be small and short-

lived. Even though the application of hydrodynamics suf-

fers from small system size and finite evolution time,

which in turn gives large spatial gradients, the question of

why hydrodynamics is ‘‘unreasonably’’ successful in small

colliding systems is one of the recent focuses in the heavy-

ion community, which has motivated extensive theoretical

development of out-of-equilibrium hydrodynamics

[9, 46, 65–73, 73–80].

When applied to realistic simulations of heavy-ion col-

lisions, the framework of viscous hydrodynamics assumes

a valid truncation of the gradient expansion at second order

in the gradients. The validity of the truncation requires that

the QGP system is locally close to thermal equilibrium

such that in the equation of motion OðKn3Þ � OðKn2Þ. In
this way, gradient corrections of order higher than or equal

to OðKn3Þ can be safely neglected. In heavy-ion collisions,

this is by assumption satisfied at a timescale s0 when the

QGP created from heavy-ion collisions approaches local

thermal equilibrium (thermalization), or when the system

evolution starts to be captured by second-order fluid

dynamics (hydrodynamization). It should be emphasized

that hydrodynamization is a more relaxed condition than

thermalization, which does not require isotropization

between the longitudinal and transverse pressures, and the

finite pressure difference PL � PT is accounted for by

dissipative effects.

Compared to the lifetime sf of QGP in heavy-ion col-

lisions, it is obvious that only when s0 � sf can the fluid

dynamics description of the system evolution be reliable.

For a strongly coupled QGP medium, a theoretical analysis

based on AdS/CFT estimates that hydrodynamization

scales inversely to temperature, s0 � 1=T [81]. On the

contrary, if the QGP system is weakly coupled, and the

fundamental interactions are scattering events among

quarks and gluons characterized by perturbative QCD, the

onset of hydrodynamics is related to the strong coupling

constant as and saturation scale Qs such that s0 � axsQ
�1
s

[82], where the exponent x is a constant negative number.

However, given the actual values of the strong coupling

constant and Qs in heavy-ion collisions, the expected s0 in
realistic QGP systems could be rather large [82]. We

concentrate on the weakly coupled system in the present

discussion.

Despite all the estimates of s0 in various theories, how

the systems created in heavy-ion collisions evolve toward

fluids is an outstanding question. A schematic illustration

of the early stages of system evolution in heavy-ion colli-

sions, considering more realistic situations that are com-

patible with QCD, is shown in Fig. 1. The created medium

is believed to experience at first the stage of the classical

gluon field. This is a color glass condensate (CGC) picture

[83], in which the system evolution is dominated by a

saturated gluon field. The longitudinal and transverse

pressures in the gluon field are highly anisotropic [84]. As

the system expands and the density of the gluon field

decreases, around s� 1=Qs, a kinetic theory description

becomes available for gluons. In the kinetic theory

description, isotropization is eventually achieved via scat-

tering among quarks and gluons, against the effect of

longitudinal expansion. In Fig. 1, isotropization is charac-

terized in terms of the ratio of longitudinal to transverse

pressure (blue lines), PL=PT . The blue dashed lines and the

solid line correspond to various initializations due to

quantum fluctuations around 1=Qs, which lead to different

pressure anisotropies PL=PT when the kinetic theory

description starts. At late times, regardless of the arbitrary

initial conditions, the evolution of pressure anisotropy

becomes universal. At around s0, the second-order viscous
hydrodynamics starts to dominate, and PL=PT approaches

unity, that is, close to local thermal equilibrium.

The existence of such a universal evolution as illustrated

in Fig. 1 has been proved by various theoretical analyses.

This uniquely implies the value of s0, irrespective of the

initial conditions. Moreover, it provides a novel and

extended description of the system evolution that applies to

out-of-equilibrium system evolution. This is the funda-

mental idea of out-of-equilibrium hydrodynamics. This

universal evolution, which is dubbed an ‘‘attractor,’’ can be

shown beyond the characterization of hydrodynamics,

including infinite orders in the gradient expansion. To date,

studies based on attractor solutions have been found to be

theoretically feasible in certain highly symmetric expand-

ing systems, such as the Bjorken flow

[33, 39, 46, 47, 66, 67, 70, 73, 80, 85–88] and Gubser flow

[68, 78, 79, 89, 90], and numerically in less symmetric

systems [69]. It has been solved with respect to the equa-

tion of motion from hydrodynamics as well as kinetic

theory. From both perspectives, we shall present a pedes-

trian introduction to the derivation of the attractor

solutions.

2.2.1 From fluid dynamics

As an example, we first present the analysis with respect

to conformal fluids and Bjorken symmetry. Bjorken sym-

metry is a good approximation for the system created in

high-energy heavy-ion collisions in its very early stages

[85]. It describes the longitudinal boost-invariant expan-

sion of the medium along the beam axis (which we identify

as z), while transverse expansions along the x- and y-axes

are ignored. Boost-invariant symmetry is motivated by

observations in high-energy collisions in the mid-rapidity
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region [85], and considering the fact that longitudinal

expansion dominates at the stage shortly after collisions

allows one to ignore transverse expansions.

Instead of using the usual Minkowski space–time

coordinates t and z, with the new Milne coordinates,

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � z2
p

; n ¼ tanh�1ðt=zÞ; ð15Þ

the Bjorken flow is simplified such that hydrodynamic

fields can be written independently of the space–time

rapidity n. In the Milne coordinate system, the fluid four-

velocity under Bjorken symmetry is fully determined as

Us ¼ 1; Ux ¼ Uy ¼ Un ¼ 0: ð16Þ

Therefore, considering that the metric is rewritten as

ds2 ¼ glmdx
ldxm ¼ ds2 � s2dn2 � dx2?, gradients of the

fluid fields are reduced, and all are related to the proper

time s; for example,

r � U ¼ � 3

4
rnn ¼

1

s
: ð17Þ

This relation implies a unique expression of the Knudsen

number for the Bjorken symmetry, that is, Kn�1 � s=sp.
The equation of motion of hydrodynamics, olT

lm ¼ 0,

becomes

os� ¼ � 4

3

�

s
þ
pnn
s
: ð18Þ

Without dissipation, the above equation has an analytic

solution for the energy density, ideal hydrodynamic evo-

lution, �� s�4=3. It should be noted that the exponent �4=3

is the characteristic decay rate of the energy density in the

ideal and conformal fluid experiencing Bjorken expansion.

With dissipative corrections, the expected full solution of

the energy density consists of gradient corrections,

�� s�4=3 1þ
X

n

O
sp
s

� �n
 !

: ð19Þ

One may check that in the conformal fluid with respect to

Bjorke symmetry, the only nonzero components of the

shear stress tensor are pnn ¼ �2pxx ¼ �2pyy. Similarly, the

vorticity tensor Xlm vanishes. By defining p ¼ pnn, and

given all the information in the Bjorken flow, the consti-

tutive relation for p follows from the BRSSS theory,

Eq. (8), as

p ¼ � 4

3

g
s
� sp

dp
ds

þ 4

3

p
s

� �

þ k1
2g2

p2; ð20Þ

which is a nonlinear first-order differential equation.

Without the constraint of conformal symmetry, the equa-

tion of motion is not unique. For instance, it can also be

formulated according to the DNMR approach as [49]

p ¼ � 4

3

g
s
� sp

dp
ds

þ bp
p
s

� �

� vs2p
g

p2

s
; ð21Þ

where bp and v are the transport coefficients in this alter-

nate formulation. It should be noted that bp and v are

related to the second-order transport coefficients appearing

in BRSSS hydrodynamics (cf. Eq. (78)). It is worth men-

tioning that, for some evaluations of the transport coeffi-

cients, such as constant sp, the coupled equations of motion

in Eqs. (20) and (21) can be solved analytically [87, 91].

To proceed, one needs to solve the coupled equations,

Eqs. (18) and (20) and to construct the hydrogradient

expansion accordingly. A convenient way to do so is to

introduce

gðwÞ � d ln �

d ln s
¼ �1� PL

�
; ð22Þ

as a function of the inverse Knudsen number

w � s=sp: ð23Þ

0

Gauge fields

hydro

1

kinetic theory

out−of−equilibrium hydro

0+ 1/Qs

τ

PL/PT −→ Thermalization

τ0

Fig. 1 Schematic illustration of the early-time stages of the system

evolution in high-energy heavy-ion collisions, describable respec-

tively starting from initial time of heavy-ion collisions by classical

gauge theory for the gluon field, then around s� 1=Qs by kinetic

theory for quarks and gluons, and by fluid dynamics for

hydrodynamic variables such as pressure and energy density after

hydrodynamization. The blue lines indicate the longitudinal-to-

transverse-pressure ratio, PL=PT , characterizing how far the system

is from the local thermal equilibrium, i.e., PL=PT ¼ 1
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Apparently, g(w) characterizes the decay rate of the energy

density and is related to the pressure ratio. Although in the

conformal case, dw=ds[ 0 is satisfied, w is more signifi-

cant than purely a timescale. A small w could indicate an

early time of the system evolution, but it can also be

interpreted as the system being far away from local equi-

librium. On the contrary, a large w could indicate a late

time, but it also corresponds to systems close to the local

equilibrium.

After some algebra, rewriting the coupled equations in

terms of g(w), one realizes a nonlinear first-order differ-

ential equation,

w
dg

dw
1þ g

4

� �

þ gþ 4

3

	 
2

1þ 3w

8

Ck

Cg

� �

þ w gþ 4

3

	 


� 16

9

Cg

Cs
¼ 0;

ð24Þ

where the transport coefficients have been substituted by

the parameterization constants.

With the initial conditions of the function g(w) given,

we can solve Eq. (24). Numerical solutions are presented

in Fig. 2, together with the results obtained from the vis-

cous hydrodynamic solution with viscous corrections up to

the first, second, and 50th order (solid blue, orange, and red

lines, respectively). In comparison with the full solutions, it

is apparent that hydrodynamics with truncated viscous

corrections are valid only when w � 1, as anticipated.

Moreover, including more viscous corrections does not

help to improve the solution out of equilibrium. This is a

direct consequence of the fact that hydrogradient expansion

is not convergent, as we shall detail later.

As shown in Fig. 2, full numerical solutions starting

from various initial conditions merge to a single curve,

indicated by the solid black line, around w.1. This solid

black line is known as the attractor solution, which in a

dynamical system is often referred to as a solution col-

lected in the phase space irrespective of initial conditions

[80]. This attractor solution in hydrodynamics was first

noticed in the context of the Bjorken flow [39, 46], and

later in the Gubser flow (cf. Ref [91]). It is also realized in

the solution of the kinetic equation for weakly coupled

media and strongly coupled media using AdS/CFT

[69, 71]. The attractor solution offers a valid and universal

description of the system evolution, even if w.1. There-

fore, it extends the applicability of hydrodynamics to out-

of-equilibrium systems.

Numerically, the attractor solution can be solved with

respect to a special initial condition, corresponding to the

free-streaming stable fixed point. Analytically, the emer-

gence of an attractor solution in the nonlinear differential

equation can be understood in terms of either the evolution

of (pseudo)fixed points or the Borel resummation of the

hydrodynamic gradients.

Fixed point analysis Eq. (24) has singularities at w ¼ 0

and infinity, between which the solution is expected to be

analytic. Hence, it is worth examining the two extremes:

the far-from-equilibrium extreme with w ! 0þ and the

close-to-local-equilibrium extreme with w ! þ1. In

particular, one should concentrate on the stable fixed points

in these extremes that govern the system evolution.

Because w ! 0þ is equivalent to setting sp ! 1,

which corresponds to infinitely weak interactions among

fluid constituents, the far-from-equilibrium extreme can

also be interpreted as system evolution determined entirely

by expansion. This is known as free streaming. In the limit

of small w, the nonlinear differential equation is reduced to

an algebraic equation,

gþ 4

3

	 
2

� 16

9

Cg

Cs
¼ 0; ð25Þ

with its two solutions given as (g�\gþ)

g� ¼ � 4

3
1	

ffiffiffiffiffiffi

Cg

Cs

r

	 


: ð26Þ

These are the two fixed points of free streaming, and gþ
corresponds to a stable point while g� leads to an unsta-

ble fixed point. That is, if the system is initialized at gþ, it
will stay at gþ for a purely expanding system. In pure free-

streaming systems, perturbations around the stable fixed

point decay with time, and the decay rate scales as a power

law [33, 73],

0.001 0.010 0.100 1 10 100
–1.35

–1.30

–1.25

–1.20

–1.15

–1.10

–1.05

–1.00

w

g(
w

)

Fig. 2 (Color online) Numerical solution of g(w) to the conformal

second-order fluid dynamics with respect to various initial conditions

(dashed lines). The solid black line corresponds to the attractor

solution, starting from the free-streaming stable fixed point gþ of the

evolving system when w ! 0þ. Solutions from random initial

conditions (dashed lines) converge toward the attractor solution when

w� 1. The leading order slow-roll approximation of the attractor

solution is indicated by the solid purple line Eq. (30). Results with

corrections from first order, second order, and up to 50th order in

viscous hydrodynamics are plotted as solid blue, orange, and red

lines, respectively
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dgðwÞ� s
sini

	 
�ðgþ�g�Þ
: ð27Þ

This power law decay qualitatively explains the observed

pattern of g(w) evolution at early times in Fig. 2.

In the opposite limit that w ! þ1, the Knudsen num-

ber is small enough that the system approaches the

hydrodynamic regime. Given Eq. (19) and the definition of

g(w), it is not difficult to notice that in the limit of

w ! þ1,

gðwÞ ! ghyd ¼ � 4

3
; ð28Þ

which is the energy density decay rate of ideal hydrody-

namics. This is the hydrodynamic fixed point, to be reached

as long as hydrodynamization is realized in a system.

In fact, a convenient way to reveal the properties of

these fixed points and to understand how these fixed points

emerge from Eq. (24) in both extremes, is to define

effectively a beta function. By considering the root of

dg=dw ¼ 0, one effectively defines

bBRSSSðw; gÞ � gþ 4

3

	 
2

1þ 3w

8

Ck

Cg

� �

þ w gþ 4

3

	 


� 16

9

Cg

Cs
:

ð29Þ

The root of Eq. (29) encodes the information of fixed

points in Eq. (26) and in Eq. (28). Figure 3 shows an

illustration of the beta function for various values of w,

from a small value (w ¼ 0:01) in the vicinity of free

streaming, to a large value (w ¼ 10) in the hydrodynamic

regime. The root of the beta function appears as the

intersection of the solved line with the x-axis, and the

stable fixed point corresponds to the crossing with a neg-

ative slope. Indeed, as w increases from w ¼ 0:01, where

the crossing gives rise to a stable fixed point at approxi-

mately gþ 
 �1:165 (and an unstable fixed point at

approximately g� 
 �1:502, at which dg=dw[ 0), the

stable fixed point moves smoothly toward the hydro fixed

point at ghyd ¼ �4=3. It should be noted that the hydro

fixed point is highly stable because it is related to the

crossing with an infinite negative slope. Accordingly, the

unstable fixed point evolves from the free-streaming sys-

tem to a super-unstable fixed point in the hydro regime,

around g ¼ � 4
3

1þ 2Cg

Ck1

� �

¼ �2:08, which again is a root

of bBRSSS ¼ 0 in the limit of w ! þ1.

One may consider the accumulation of all these solved

stable fixed points from the beta function to form an ana-

lytical representation of the attractor. This is shown in

Fig. 2 as the solid purple line. Indeed, this approximation

correctly captures the system evolution in both extremes,

but deviates when w� 1, even though this deviation is

relatively small. This approximation procedure coincides

with the leading-order approximation using the slow-roll

expansion [46, 70, 91, 92], in which one neglects the

derivative in Eq. (24) for the lowest-order estimate:

dg=dw� 0,

gslow�rollðwÞ ¼ � 4

3
þ 1

2þ 3w
4

Ck
Cg

h

� w

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2 þ 16

9

Cg

Cs
4þ 3w

2

Ck

Cg

	 


s

i

ð30Þ

This is also compatible with the adiabatic evolution of a

ground-state eigenmode (slowest mode), as determined by

the linear system of the original coupled hydrodynamic

equation of motion [75].

Hydrogradient expansion, trans-series, and resurgence

The hydrodynamic gradient expansion is a power series in

terms of the Knudsen number, that is, 1/w,

ghydroðwÞ �
X

1

n¼0

fn
wn

: ð31Þ

Substituting the expansion into Eq. (24), we find the

recursion relation for the expansion coefficients,5

5 Note that this recursion relation differs from that in [47] by

rescaling w ! Csw and fn ! 1� fn=4.

w=0.01

w=0.2

w=1

w=10

–1.5 –1.4 –1.3 –1.2 –1.1 –1.0
–0.10

–0.05

β

0.00

0.05

0.10

g

BR
SS

S
(w

,g
)

Fig. 3 Numerical evaluation of the beta function Eq. (29) for

different values of w. Each intersection with the x-axis represents the

(pseudo) fixed point at the corresponding w. The blue dot indicates the
location of the hydrodynamic fixed point, corresponding to w ! 1.

A similar figure can be found in [93]
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� n� 8

3

	 


fn þ
X

n

k¼0

1� k

4

	 


fkfn�k:þ 1þ Ck

Cg

	 


fnþ1

þ 3

8

Ck

Cg

X

nþ1

k¼0

fkfnþ1�k þ 1� Cg

Cs

	 


16

9
dn;0

þ 2

3
2þ Ck

Cg

	 


dn;�1 ¼ 0:

ð32Þ

The leading-order solutions of the above equation are

f0 ¼ � 4

3
and � 4

3
1þ 2Cg

Ck

	 


; ð33Þ

in agreement with those fixed points in the hydrodynamic

regime found earlier from the root of the beta function, as

anticipated. The super-unstable fixed point is nonphysical

and is not expected in realistic solutions. Starting from the

hydrodynamic fixed point f0 ¼ �4=3, using Eq. (32) iter-

atively, one is able to obtain the expansion coefficients to

arbitrary order. For instance, one finds f1 ¼ 16
9

Cg

Cs
. In fact, it

can be shown that the magnitudes of these coefficients

exhibit factorial growth, fn � n!. This factorial growth can

be recognized by noticing the ratio

fnþ1

fn
! S�1ðnþ bÞ þ O

1

n

	 


; ð34Þ

for a large n in Eq. (32). The parameters S and b are real

constants. With respect to Eq. (24), they are determined as

S ¼ 3

2
; b�1 ¼ � 2Cg

Cs
: ð35Þ

Therefore, the leading-order contribution to the coefficients

at very large n is fn �Cðnþ bÞ=Snþb � n!. The factorial

growth of the expansion coefficients results in the well-

known statement that the hydrodynamic gradient expan-

sion is rather asymptotic than convergent, which has a

vanishing radius of convergence. Asymptotic series are

commonly seen in physics, such as the perturbative

expansion in quantum field theory [94–96] and the WKB

approximation in quantum mechanics [97, 98].

One way to reveal hidden information in the gradient

expansion, especially the emergence of nonhydrodynamic

contributions from the hydrodynamic equation of motion,

is to apply the Borel resummation technique. With respect

to the hydrodynamic gradient expansion Eq. (31), the

Borel transform defines a new series as

B½ghydroðzÞ� �
X

1

n¼0

fn
n!
zn: ð36Þ

With an extra factor of 1/n! introduced, this series now has

a finite radius of convergence. It can be shown that this

new convergent series is related to the original

hydrodynamic gradient expansion via an inverse Laplace

transform such that the Borel resummation of the hydro-

dynamic gradient expansion is obtained as

~ghydroðwÞ ¼
X

1

n¼0

fn
wn

� 1

n!

Z 1

0

dze�zzn

¼
Z 1

0

dze�z
X

1

n¼0

fn
n!

z

w

� �n

¼w

Z 1

0

dze�zwB½ghydroðzÞ�:

ð37Þ

One may check that ~ghydroðwÞ is a solution to the nonlinear

differential equation Eq. (24). Without singularities, the

integration can be performed in a straightforward manner.

For an asymptotic series, such as the hydrodynamic gra-

dient expansion, we are considering, however, singularities

in the Borel transform are expected on the real axis, which

gives rise to additional contributions.

In Fig. 4, the singularity structure of the Borel transform

is shown on the complex Borel plane, where a series of

poles on the real axis are observed. This structure is esti-

mated numerically by a symmetric Padé approximation of

the Borel transform up to truncation order n ¼ 300. Note

that the leading pole (the pole closest to the origin) lies at

z ¼ S, which is not sensitive to truncation orders. Ideally,

the Borel transform of the original asymptotic series should

result in a branch cut on the real axis starting from z0, as

indicated by the accumulated poles in Fig. 4. To avoid the

branch cut on the real axis, the integral contour connecting

zero and infinity in Eq. (37) must be analytically continued

to the complex plane. Upon the integration contour con-

sidered above or below the real axis, there exists a complex

ambiguity. This ambiguity results in the hydrodynamic

gradient expansion in a complex term. With respect to the

–10 –5 0 5 10
–1.0

–0.5

0.0

0.5

1.0

Re

Im

Fig. 4 Singularity structure of the Borel transform Eq. (36) from the

Padé approximant. All poles are on the real axis, implying a branch

cut from the one closest to the origin located at 3/2 to þ1. A similar

figure can be found in [47]
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leading pole, B½ghydroðzÞ� � ðz� SÞ�b
, with S and b real

constants given in Eq. (35), the complex ambiguity leads to

Im½~ghydroðwÞ� � � pe�S=wwb: ð38Þ

Because the solution g(w) is real and definite, this complex

ambiguity in ghydro must be canceled by a term with the

same exponentially suppressed factor. That is, the singu-

larity of the Borel resummation and the reality condition

implies the existence of an extra contribution to the

hydrogradient expansion, which is exponentially

suppressed.

The existence of such extra terms with exponential

factors can also be proved through a small perturbation

around the hydrogradient expansion. In Eq. (24), assuming

gðwÞ ¼ ghydroðwÞ þ dgðwÞ, we find an equation for dgðwÞ
to be solved asymptotically by

dgðwÞ� e�Swwb: ð39Þ

In fact, the complex ambiguity arises not only from the

leading singularity, and the cancelation of all the complex

ambiguities requires the complete form of the solution to

be a trans-series, rather than a simple power-series

expansion,

gðwÞ ¼
X

n¼0

ðre�SwwbÞngðnÞðwÞ; ð40Þ

where the leading order gives gð0ÞðwÞ ¼ ghydroðwÞ. In the

trans-series, r is a complex parameter denoting the order of

trans-series expansion, whose real part is related to the

initial condition. At each order, the function gðnÞðwÞ ¼
P

k f
ðnÞ
k =wk itself is an asymptotic series, which with

respect to the Borel regression gives rise to a complex

ambiguity to be canceled by a factor similar to the next-

order term in the trans-series. The imaginary part of r is

determined as a consequence of the cancelation. This is a

typical property of the resurgent theory [99, 100], where

different orders in the trans-series are related via the

cancelation of complex ambiguities. Mathematically, it is

not surprising to expect the trans-series solution with an

exponentially suppressed factor for a nonlinear first-order

differential equation.

For an asymptotically large w, the higher-order transient

contributions in the trans-series are suppressed. However,

in the small-w regime, that is, the nonperturbative regime

of the hydrodynamic gradient expansion, these higher-

order contributions become important. This can be shown,

for instance, through the reconstruction of the attractor

solution from the Borel resummation of the trans-series

solution. A key step in the procedure is the identification of

the real part of the r parameter, corresponding to the initial

condition that determines the attractor solution, which, as

we discussed before, corresponds to ghydroð0þÞ ! gþ.

Given Rer, one must resum the trans-series order by order,

according to the detailed cancelation rules provided by the

resurgence relations. For a conformal fluid, it has been

shown numerically that an attractor does emerge, provided

higher orders in the trans-series are taken into account [46].

For certain fluid systems with analytical solutions, the

procedure can be proved explicitly by the Borel resum-

mation of the trans-series to infinite order [101].

2.2.2 From kinetic theory

The discussion in the previous section relies on an

equation of motion provided by hydrodynamics, where

viscous corrections are introduced up to the second order.

Although a series expansion can be generated from the

equation to arbitrary order, based on the equation with

second-order viscous (gradient) corrections, this series

expansion does not consistently and completely capture the

information of the off-equilibrium physics. For instance, it

would not be surprising to realize that in Eq. (31), the

expansion coefficients with n 3 are modified once in the

original hydrodynamic equation of motion; third-order and

higher-order viscous corrections are taken into account

[93]. To formulate a gradient series that is compatible with

the off-equilibrium system evolution, one has to solve the

full transport equation [65, 74, 76, 102].

With respect to Bjorken symmetry, the general form of

the Boltzmann equation [103],

plolf þ Ca
lmp

lpm
o

opa
f ¼ Ĉ½f �; ð41Þ

is simplified. In particular, in the Milne coordinates, in the

slide of z ¼ 0 (or n ¼ 0), the left-hand side of the kinetic

equation reduces to

plolf þ Ca
lmp

lpm
o

opa
f ! p0

o

os
� pz

s

	 


f ; ð42Þ

where the phase-space distribution becomes a function of

ðs; pÞ. As expected, this corresponds to the same kinematic

domain as in the fluid dynamics discussed in the previous

section. We now consider a relaxation time approximation

for the collision kernel to further simplify the kinetic

equation,

o

os
� pz

s

	 


f ðs; pÞ ¼ � f ðs; pÞ � feqðs; pÞ
sR

: ð43Þ

There exists a formal and analytical solution to Eq. (43).

For a relaxation time with arbitrary s dependence, sRðsÞ,
the formal solution is [104, 105],
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f ðs; pÞ ¼Dðs; s0Þf ðs0; p?; pzs=s0Þ

þ
Z s

s0

ds0

sRðs0Þ
Dðs; s0Þfeqð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2? þ ðpzs0=s0Þ2
q

=Tðs0ÞÞ:

ð44Þ

In this solution, feq is the equilibrium distribution as a

function of temperature, which is fixed via the Landau

matching condition, � ¼ �eq / T4. Apparently, as a con-

sequence of conformal symmetry, feq does not depend on

the chemical potential. The function in the first term is the

free-streaming solution (when the collision kernel van-

ishes) of the kinetic equation fFSðs; pÞ ¼ f ðs0; p?; pzs=s0Þ,
and the time evolution function

Dðs2; s1Þ � exp �
Z s2

s1

ds0
1

sRðs0Þ

� �

: ð45Þ

The conservation of energy and momentum is implied in

the kinetic equation, olT
lm ¼ 0, where the energy–mo-

mentum tensor is defined in kinetic theory as

Tlm ¼
Z

d3p

Ep
plpmfp: ð46Þ

In the case of Bjorken symmetry, the independent com-

ponents of the energy–momentum tensor are the diagonal

components, which include the local energy density,

� ¼ T00 �
Z

d3pEpf ðs; pÞ; ð47Þ

the longitudinal pressure

PL ¼ Tzz �
Z

d3p

Ep
p2z f ðs; pÞ; ð48Þ

and the transverse pressure,

PT ¼ Txx ¼ Tyy � 1

2

Z

d3p

Ep
p2?f ðs; pÞ: ð49Þ

It should be noted that with respect to the conformal

symmetry, � ¼ PL þ 2PT . In terms of these components,

the conservation of energy and momentum gives

s
d�

ds
þ 4

3
�þ 2

3
ðPL � PTÞ ¼ 0: ð50Þ

From the above equation, one notices that the ideal

hydrodynamic equation of motion is recovered when the

pressures are isotropized, PL ¼ PT . In the case of viscous

hydrodynamics, the pressure anisotropy corresponds to

small viscous corrections. With respect to the BRSSS form

of viscous hydrodynamics, [88]

PL � PT ¼ � 2g
s
þ 4

3s3
ðk1 � gspÞ þ O

1

s3

	 


: ð51Þ

The L-moments The energy–momentum tensor Tlm belongs

to a specific set of moments of the phase-space distribution.

We define the Lmoment as

Ln ¼
Z

d3pEpP2nðpz=EpÞf ðs; pÞ; ð52Þ

using the Legendre polynomial PnðxÞ. As a result of the

parity symmetry in the Bjorken expansion, moments

associated with odd orders of the Legendre polynomials

vanish. In addition to the Legendre polynomial that spec-

ifies asymmetry in the phase space, the weight Ep is chosen

such that the Lmoments are of the same dimension as the

energy–momentum tensor. Indeed, it is straightforward to

verify that

L0 ¼ T00 ¼ � ¼ PL þ 2PT ;

L1 ¼ T?? � Tzz ¼ PL � PT ;
ð53Þ

and hence, the pressure anisotropy can be expressed in

terms of the L-moments as

PL

PT
¼ L0 þ 2L1

L0 � L1

: ð54Þ

Legendre polynomials provide a complete set of decom-

position in the angular dependence with respect to Bjorken

symmetry, but the reconstruction of the phase-space dis-

tribution also requires a complete mode decomposition for

the Ep dependence. For instance, the Ep dependence in

f ðs; pÞ can be decomposed by large-error polynomials

[106]. Although the generalized moments of the distribu-

tion function can be introduced (cf. Ref [49, 74, 107]), the

L-moments are sufficient for the description of system

hydrodynamization, especially concerning the evolution of

pressures and energy density. For instance, with respect to

conformal symmetry, L0 and L1 fully determine the

components in the energy–momentum tensor Tlm. With

higher-order L-moments included, the description of sys-

tem evolution can be even improved. An illustration is

presented in Fig. 5.

It is also interesting to note that the coupled equations

for L0 and L1 are analogous to the so-called anisotropic

hydrodynamics (ahydro) [108, 109], where the pressure

difference is considered as an individual field for out-of-

equilibrium fluids. In a similar manner, higher-order L-
moments play the role of viscous corrections, in compar-

ison with viscous anisotropic hydrodynamics (vahydro)

[110].

With respect to the analytical formal solution of the

distribution function, the analytical solution of L-moments

can be obtained:
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LnðsÞ ¼Dðs; s0ÞLð0Þ
n ðsÞ

þ
Z s

s0

ds0

sRðs0Þ
Dðs; s0ÞL0ðs0Þðs0=sÞF nðs0Þ

ð55Þ

where the function F nðxÞ is defined as

F nðxÞ �
1

2

Z 1

�1

dy 1� ð1� x2Þy2
� �1=2

�P2n
xy

1� ð1� x2Þy2½ �1=2

 !

:

ð56Þ

Note that in the limit x ! 0, F nð0Þ ! pP2nð0Þ=2, and in

the limit x ! 1, Ln6¼0ð1Þ ¼ 0. For the case of n ¼ 0, the

integral above can be analytically evaluated, resulting in

F 0ðxÞ ¼
1

2
x� i cosh�1ðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

	 


: ð57Þ

The first term in Eq. (55) contains the free-streaming

moment Lð0Þ
n ðsÞ, which is given by

Lð0Þ
n ðsÞ ¼ �0

s0
s
F n

s0
s

� �

; ð58Þ

where �0 is the initial energy density. Eq. (55) should be

regarded as an integral equation, for which L0 must be

solved with respect to the initial condition �0. Once L0ðsÞ is
provided, higher-order Ln can be determined accordingly.

Equation (55) allows one to study the solution of energy

density in powers of 1=w ¼ sR=s, i.e., the gradient

expansion at late time. For instance, gradient expansion can

be generated using integration by parts in the integral

equation of L0, which again leads to an asymptotic series

[65]. With the asymptotic series given, by analogy with the

hydrodynamic gradient expansion, the emergence of a

trans-series solution, and hence the resurgence phe-

nomenon, etc., can be obtained following the standard

procedure of Borel resummation.

Alternatively, one may start from a set of coupled

equations of L-moments. By substituting the definition of

L-moments into the kinetic equation Eq. (43), one obtains

a first-order differential equation in which adjacent L-
moments are coupled,

osLn þ
anLn þ bnLn�1 þ cnLnþ1

s
¼ �Ln

sR
ð1� dn0Þ;

ð59Þ

where n ¼ 0; 1; 2; . . .. The constant coefficients an, bn, and

cn arise from the recursion relation of the Legendre

polynomials,

an ¼
2ð14n2 þ 7n� 2Þ
ð4n� 1Þð4nþ 3Þ ; bn ¼

ð2n� 1Þ2nð2nþ 2Þ
ð4n� 1Þð4nþ 1Þ ;

cn ¼
ð1� 2nÞð2nþ 1Þð2nþ 2Þ

ð4nþ 1Þð4nþ 3Þ ;

ð60Þ

reflecting the geometric nature of the Bjorken expansion.

These can also be understood as the limiting case of the

Clebsch–Gordan coefficients without coupling between

transverse and odd-parity modes. The first several con-

stants are

a0 ¼ 4=3; b1 ¼ 0; c0 ¼ 2=3;

a1 ¼ 38=21; b2 ¼ 8=15; c1 ¼ �12=35:
ð61Þ

The equation for L0 is the conservation of the energy

moment, as in Eq. (50), whereas higher-order Ln’s bring in

corrections. In the vicinity of the local equilibrium, these

are viscous corrections.

To solve the time evolution of these moments, in com-

parison with the exact solution from the kinetic equation,

one would expect truncating the coupled equations at a

finite order as a good approximation. In Fig. 5, the

numerically solved pressure anisotropy PL=PT is plotted as

a function of s=sR, for the case of a conformal medium in

which sRT is a constant with respect to a specified initial

condition, PL=PT 
 0:49. The exact solution to the kinetic

equation is shown as open symbols, compared to which the

simplest truncation of the moment equations, at order n\2

involving moments L0 and L1 (dotted line), already cap-

tures the bulk property of time evolution. Deviations from

the lowest-order approximation are significant only when

s=sR\1 and negligible in the hydrodynamic regime when

s=sR � 1. With higher-order L-moments involved,

improvements from these corrections are observed. With
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Fig. 5 (Color online) Pressure anisotropy solved from the truncated

moment equations with a truncation including two, three, four, and

five L-moments, in comparison with the exact solution of the kinetic

equation (open symbols). The solution with respect to viscous

hydrodynamics, or the truncated moment equation at L0 and L1, but

using a renormalized g=s is shown as the gray dashed line
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the truncation at n\5 (with L0; . . .;L4 taken into consid-

eration), a satisfactory description of the pressure aniso-

tropy over the entire time evolution is obtained.

In fact, the effectiveness of the truncation of the moment

equations is guaranteed by the existence of fixed points and

can be studied analytically in the limiting cases. If one

considers free streaming, i.e., focuses on the very early

time limit s=sR ! 0 in which collisions are effectively

suppressed by expansion, the solutions of moments are

analytical. This is obvious in the formal solution, Eq. (55).

One may also recast the set of moment equations into a

matrix form with respect to the following vector:

w ¼ ðL0;L1;L2; . . .Þ: ð62Þ

Correspondingly, the dynamics of free streaming are cap-

tured by a constant tri-diagonal matrix:

Ĥ ¼

a0 c0 0 0 . . .

b1 a1 c1 0 . . .

0 b2 a2 c2 . . .

. . . . . . . . . . . . . . .

0

B

B

B

@

1

C

C

C

A

; ð63Þ

such that the equation of free streaming becomes

oqwþ Ĥw ¼ 0: ð64Þ

For convenience, we introduce q ¼ ln ðs=s0Þ. The solu-

tion of moments can be found, provided the eigenvalues of

the matrix are determined. We note that the eigenvalues of

Ĥ are complex, with eigenvectors satisfying

Ĥ/n ¼ kn/n ! /nðsÞ ¼ /nðs0Þe�knq: ð65Þ

Let us order these eigenvalues by their real part, i.e.,

Rek0\Rek1\Rek2\. . .\Rek1: ð66Þ

Then, the solution of moments is

wðsÞ ¼
X

n

jne
�knq/nðs0Þ

¼ e�k0q j0/0ðs0Þ þ
X

n 6¼0

jne
�ðkn�k0Þq/nðs0Þ

" #

! e�k0qj0/0;

ð67Þ

where jn are constant coefficients fixed by the initial

condition. Finally, the evolution of the moment is domi-

nated by the ground-state mode on a timescale

ðkn � k0Þq�Dkq � 1, irrespective of the initial condi-

tions [65]. The gap between the eigenvalues is of the order

of unity, Dk� 1.

If we generalize the definition of the function g(w) in

Eq. (22), for all the moments,

gnðwÞ �
d ln Ln

d ln s
; ð68Þ

the dominance of the ground state indicates the existence of

a stable fixed point, gnðwÞ ! �k0, regardless of the order

n. Similarly, an unstable fixed point is also expected, cor-

responding to k1. This is very similar to the observations

from the fluid dynamics analysis, although both the

stable free-streaming fixed point and the unstable fixed

point depend weakly on the truncation order. For truncation

at n\2, the stable fixed point is gþ 
 �0:929, whereas the

unstable fixed point is g� 
 �2:213, which is analogous to

the fixed-point analysis from fluid dynamics. This is not

accidental, but rather a direct consequence of the fact that

the simplest truncation of moment equations leads to sec-

ond-order viscous hydrodynamics. In Fig. 6, the ground-

state eigenvalue is plotted as a function of the truncation

order. Although asymptotically, when n ! 1, k0 ! �1,

truncating at finite orders only gives a small correction.

This observation guarantees the validity of moment trun-

cation in the free-streaming limit. Corresponding to the

stable fixed point, or the ground-state eigenvalue, the

ground-state eigenvector is determined to fix the ratios

between moments,

/0 : Ln ¼ P2nð0ÞL0 ¼ ð�1Þn ð2n� 1Þ!!
ð2nÞ!! L0: ð69Þ

In the original phase-space distribution, these L-moments

with the specified ratios characterize a distribution span-

ning along p? and shrinking in pz. It may also be proven

that when the truncation order goes to infinity, the unsta-

ble fixed point is g� ! �2, by noting that

-1.35

-1.3

-1.25

-1.2

-1.15

-1.1

-1.05

-1

-0.95

-0.9

 0  5  10  15  20

Ei
ge

nv
al

ue

n

Fig. 6 Ground-state eigenvalue of the matrix Ĥ, with respect to

truncation orders. The asymptotic value is 1, while k0 
 �0:929
when truncating at n\2. Figure taken from [93]
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an þ bn þ cn ¼ 2. The corresponding eigenvector is given

by

/1 : L0 ¼ L1 ¼ L1 ¼ . . . ð70Þ

In the opposite limit with s=sR ! 1, the moments admit a

series expansion in powers of 1=s,

Ln ¼
X

1

m¼n

aðmÞn

sn
: ð71Þ

This structure follows from the Chapman–Enskog expan-

sion of the kinetic theory [88]. Except for L0, a
ð0Þ
n ¼ �dn0,

the expansion coefficients are directly related to the

transport coefficients in viscous hydrodynamics. For

instance, by noticing that the leading term in L1 satisfies

L1 ¼ PL � PT / g=s, one is able to identify the shear

viscosity as

g ¼ b1
2
sR�: ð72Þ

The coefficients in the expansion are dimensional, which

can be further expressed in terms of dimensional variables

in the original moment equations, aðmÞn ¼ B
ðmÞ
n �snR, with B

ðmÞ
n

dimensionless. The leading-order and next-leading-order

expansion coefficients can be solved analytically. The

leading-order coefficients, aðnÞn , in particular, determine the

asymptotic value of gnðwÞ. For instance, for a constant

relaxation time, taking into account the time dependence of

the energy density in an ideal fluid, �� s�4=3, one finds

Ln � s�4=3�n. For a conformal system in which sT is a

constant, on the contrary, one finds Ln � s�4=3�2n=3.

Therefore,

gnð1Þ ¼
� 4

3
� n; sR ¼ const.

� 4

3
� 2n

3
; sRT ¼ const.

8

>

<

>

:

ð73Þ

These asymptotics represent the hydrodynamic fixed points

of the moments of different orders, which the moments

would eventually approach, irrespective of the initial con-

ditions. Correspondingly, attractors are smooth solutions

that connect from the free-streaming fixed point and the

hydrodynamic fixed point. Because the hydrodynamic

fixed points differ in order for different Ln, there are infi-

nitely many attractors from the coupled moment equations,

or the original kinetic equations. This is also observed in

other forms of moments [74]. In Fig. 7, the attractors of the

first five orders of L-moments are plotted in terms of gnðwÞ
for a conformal system.

The L-moments and variants of hydrodynamics As we

have discussed, the conservation of energy and momentum

is only a subset of the coupled moment equations and is the

leading one. Note that conservation of energy and

momentum olT
lm ¼ 0 involves the first two moments L0

and L1. The simplest truncation that satisfies the conser-

vation of energy and momentum is

osL0 þ
1

s
ða0L0 þ c0L1Þ ¼ 0 ð74aÞ

osL1 þ
1

s
ða1L1 þ b1L1Þ ¼ � 1

sR
L1; ð74bÞ

Together with the traceless condition Tl
l ¼ 0, all compo-

nents in Tlm can thus be determined.

In the hydrodynamic regime, with s=sR ! 1, one

would expect Eqs. (74) to be identified as the hydrody-

namic equations of motion. In fact, Eq. (74a) is simply the

conservation of energy and momentum, olT
lm ¼ 0, for a

Bjorken expanding system. Equation (74b), however,

generalizes the constitutive relation that interprets the

pressure anisotropy L1 ¼ PL � PT in terms of viscous

corrections. For the system with Bjorken expansion, at a

later time if one further identifies c0L1 as the nn component

of the shear stress tensor, c0L1 ¼ p ¼ pnn, the truncated

moment equations indeed lead to the Israel–Stewart hydro

equations of motion:

o�þ 4

3

�

s
¼ � p

s
ð75aÞ

p ¼ � 4

3

g
s
� sposp� bppsp

p
s
: ð75bÞ

In obtaining the above equation, we consider conformal
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Fig. 7 (Color online) Attractor solution of gn for n ¼ 0; 1; . . .; 4,
calculated from the numerical solution of the coupled moment

equations with a truncation order of n ¼ 20. A conformal system

wherein sRT is a constant is considered, for which the asymptotic

values of gnðwÞ in the hydrodynamic regime depend on the order n,
according to Eq. (73). Figure taken from Ref. [93]
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EoS � ¼ 3P and use the shear viscosity from Eq. (72). By

doing so, we find the second-order transport coefficient

sp ¼ sR ¼ 5g=sT . The transport coefficient bpp is precisely
a1, which agrees with [86]. In Bjorken flow, ambiguity

arises from interpreting 1=s as the nn component of the

shear tensor rnn or the expansion rate r � U, as indicated in

Eq. (17); therefore, the hydrodynamic constitutive relation

from Eq. (74b) is not unique. For instance, if one splits the

last term in Eq. (75b) as

bppsp
p
s
¼ sp

4

3

p
s
� 3

4
bpp �

4

3

	 


sp
g
p2 þ O

1

s

	 
3

; ð76Þ

the constitutive relation gives rise to the BRSSS formula-

tion [45],

p ¼ � 4

3

g
s
� sp ospþ 4

3

p
s

	 


þ 3

4
bpp �

4

3

	 


sp
s
p2: ð77Þ

Correspondingly, the second-order transport coefficients k1
and bpp are related, and the evaluation in a weakly coupled

medium

k1 ¼
3

4
bpp �

4

3

	 


gsp ¼ 5

7
gsp ð78Þ

is confirmed [48].

The inclusion of higher-order moments in the coupled

equation will improve the quantitative characterization of

the system evolution, as has already been noted. These

corrections due to higher-order moments can be explicitly

incorporated in the equations, even for the simplest trun-

cation, by one additional term / c1L2=s in Eq. (74b) [93].

This term can also be absorbed into the collision term via a

redefinition of the relaxation time:

1

sR
! 1þ c1sR

s
L2

L1

� �

1

sR
�

Z�1
g=s

sR
: ð79Þ

It is then straightforward to see that because the ratio in the

factor is related to g2ðwÞ,
L2

L1

¼ � b2
wþ g2ðwÞ þ a2

; ð80Þ

one may solve the coupled moment equations to arbitrary

orders, provided g2ðwÞ is given precisely. In terms of the

simplest truncation that dynamically involves only L0 and

L1, as in the case of viscous hydrodynamics, Eq. (79)

effectively gives a renormalized relaxation time sR.
Because g=s / sR, this procedure equivalently renormal-

izes the ratio of shear viscosity to the entropy density, g=s,
by a multiplicative renormalization factor Zg=s. If one fur-

ther considers the attractor as a generic generalization to an

out-of-equilibrium hydrodynamic mode and hence substi-

tutes the attractor solution of g2ðwÞ in the calculations, the

renormalized sR (or g=s) in an out-of-equilibrium system is

obtained. In Fig. 8, the factor Zg=s is obtained via the

attractor solution of g2ðwÞ. Unless the system is close to

equilibrium, s=sR � 1, the out-of-equilibrium effects will

reduce the value of g=s, thus making the out-of-equilibrium

system closer to an ideal fluid [70, 111–113]. The results of

a numerical test of the renormalization scheme are shown

in Fig. 5, where given a renormalized g=s, even the solu-

tion of the two-moment equations achieves good agree-

ment in comparison with the exact solution.

3 Phenomenological development

Relativistic hydrodynamics, incorporated with a lattice

QCD-based EoS, viscosity, and initial-state fluctuations,

has been used as a precision tool to understand the

dynamics of strongly coupled QGP and experimental flow

observables (see reviews [6–8]). Fluid dynamics serves as a

universal long-wavelength description of the system’s

macroscopic degrees of freedom from the QGP to the

hadronic gas phase. This strongly coupled description

naturally breaks down as the system becomes increasingly

dilute within its hadronic phase at low temperatures. One

must then transit to a microscopic transport description.

The numerical realizations of hadronic transport models

are UrQMD [114, 115], JAM [116], and SMASH [117].

Such a hydrodynamics–hadronic-transport hybrid theoret-

ical framework has successfully described and even pre-

dicted various types of flow correlation measurements with

remarkable precision [118–121].

In this section, we review the recent phenomenological

developments in modeling the full 3D dynamics at inter-

mediate collision energies, current state-of-the-art
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Fig. 8 Renormalization of g=s by out-of-equilibrium effects. Fig-

ure taken from Ref. [76]
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constraints on the QGP transport properties, understanding

collective behavior in small systems, and interdisciplinary

cross talk with other fields of science.

3.1 Hydrodynamic perspectives on beam energy

scan and longitudinal dynamics

Quantifying the phase structure of QCD matter is one of

the primary questions in relativistic heavy-ion physics.

First-principles lattice QCD calculations have established

that hadron resonance gas (HRG) transitions to the QGP

phase as a smooth crossover at vanishing net baryon den-

sity [127]. Meanwhile, many model calculations conjec-

tured the presence of a first-order transition accompanied

by a critical point at some finite net baryon density in the

QCD phase diagram (see, e.g., [16, 128] for a review).

Current heavy-ion experiment programs, such as the RHIC

BES program [129–132] and the NA61/SHINE experiment

at the Super Proton Synchrotron (SPS) [133, 134], as well

as future experiments at the Facility for Antiproton and Ion

Research (FAIR) [135, 136], Nuclotron-based Ion Collider

Facility [137], and JPARC-HI [138], routinely produce hot

and dense QCD matter to probe an extensive temperature

and baryon chemical potential region in the phase diagram.

Measurements from such a beam energy scan of heavy-ion

collisions provide a unique opportunity to quantitatively

study the nature of the QCD phase transition from hadron

gas to QGP at different net baryon densities.

Figure 9 presents our current somewhat limited knowl-

edge of the nuclear matter phase diagram. A recent lattice

QCD calculation of higher-order susceptibilities at lB ¼ 0

allows for a Taylor series extrapolation of the thermody-

namic quantities to moderate finite lB [122]. This work

showed that the phase transition from HRG to QGP

remains as a smooth crossover to lB � 250–300 MeV. The

phase diagram region with lB\300 MeV corresponds to

mid-rapidity heavy-ion collisions with a collision energy
ffiffi

s
p

J15 GeV. The estimated crossover line agrees with the

chemical freeze-out temperatures and net baryon chemical

potentials extracted from the STAR BES hadron yield

measurements [123, 124]. Off-diagonal susceptibility cor-

relations offer additional insights into the chemical freeze-

out conditions in relativistic heavy-ion collisions

[139, 140]. The three blobs in Fig. 9 indicate the averaged

fireball trajectories for typical Au?Au collisions at
ffiffi

s
p ¼ 200; 19:6, and 5 GeV. A fireball created in the lower

collision energy can probe a larger-lB but lower-T region

of the QCD phase diagram.

To establish definitive links between observables and

structures in the phase diagram, detailed dynamical mod-

eling of all stages of heavy-ion collisions is required.

Precise flow measurements of the hadronic final state,

together with phenomenological studies, can elucidate the

collective aspects of the baryon-rich QGP and extract the

QGP transport properties, such as its viscosity and charge

diffusion coefficients. Because relativistic heavy-ion col-

lisions have complex dynamics in multiple stages, a fully

integrated theoretical framework is required to provide

reliable estimates of the dynamical evolution of the colli-

sions and all relevant sources of fluctuations.

Over the past decade, extensive phenomenological

studies have focused on relativistic heavy-ion collisions at

the LHC and the top RHIC energies (see, e.g., [6, 7], for a

review). Recently, increasing interest has shifted toward

studying heavy-ion collisions in the intermediate energy

regime. At
ffiffi

s
p

�Oð10Þ GeV, heavy-ion collisions strongly

violate longitudinal boost invariance and require full 3D

modeling of their dynamics [141, 142]. It is important to

employ initial conditions with nontrivial rapidity depen-

dence. Complex 3D collision dynamics can be

Fig. 9 (Color online) Sketch of QCD phase diagram together with

current and future heavy-ion experimental programs. As relativistic

heavy-ion collisions evolve from QGP to the hadron gas phase, they

explore the phase diagram of hot and dense QCD matter. Lattice QCD

calculations identified a smooth crossover between QGP and hadron

gas for lB\250 MeV [122]. The chemical freeze-out points extracted

from thermal fits at RHIC [123, 124] are shown. The three blobs

represent the fireball trajectories of Au?Au collisions at RHIC BES

energies mapped onto the QCD phase diagram event by event using

the dynamical framework [125]. Their brightness is proportional to

the fireball space–time volume weighted by T4. A crossover phase

transition is assumed in the simulations. This figure was adapted from

[126]
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approximated by parametric energy deposition [142–147].

Nontrivial dynamics could be included to model the energy

loss in individual nucleon–nucleon (NN) collision impacts.

Initial-state models have been built based on classical

string deceleration [125, 148]. There are 3D initial condi-

tions based on hadronic transport simulations [149–151].

These provide interesting correlations between the longi-

tudinal energy distribution and flow velocity. The earlier

work of Anishetty, Koehler, and McLerran (AKM) in 1980

[152], which found that nuclei were significantly com-

pressed and excited when they collided at extreme rela-

tivistic energies, was pursued only sporadically. This AKM

picture was generalized recently to understand early-stage

baryon stopping from the CGC-based approaches in the

fragmentation region [153, 154]. The incoming nucleons or

valence quarks are decelerated and compressed by the

strong shock wave of small-x gluons. Compared to the

previous phenomenological approaches, this CGC-based

approach consists of ab initio calculations of baryon

stopping at high energies. This approach becomes less

applicable at intermediate collision energies. Last but not

least, there are recent theoretical developments from a

holographic approach at intermediate couplings to under-

stand the initial energy density and baryon charge distri-

butions [155].

At a lower collision energy, the longitudinal Lorentz

contraction becomes weaker on the colliding nuclei. The

overlapping time for the two nuclei to pass through each

other is significant, soverlap � 2R= sinhðybeamÞ
[125, 150, 156]. Here, R is the nuclear radius and the beam

rapidity ybeam ¼ arccoshð ffiffi

s
p

=ð2mNÞÞ. Therefore, it is

important to understand the pre-equilibrium dynamics

during this period. Dynamical initialization schemes have

been developed to model this extended interaction region

in heavy-ion collisions (see Fig. 10). They interweave the

initial collision stage with hydrodynamics on a local basis,

as the two nuclei pass through each other. The initial-state

energy–momentum and conserved charge density currents

are treated as source inputs to the hydrodynamic fields at

different times,

olT
lm ¼Jmsourceðs; xÞ ð81Þ

olJ
l
B ¼qB;sourceðs; xÞ: ð82Þ

Such a dynamic initialization scheme was initially pro-

posed in Refs. [157, 158] and has been adopted by several

groups [125, 151, 159, 160].

Solving the equations of motion of hydrodynamics at

low energies requires an EoS, which describes the ther-

modynamic relations of nuclear matter at finite baryon

density. The current lattice QCD techniques cannot directly

compute such an EoS, because of the sign problem [161].

However, at vanishing net baryon density or lB ¼ 0 GeV,

higher-order susceptibilities have been computed by lattice

QCD [122]. These susceptibility coefficients were used to

construct nuclear matter EoS at finite baryon densities

through a Taylor expansion [162–164]. These estimated

EoS are reliable within the region where lB=T.2 in the

phase diagram. For the region where the temperature is

below � 150 MeV, the lattice QCD EoS is glued with an

EoS for HRG. To ensure energy and momentum conser-

vation in the hydrodynamics plus hadronic transport

approaches, the particle species in the HRG EoS need to be

the same as those in the transport model. A mismatch in the

particle content of the HRG EoS could lead to 5–10%

variations in the particle yields and flow observables [165].

At lB ¼ 0 GeV, matching EoS between the two phases

was performed on the trace anomaly [166, 167]. At a finite

baryon density, susceptibility coefficients are matched

individually, and then the thermal pressure is constructed.

Full-fledged hydrodynamics plus hadronic transport simu-

lations with an EoS at finite baryon density, NEOS, have

been applied to heavy-ion collisions at intermediate colli-

sion energies [162]. That study found that the enforcement

of strangeness neutrality improved the description of rela-

tive particle yields for multistrange particles measured in

Pb?Pb collisions at the top SPS energy.

The dynamical initialization and EoS at finite baryon

density are two essential components to enable hybrid

simulations for heavy-ion collisions at intermediate colli-

sion energies. A fully integrated framework [125, 162, 168]

was shown to reproduce the rapidity dependence of particle

production as well as the collision energy dependence of

the STAR vnf2g ðn ¼ 2; 3Þ flow measurements in Au?Au

collisions from 200 to 7.7 GeV [142, 169]. Remarkably,

this preliminary calculation can produce a similar non-

monotonic collision energy dependence present in the

experimental triangular flow data measured at the RHIC

Fig. 10 (Color online) Illustration of relativistic heavy-ion collisions

at an intermediate collision energy. When the two colliding nuclei

overlap with each other early, dynamical initialization connects the

initial-state collision impact with hydrodynamics
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BES phase I [170], without the need for a critical point in

the phase diagram. Therefore, it is essential to understand

the interplay among the duration of dynamical initializa-

tion, the variation in the speed of sound, and the T and lB
dependence of the specific shear viscosity. This work

demonstrated a critical role of theoretical modeling in

elucidating the origin of the nonmonotonic behavior seen

in the RHIC measurements. Phenomenological studies of

precise anisotropic flow measurements from the upcoming

analysis of RHIC BES II will be able to further constrain

the lB dependence of the QGP shear and bulk viscosities

[142, 150].

Modeling relativistic heavy-ion collisions beyond the

Bjorken boost invariance offers us a new dimension to

study the fluctuations of flow anisotropy as a function of

particle rapidity. The flow correlations between different

rapidity regions reflect the longitudinal fluctuations of local

energy density profiles in the full 3D dynamics

[146, 171–173]. The fluctuations of the anisotropic flow

coefficients along the longitudinal direction elucidate how

the shape of the fireball varies as a function of rapidity. The

longitudinal fluctuations will cause the initial eccentricity

vectors to fluctuate from one space–time rapidity to

another. Consequently, the anisotropic flow coefficients

decorrelate as a function of particle rapidity. A recent

systematic study [147] showed that initial-state fluctuations

and thermal fluctuations in hydrodynamics were equally

important for understanding the centrality dependence of

flow decorrelation measurements at the LHC. The RHIC

BES program will systematically study the collision energy

dependence of the rapidity flow fluctuations from 200 GeV

down to 7.7 GeV. The program offers a unique opportunity

to study the interplay between thermal production and

collision transport (stopping mechanisms). Such measure-

ments combined with phenomenological modeling could

lead to strong constraining power for our understanding of

the longitudinal dynamics in heavy-ion collisions [125].

Future measurements with identified particles have the

potential to shed further light on the initial distributions of

conserved charges (net baryons, strangeness, and electric

charges) at different collision energies.

The realistic dynamical simulations of heavy-ion colli-

sions at the RHIC BES energies lay the foundation to

quantitatively understand the out-of-equilibrium stochastic

fluctuations when the collision systems evolve close to a

conjectured QCD critical point in the phase diagram. Near

the QCD critical point, the relaxation times of the critical

fluctuations grow large and rapidly become comparable

with the system size [16, 128]. The rapid expansion of the

collision system drives the fluctuations related to the QCD

critical point out of equilibrium [24, 25, 174]. Therefore,

these ‘‘critical slowing down’’ dynamics require realistic

event-by-event simulations to address quantitatively the

extent to which they are out of equilibrium.

There are two primary approaches to this problem in the

literature. One is to explicitly evolve these fluctuations in a

stochastic hydrodynamics framework [175]. In heavy-ion

physics, numerical simulations of stochastic hydrodynam-

ics have been developed by several groups to study thermal

and critical fluctuations [20, 22, 176–178]. However,

because these stochastic fluctuations are local d-functions
in the coordinate space, one needs to take care of the

numerical cutoff dependence to ensure that the simulation

results are physical. The other approach studies the deter-

ministic evolution of the two-point correlation function of

the fluctuations. This approach was pioneered by Andreev

in the 1970s in the nonrelativistic case [179], and it is often

referred to as ‘‘hydro-kinetic’’ [21, 23–25, 174, 180].

The hydrokinetic approach should be consistent with the

stochastic hydrodynamics approach for the two-point cor-

relation function. A side-by-side comparison between these

two approaches would be extremely valuable in improving

both theories. On the one hand, the renormalization of the

hydrodynamic equations is well controlled in the

hydrokinetic framework. It can guide the stochastic

hydrodynamics on how to introduce a UV cutoff to regu-

late multiplicative noise in simulations. On the other hand,

stochastic hydrodynamics can estimate the effect of non-

linearity in the fluid dynamics on the evolution of the two-

point function, which is neglected in the hydrokinetic

formalism. Meanwhile, it is straightforward to access

higher-order correlation functions in stochastic

hydrodynamics.

Recent studies investigated the deterministic ‘‘hydroki-

netic’’ formalism on simplified (1?1)D hydrodynamic

backgrounds [26, 27]. They found that the feedback con-

tributions to the thermodynamic quantities from the out-of-

equilibrium fluctuations are on the order of 10�4, which

can be safely neglected in the simulations.

To deliver quantitative predictions for experimental

signals of the critical fluctuations at the RHIC BES II, we

need to further develop the theoretical frameworks in the

following directions. In the ‘‘hydrokinetic’’ approach, the

effects of flow gradients on the critical fluctuations must be

addressed quantitatively with realistic 3D event-by-event

hydrodynamic simulations. Although the works [23, 25]

derived the equations of motion for two-point correlation

functions under a general flow background, there are sub-

stantial challenges to implementing these equations in the

state-of-the-art hydrodynamic framework. In addition, a

theoretical formulation is needed to map these two-point

correlation functions from the coordinate space to

momentum correlations among particles, which is an

essential step to providing theoretical predictions for
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measurements. Finally, generalization to n-point correla-

tion functions ðn[ 2Þ could enhance the sensitivity of the

experimental signals, but this requires substantial effort on

the theoretical side [181].

3.2 Quantitative characterization of QGP transport

properties

3.2.1 Charge diffusion

The fluid dynamics of the bulk QGP medium are driven

by local pressure gradients. The RHIC BES program

allows us to study the evolution of nonvanishing conserved

charge currents, which is also dependent on the gradients of

chemical potentials. Therefore, the interplay among dif-

ferent gradient forces in the dynamics of conserved charge

currents can elucidate novel transport processes inside the

medium, namely the charge diffusion constants and heat

conductivity. These QGP transport coefficients are to date

poorly constrained but as important as the specific shear

and bulk viscosities. Because individual quarks carry

multiple quantum charges, the diffusion currents of con-

served charges are coupled with each other. A quantitative

understanding of how multiple conserved charge currents

diffuse in and out of the expanding fluid cells has led to the

development of the next generation of dynamical frame-

works. Such a framework can unravel the detailed chemical

aspects of the QGP. This topic has been stimulating interest

in developing realistic initial conditions for conserved

charge distributions [125, 151, 189, 190] and detailed

modeling of the QGP chemistry [162, 191–193].

The net baryon diffusion is driven by the local gradients

of the net baryon chemical potential with respect to tem-

perature in the hydrodynamic evolution. Causal Israel–

Stewart-like equations of motion for the net baryon diffu-

sion current were derived based on the Grad’s 14-moment

and Chapman–Enskog methods [49, 194, 195]. Recently,

such formulations were generalized to include multiple

diffusion currents with their cross couplings [196]. The

functional forms of the transport coefficients for the dif-

fusion matrix have been studied in transport models

[197, 198]. Additional coupling terms with the shear and

bulk viscous tensors appear in the second order of the

gradient expansion [49, 195].

Phenomenologically, the net baryon diffusion current

transports more baryons from forward rapidities to the mid-

rapidity region [66, 194, 199, 200]. The gradients of lB=T
act against local pressure gradients and decelerate baryon

charges with respect to the bulk fluid cells along the lon-

gitudinal direction. Therefore, the shape of the rapidity

distribution of the net protons shows a strong sensitivity to

baryon diffusion [66, 199]. The cross-diffusion between the

net baryon and net strangeness induces an oscillating dis-

tribution of the net strangeness current at later times [196].

It will be interesting to see how this pattern is mapped to

the final-state hadron correlations, such as Kaons and K.
Measurements of identified particle rapidity distributions

will play an important role in unraveling the charge dif-

fusion processes in heavy-ion collisions.

The net baryon diffusion process in the hydrodynamic

phase can only transport the net baryon charges by � 1 unit

in rapidity [66]. As the bulk fluid rapidly explodes along

the z direction, transporting net baryon charge back to the

mid-rapidity region during hydrodynamic evolution is very

challenging at high energies. It turned out to be difficult to

reproduce the small but nonzero net proton rapidity dis-

tribution at 200 GeV measured by the BRAMHS Collab-

oration [199] through baryon diffusion only. The

measurement suggests that there is a large baryon stopping

at the early stage of heavy-ion collisions. Allowing the

baryon charge to fluctuate to the string junction [201] in the

initial state, we can reproduce the net baryon rapidity

distributions at 200 GeV. In fact, this model can consis-

tently reproduce the net proton distribution measured by

the STAR Collaboration down to 7.7 GeV at mid-rapidity

[142]. The rapidity distribution in RHIC BES phase II will

further help to constrain the initial-state baryon stopping in

this phenomenological model. Because the net proton

rapidity distribution is sensitive to both the initial-state

stopping and baryon diffusion [199], independent experi-

mental observables are needed to disentangle these two

effects.

Recently, the charge balance functions of identified

hadrons were proposed as independent observables to

constrain the charge diffusion constants of QGP

[56, 177, 193]. Quark–antiquark pairs can be thermally

produced in local fluid cells. As a q�q pair randomly walks

through the medium, it develops a finite correlation length

that is controlled by the local fluid expansion and charge

diffusion constants. This spatial correlation eventually

maps to momentum correlations among hadrons into which

the q�q pair hadronizes. In Ref. [193], the authors found that

a larger diffusion constant in the QGP medium leads to

wider azimuthal and rapidity distributions for the KþK�

and p�p correlations. Meanwhile, the underlying hydrody-

namic flow acts as a boost to these correlation functions,

which results in a focus on the azimuthal distributions of

balance functions. Therefore, measurements of balance

functions can provide an independent constraint on the

QGP charge diffusion constants.
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3.2.2 Specific shear and bulk viscosities

The shear and bulk viscosities, normalized by entropy

density, characterize the dissipation of energy–momentum

currents in a medium. Extracting the specific QGP vis-

cosity has been the main theme of phenomenological

studies in relativistic heavy-ion collisions over the past 20

years. Because of the strongly coupled nature of QGP, it is

difficult to calculate these transport coefficients from first

principles. Meanwhile, phenomenological constraints

drawn from comparisons with precise anisotropic flow

measurements have led our field to understand the prop-

erties of QGP. Adopting Bayesian statistical analysis has

become a standard approach to systematically constrain the

QGP transport properties [202, 203].

Figure 11 summarizes the collective effort of quantify-

ing the QGP transport properties over the past eight years.

As theoretical tools are being developed rapidly to include

more realistic physics, the extraction of the QGP transport

properties becomes more systematic. Chronologically,

before the implementations of bulk viscous effects in the

dynamical models, the saturation-based IP-Glasma and

EKRT initial conditions prefer an effective shear viscosity

of 0.12–0.20 in the hydrodynamic phase to achieve a

simultaneous description of all orders of harmonic flow

coefficients [182, 186]. Owing to large pressure gradients

and finite initial radial flow in the IP-Glasma initial con-

ditions, a temperature-dependent bulk viscosity is essential

to balance the consequent strong flow and reproduce the

mean pT measurements in the heavy-ion collisions. At the

same time, the introduction of the bulk viscosity reduced

the extracted QGP shear viscosity by almost 50%

[13, 204]. By adopting the EoS from the latest lattice QCD

calculations [205, 206], the Duke-OSU group presented the

first Bayesian inference on the temperature-dependent

shear and bulk viscosities [187, 188] using the flow mea-

surements at the LHC. There was tension of the Bayesian

extracted bulk viscosity ðf=sÞðTÞ [187, 188] with the

parameterization used in the IP-Glasma hybrid framework

[183] in 2018. This difference was greatly reduced in the

2019 updated simulations. On the one hand, the significant

changes in the IP-Glasma hybrid framework stem from

allowing the peak temperature of bulk viscosity to drop

from Tpeak ¼ 180 MeV to 160 MeV [28, 184]. A lower

Tpeak with a smaller ðf=sÞmax is favored by hadron mean pT
measurements in peripheral Pb?Pb and Au?Au collisions,

in which the maximum temperatures at the starting time of

hydrodynamic simulations are close to, or even below, 180

MeV. On the other hand, a more flexible prior parameter-

ization of ðf=sÞðTÞ in the JETSCAPE preliminary Bayesian

analysis allows a large QGP bulk viscosity in the posterior

distribution for the model to reproduce flow measurements

[165].

The preliminary Bayesian analysis from the JETSCAPE

Collaboration demonstrated the first simultaneous calibra-

tion using flow observables at the top RHIC and LHC

energies, which differ by an order of magnitude. Such a

combined analysis showed strong constraints on the
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Fig. 11 (Color online) Summary of phenomenological constraints on

the temperature-dependent QGP specific shear and bulk viscosities

from 2012 to 2019. This figure is taken from [126]. The QGP

viscosities are constrained by the collective flow measurements at the

top RHIC and LHC collision energies. The results from open-source

dynamical frameworks using three different initialization models are

compared. The IP-Glasma initial conditions with the hydrodynamics

plus hadronic transport approach continuously improve the con-

straints on the QGP viscosity [13, 28, 182–185]. The blue hatched

area in (h) indicates the variation of ðf=sÞðTÞ with (upper) and

without (lower) a pre-equilibrium KøMPøST effective kinetic theory

(EKT) phase [185]. The result obtained using the EKRT initial

condition is from Ref. [186]. The Bayesian extracted QGP ðg=sÞðTÞ
and ðf=sÞðTÞ [187, 188] were constrained by flow measurements in

p?Pb and Pb?Pb collisions at the LHC. The orange bands indicate a

90% confidence level. The preliminary Bayesian analysis calibrated

with combined RHIC and LHC flow measurements was presented by

the JETSCAPE Collaboration [165]
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temperature dependence of the QGP shear and bulk vis-

cosities around the crossover temperature region [165].

Heavy-ion collisions at the RHIC and LHC offer a wide

dynamical range for the theoretical framework to explore

the parameter space. At the same time, different types of

off-equilibrium corrections at the particlization stage

introduce sizable theoretical uncertainties to the Bayesian

extraction, demanding more theoretical work in this

direction. That work also emphasized that performing

closure tests in Bayesian analysis was an essential step

before extracting any physical information from experi-

mental measurements [165].

The next-generation Bayesian analysis requires

improving the state-of-the-art theoretical framework to

access new physics in dynamical simulations. A recent

study bridges the event-by-event IP-Glasma initial state

[28, 207] and viscous hydrodynamics [208, 209] using an

effective QCD kinetic theory (EKT), KøMPøST [37, 38].

The EKT in the pre-equilibrium stage can drive the colli-

sion system sufficiently near the local thermal equilibrium

and smoothly matches the full energy–momentum tensor to

viscous hydrodynamics. Remarkably, this framework can

quantitatively reproduce a variety of flow measurements in

heavy-ion collisions from 200 to 5020 GeV [185] with an

effective ðg=sÞeff ¼ 0:12 and temperature-dependent bulk

viscosity (see Fig. 11h). A direct comparison with the

simulations without the EKT phase [28] showed that the

conformal EKT generates a faster expansion than viscous

hydrodynamics at this early stage. A similar finding was

observed earlier for free-streaming dynamics [210]. This

additional pre-equilibrium phase thus leads to a 35% larger

extracted QGP bulk viscosity to describe the identified

particle mean pT. A recent work [211] pointed out that the

breaking of conformality in the pre-equilibrium stage could

be important in the extraction of bulk viscosity. These

studies demonstrated the significant phenomenological

impact of a realistic model of the early stage of heavy-ion

collisions on constraining the QCD bulk viscosity.

3.3 Challenges and opportunities in small systems

The RHIC and LHC collide a variety of nuclei, which

offers us measurements to study the collectivity as a

function of the collision system size. As the size of a QGP

droplet shrinks, the lifetime for the strongly coupled

hydrodynamic evolution becomes shorter. Therefore, the

final-state particles’ momentum distributions and correla-

tions can reveal more information about the early-stage

dynamics [212, 213]. On the theoretical side, small systems

are phenomenological grounds for understanding how

heavy-ion collisions achieve macroscopic hydrodynamic

behavior, chemical, and kinetic equilibration from states

far out of equilibrium. Nonhydrodynamic modes can

potentially play an important role in pushing the hydro-

dynamic framework to its limits. At the same time, the

increasing roles of fluctuations and nonflow correlations

stress the ability of experiments to unambiguously identify

flow signatures.

The collective flow and its hydrodynamic description

are most robust in the central Pb?Pb and Au?Au colli-

sions. Therefore, by first constraining the model parameters

with flow measurements in heavy-ion collisions and then

extrapolating to small systems, we can provide a stringent

parameter-free test for hydrodynamic models. This

approach was pioneered in Ref. [215]. A more systematic

study has recently been carried out using the state-of-the-

art IP-Glasma ? MUSIC ? UrQMD hybrid framework

[28]. This work achieved remarkable success in describing

the system size dependence of the flow measurements over

more than two orders of magnitude in particle multiplicity.

With a single set of model parameters, this theoretical

framework can quantitatively describe particle production,

radial and anisotropic flow observables, and multiparticle

correlations from Pb?Pb to p?Pb collisions at the LHC

and from Au?Au to p?Au collisions at the top RHIC

energy. This work demonstrated that the universal hydro-

dynamic response to collision geometry dominated the

flow production in collisions with dNch=dg 10 at mid-

rapidity. On the contrary, the correlation between v2 and

the initial momentum anisotropy from the pre-hydrody-

namic phase becomes stronger in the lower-multiplicity

collisions [35]. This work provided phenomenological

evidence that flow in low-multiplicity collisions can elu-

cidate the early dynamics of the collisions. A similar

finding was shown in a study of the correlation between the

system’s elliptic flow coefficient and the initial energy–

momentum tensor [216]. Last but not least, a recent work

[217] demonstrated that the quark coalescence is essential

to reproduce the measured the momentum anisotropy of

produced hadrons with transverse momenta 3\pT\6 GeV

in small systems. That work indicated the collective

behavior was originated from partonic degrees of freedom

in high multiplicity p-Pb collisions at the LHC.

The anisotropic flow in high-energy p?p collisions still

challenges our understanding of the underlying dynamics

in these small systems. The computed two-particle cumu-

lant v2f2g from the IP-Glasma hybrid framework increases

as the charged hadron multiplicity decreases [28], which is

not seen in the flow measurements at the LHC. A com-

parison with the results from [64, 215] suggests that the

momentum anisotropy from the pre-equilibrium Glasma

phase might be too strong in p?p collisions. Moreover,

recent work pointed out that pure hydrodynamic evolution

introduces an excessively strong nonlinear cubic response
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of elliptic flow to the initial eccentricity in p?p collisions,

which results in a positive four-particle cumulant C2f4g
opposite to the experimental measurements [218]. Eluci-

dating the real dynamics in p?p collisions requires more

theoretical progress on quantifying the contributions from

pre-equilibrium dynamics, thermal and longitudinal fluc-

tuations, nontrivial correlations from local conservation

laws, and nonhydrodynamic modes.

Finally, it is instructive to quantify the extent to which

small collision systems have been pushing the hydrody-

namic framework to its limits. Conditions for the nonlinear

causality bounds of second-order hydrodynamics were

derived for radially expanding systems [219] and for a

general flow background [214, 220]. These nonlinear

causality bounds set strong constraints on the maximal

allowed viscous pressure in dynamical simulations. One

can check the nonlinear causality condition, including the

bulk viscous pressure, by computing the following ratio:

r ¼ f
sP

1

eþ PþP
þ c2s : ð83Þ

The causality condition requires the ratio r\1 [214].

Figure 12a compares the distribution of this ratio from

individual fluid cell in a typical 0–5% p?Au collision with

that from a 30–40% Au?Au collisions. Because of the

strong expansion rate and the consequent large negative

bulk viscous pressure, the causality conditions in a typical

p?A collision are � 20% closer to the bound than those in

an A?A collision.

The large pressure gradients and the consequent violent

expansion in small systems can result in negative total

(thermal ? bulk viscous) pressure in a significant fraction

of fluid cells, as shown in Fig. 12. These bubbles may

cause unstable cavitation inside the QGP [221–223]. It

would be preferable to switch the fluid dynamic description

to a dilute transport approach before the total pressure

becomes negative. In the absence of such an advanced

theoretical framework, we can roughly estimate the phe-

nomenological impact of these negative-pressure regions

on final flow observables by numerically regulating the size

of the bulk viscous pressure to be less than the thermal

pressure. This modification leads to a sizable variation in

the elliptic flow in 0–5% p?Au collisions in Fig. 12c. For

pT\1:5 GeV, the associated theoretical uncertainty is

comparable to the effects resulting from varying the sec-

ond-order transport coefficients [35]. The situation in semi-

peripheral A?A collisions is much better, with a negligible

effect on the final flow observables. Whereas this ad hoc

numerical regulation can only provide us with a rough

estimate, Fig. 12c demonstrates that the phenomenological

descriptions of small systems with the standard second-

order viscous hydrodynamics approach the limits of the

model. Anisotropic hydrodynamics, which reproduce the

free-streaming limit at large viscosity, are a good theoret-

ical tool for providing more robust guidance on this issue in

small systems [224, 225].

3.4 Interdisciplinary connections

Relativistic heavy-ion collisions embrace a richness of

physics that expands multiple energy scales. At the early

stages of the collisions, the dynamics of approaching
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Fig. 12 Upper panel: Color contour plots for the initial event-by-

event energy densities of U?U, Au?Au, Ru?Ru, O?O, 3He?Au,

d?Au, p?Au, and p?p collisions at 200 GeV from IP-Glasma initial

conditions [28]. a Check the nonlinear causality condition with bulk

viscous pressure [214] in typical 0–5% p?Au and 30–40% Au?Au

collisions at 200 GeV. b Distribution of the ratio of bulk viscous

pressure over thermal pressure, P=P, in fluid cells for 0–5% p?Au

and 30–40% Au?Au collisions. d Effect of regulating negative total

pressure on the elliptic flow coefficients in 0–5% p?Au and 30–40%

Au?Au collisions at 200 GeV [35]
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hydrodynamic behavior from far out of equilibrium have

strong connections with the reheating of the early universe

following inflation and over-occupied cold atomic gases

(see a recent review [226]). The collision geometry in

heavy-ion collisions can be used as a powerful microscope

to image structures inside nuclei and nucleons. Meanwhile,

it has become an active topic to apply cutting-edge

machine learning techniques to study the complex

dynamics of heavy-ion collisions.

3.4.1 Nuclear structure physics

Although the bulk evolution in relativistic heavy-ion

collisions is above 100 MeV in temperature, nuclear

structure physics at a much lower energy scale can still

play an important role in precision studies of flow

observables. The Monte-Carlo Glauber model is a key

element in computing the initial states for hydrodynamic

modeling of ultrarelativistic heavy-ion collisions. The

spatial configurations of nucleons inside the colliding

nuclei are inputs based on nuclear structure physics for

each collision event. Hydrodynamics can then efficiently

transform the shape of the initial energy density profile to

the momentum anisotropy of the final-state particles.

Therefore, the measurements of anisotropic flow coeffi-

cients and their fluctuations provide a tool to image the

event-by-event shape fluctuations of the colliding nuclei.

Furthermore, small collision systems, such as proton–lead

collisions, can image the subnucleon fluctuations inside

protons in a similar fashion [34, 227, 228].

The structure of nuclei has been approximated for a long

time by independent particle models in which the nucleons

inside a nucleus are treated as a collection of free and

point-like fermions. The colliding nuclei in the relativistic

heavy-ion collisions are highly Lorentz-boosted along the

beam direction. In the laboratory frame, because of the

relativistic time dilation effect, individual nucleons are

frozen in their spatial positions as the two nuclei collide

with each other. The spatial positions of the nucleons

inside the nucleus are usually sampled independently from

parametric Woods–Saxon distributions. More realistically,

correlations among nucleons at short distances are not

negligible and are known as short-range correlations

(SRC). These NN correlations were unambiguously

observed in a series of dedicated experiments [229–232].

Studies in Ref. [233–235] showed that including realistic

NN correlations had sizable effects on the generated initial

eccentricity of the energy profile. The NN correlations have

sizable effects on the spectrum of anisotropic flow coeffi-

cients in central heavy-ion collisions, in which the geo-

metric distortion of the overlapping region from the impact

parameter is minimized. The ratios of the elliptic flow to

triangular flow were found to be sensitive to the spatial

configurations of the colliding nuclei with and without

SRC [86, 236]. A recent study explored the effect of a

possible octupole deformation of 208Pb on the v2=v3 ratio

[237].

Furthermore, collisions with deformed nuclei are par-

ticularly interesting as one can use the nucleus’ intrinsic

deformation as an additional control to study the hydro-

dynamic conversion from spatial eccentricity to momen-

tum anisotropy and inform the transport properties of the

QGP. At the top RHIC energy, the deformed U?U colli-

sions were studied with Au?Au collisions. Full-overlap

U?U collisions have the potential to study the hydrody-

namic behavior of elliptic flow in large and dense collision

systems, in addition to the nonlinear path length depen-

dence of radiative parton energy loss [238]. Experimen-

tally, such a study requires to select ‘‘tip–tip’’ collisions,

defined to occur when the major axes of the uranium nuclei

lie parallel with the beam direction, from the ‘‘body–body’’

events, where the major axis of each nucleus is perpen-

dicular to the beam direction [239–241]. However, the

theoretically proposed triggers based on a two-component

Glauber model were not effective in STAR measurements

[242]. The measurements were more consistent with the

saturation-based initial condition models [243, 244].

Recently, new types of correlations between elliptic flow

and mean transverse momentum were proposed, which are

sensitive to the nuclear deformation [245]. Similarly, at

LHC energies, 129Xe?129Xe collisions were measured in

addition to 208Pb?208Pb collisions. In contrast to the

spherical 208Pb, the 129Xe nucleus has a prolate deforma-

tion. Hydrodynamic simulations [246] predicted that the

elliptic flow coefficients would be 25% larger in
129Xe?129Xe than those in 208Pb?208Pb in 0–5% central

collisions. This strong enhancement of v2f2g in central
129Xe?129Xe was confirmed by LHC measurements

[247–249].

Stable heavy nuclei are also neutron rich. The neutron

density profiles usually have larger RMS radii than those of

proton densities, which is referred to as the neutron skin of

the nucleus. Measurements of neutron skins in heavy nuclei

are critical for studying the EoS of neutron-rich nuclear

matter [250]. In relativistic heavy-ion collisions, the neu-

tron skin has a negligible effect on regular flow observ-

ables. However, the RHIC proposed the use of isobar

collisions to minimize the background flow signals in

search of chiral magnetic effects (CME). The success of

this experimental program relies on a precision-level

understanding of the flow background in 96
44Ru?

96
44Ru and

96
40Zr?

96
40Zr collisions. A recent work [251] pointed out that

the neutron skin in 96
40Zr can result in a stronger magnetic

field in peripheral collisions and consequently lead to

reductions by a factor of 2 in the difference in CME signals
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from 96
44Ru?

96
44Ru with respect to 96

40Zr?
96
40Zr collisions.

Moreover, realistic nucleon configurations based on den-

sity functional theory calculations for 96
44Ru and 96

40Zr nuclei

showed sizable differences in the particle elliptic flow v2
between the two isobar collision systems [252].

3.4.2 Applications of statistics and machine-learning

techniques

Extracting quantitative physics from the complex

dynamics in relativistic heavy-ion collisions requires the

production and analysis of a high volume of data, from

both experiments and numerical simulations. The data

acquisition rates at the RHIC and LHC experiments grow

factorially with the detectors’ updates. Precise measure-

ments, such as six- and eight-particle azimuthal correla-

tions [29], are pushing large-scale and high-performance

numerical simulations. Parallelization using graphics pro-

cessing units (GPUs) is employed to speed up the event-by-

event simulations [253, 254]. Meanwhile, we need to adopt

advanced statistical tools, such as unsupervised learning,

Bayesian inference, and deep learning (DL) techniques, to

systematically analyze the high volume of simulation data

to extract the physical properties of the QGP. As shown in

Fig. 13, the dynamical modeling of heavy-ion collisions

involves multiple model parameters, each of which can

influence several experimental measurements. Therefore, it

is difficult to identify a single experimental observable to

constrain one physical parameter. Machine learning is a

collection of generic algorithms that allow computers to

find nontrivial correlations and patterns in data samples

with minimum bias.

Principle component analysis (PCA) has been widely

used to study the roles of fluctuations and correlations in

relativistic heavy-ion collisions. PCA is a statistical tech-

nique for extracting the dominant components in fluctuat-

ing data by transforming a set of correlated variables into

independent variables via orthogonal transformations. This

method was first introduced to analyze the event-by-event

fluctuations of anisotropic flow coefficients [256–258] and

the breaking of flow factorization ratios [259]. The PCA

procedure in that study found two dominant contributions

to the two-particle correlation function. The leading com-

ponent was identified with the event plane anisotropic flow

vnðpTÞ, and the subleading component was responsible for

factorization breaking in hydrodynamics [259]. A recent

study [260] showed that the subleading principal compo-

nents of anisotropic flow can reveal details of the hydro-

dynamic response to small-scale structures in the initial

density profiles. Similar studies have also been performed

to understand the event-by-event fluctuations in particle

multiplicity and radial flow [259, 261]. PCA has recently

been applied in unsupervised learning to test whether a

machine can directly discover anisotropic flow coefficients

from high-volume simulation data without explicit

instructions from human beings [262]. Because PCA can

disentangle and extract the dominant components in data, it

is a standard technique to perform dimensional reduction in

statistical analysis as well as model emulation.

Bayesian inference or Bayesian analysis is based on the

Bayes’ theorem to derive posterior distributions of model

parameters by constraining prior information with experi-

mental data. It relies on a solid theoretical framework and

precise experimental measurements. As discussed in

Sect. 3.2.2, it is a systematic way to constrain high-di-

mensional model parameters using multiple experimental

measurements. Over the past few years, Bayesian analysis

has gradually become a standard tool to perform phe-

nomenological extractions of the QGP properties from

experimental measurements. The MADAI Collaboration

initiated a community effort of applying Bayesian analysis

to heavy-ion physics [202]. Bayesian analysis has been

applied to constrain the QCD EoS [203], QGP transport

coefficients [165, 187, 188, 263–267], initial longitudinal

fluctuations [268], QCD jet energy loss distribution

[269, 270], and heavy-quark diffusion coefficients [271].

These works have paved the way for precision physics in

relativistic heavy-ion collisions. Bayesian analysis is a

powerful tool to systematically extract information from

experimental data using a well-established model. How-

ever, it has a limitation, as the produced posterior distri-

butions are influenced by the defined subjective priors.

There is no unique and unbiased method for choosing a

prior in Bayesian analysis.

Experimental Data:
/K/P spectra

yields vs. centrality & beam

HBT

charge correlations & BFs

density correlations

Model Parameter:

equation of state

shear viscosity

initial state

pre-equilibrium dynamics

thermalization time

quark/hadron chemistry

particlization/freeze-out

Physical Model
Emulators

Statistical Analysis

Fig. 13 (Color online) Illustration of the workflow of statistical

analysis, such as Bayesian inference, in relativistic heavy-ion

collisions. The individual physical parameters that pass through the

physical model can influence multiple experimental observables.

Statistical analysis provides a systematic way to constrain multiple

model parameters using a collection of measurements. Trained model

emulators, together with Monte-Carlo Markov Chain processes, are

often applied in statistical analysis to explore the high-dimensional

parameter space efficiently. This figure is modified based on Bass’s

talk at Quark Matter 2017 [255]
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As an outlook, the next generation of Bayesian analysis

in heavy-ion physics is evolving toward drawing global

constraints with multiple subfields, such as combining bulk

flow observables with electromagnetic and QCD jet probes.

Using unified theoretical frameworks and observables that

probe multiple scales in heavy-ion collisions, more reliable

and systematic information can be extracted from Bayesian

analysis.

DL is a branch of machine learning methods that are

based on artificial neural networks to capture highly cor-

related patterns/features from big data. It has achieved

tremendous success in science and technology. The great

advantage of DL over conventional methods is its ability to

extract hidden features from highly dynamical and com-

plex nonlinear systems, such as relativistic heavy-ion

collisions.

The application of neural networks was pioneered in

heavy-ion physics more than 20 years ago to determine the

impact parameter of every heavy-ion collision based on

final particle momentum distributions [272]. More

recently, supervised learning with deep convolutional

neural networks (CNN) was used to identify the nature of

QCD phase transition [273, 274]. The complex dynamics

of heavy-ion collisions hide the experimental signals of a

first-order phase transition and potentially enhanced fluc-

tuations near a critical point. These works demonstrated

that the deep CNN could provide a powerful and efficient

‘‘decoder’’ to extract information about the QCD EoS from

final particle momentum distributions. If the QGP fluid

transitions to HRG through a first-order phase transition,

the conserved net baryon density can clump together in

space because of the spinodal decomposition. This phe-

nomenon leaves characteristic imprints on the spatial net

density distribution in every collision event, which can be

detected by DL techniques [275]. Meanwhile, the impact of

spinodal decomposition on the measurable particle

momentum space information is still challenging for DL

methods to recognize.

DL techniques have also been applied to learn and

mimic the nonlinear dynamics in relativistic heavy-ion

collisions. A deep neural network was designed to learn

and capture the main features of relativistic hydrodynamics

[276]. By treating the initial energy density and flow

velocity as inputs, the trained neural network can quanti-

tatively reproduce the realistic event-by-event hydrody-

namic evolution. This work demonstrated that DL could

speed up event-by-event simulations of heavy-ion colli-

sions by orders of magnitude by replacing real hydrody-

namic simulations with neural network predictions.

DL is gaining popularity in a variety of aspects of

heavy-ion physics to hunt for hidden experimental signals

of important physics [277–280].

4 Summary

Relativistic heavy-ion collisions interconnect nuclear

and high-energy physics. Experiments at the RHIC and

LHC push the field to evolve rapidly and introduce many

surprises in the process. The relativistic expanding QGP is

a unique fluid to study emergent many-body physics of

strong QCD interactions. Meanwhile, the QGP shares

many universal collective features with other strongly

coupled systems in condensed matter and cosmology.

Therefore, understanding the properties of the QGP will

not only advance our knowledge about the many-body

aspects of strong interactions, but also enrich the cross talk

with other fields in physics.

To date, theoretical studies on the out-of-equilibrium

fluid dynamics in heavy-ion collisions are mostly limited to

highly symmetric systems. These are QGP media experi-

encing either Bjorken expansion (0?1)D or Gubser

expansion (1?1)D and are further simplified with respect

to the conformal EoS. However, in realistic heavy-ion

collisions, neither of these symmetry conditions is rigor-

ously satisfied. For instance, Bjorken boost invariance is

apparently broken in proton–lead collisions. It is a neces-

sary step to examine the robustness of these attractors in

realistic QGP in heavy-ion collisions such that out-of-

equilibrium hydrodynamics can provide a theoretical

foundation for interpreting the collective behavior in small

colliding systems.

Some generalized discussions have been carried out on

various aspects. By numerically solving the second-order

viscous hydrodynamics without Bjorken symmetry and

with a nonconformal EoS, attractors are identified in

multiple channels [69]. In a similar manner, attractors from

kinetic theory solutions without conformal symmetry are

reproduced [69, 281]. In the context of kinetic theory, the

L-moments can be generalized in 3?1D expanding sys-

tems as well, by replacing the weight of Legendre poly-

nomials with spherical harmonic functions. Attractors are

found in the induced coupled moment equations [113].

These observations suggest the universal existence of

attractors in out-of-equilibrium systems [282].

Apart from the out-of-equilibrium extensions, macro-

scopic fluid dynamics is an effective, robust, and efficient

description of the bulk dynamics of heavy-ion collisions. It

is a bridge that connects fundamental QCD theory and

experiments. Phenomenological studies combined with

high-precision flow measurements at the RHIC and LHC

have been driving the field toward an era of precision. The

adoption of modern statistics and machine learning tech-

niques, such as Bayesian analysis and DL, has become a

popular and standard approach to extract the QGP transport

properties systematically. The next challenge lies in how to
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quantify the model uncertainty in the theoretical frame-

work. We are expecting increasing input from first-prin-

ciples calculations to reduce the theoretical uncertainties.

Analytical solutions based on Bjorken and Gubser flow

profiles have been widely adopted to validate hydrody-

namic frameworks [253, 254, 283–285]. In recent years,

there have been a few formulations of relativistic causal

hydrodynamics, known as Israel–Stewart [44], BRSSS

[45], DNMR [49], relativistic third-order dissipative

hydrodynamics [51], and anisotropic hydrodynamics

[110, 224, 225]. These theories differ from each other

based on the number of velocity gradient terms included in

the equations of motion for the dissipative tensors. Sys-

tematic comparisons among different hydrodynamic theo-

ries have been carried out by comparing the results to the

exact solution of the Boltzmann equation [286] under high

degrees of symmetry [110, 287–289]. Future extensions of

such comparisons to full (3?1)D will help to standardize

the fluid dynamic model for relativistic heavy-ion colli-

sions. A similar community-wide effort has been carried

out for different transport frameworks in the field of low-

energy nuclear physics [290, 291]. Flow observables from

the RHIC BES program and future FAIR/NICA experi-

ments bring us to a new era of full 3D dynamics beyond the

boost-invariant approximation. With the development of

dynamic initialization schemes that interweave the 3D

collision dynamics with fluid simulations, we are starting to

quantify the initial baryon stopping and study the collec-

tivity of QGP in a baryon-rich environment. This frame-

work provides a reliable baseline to search for critical point

signals in the upcoming RHIC BES II measurements. Flow

measurements in small systems offer a window to study the

early-stage dynamics of QGP. Understanding the collective

origin in small systems has led to state-of-the-art theory

development of rapid hydrodynamization as well as in- and

out-of-equilibrium relativistic hydrodynamics.
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