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Abstract Machine learning methods have proven to be

powerful in various research fields. In this paper, we show

that research on radiation effects could benefit from such

methods and present a machine learning-based scientific

discovery approach. The total ionizing dose (TID) effects

usually cause gain degradation of bipolar junction transis-

tors (BJTs), leading to functional failures of bipolar inte-

grated circuits. Currently, many experiments of TID effects

on BJTs have been conducted at different laboratories

worldwide, producing a large amount of experimental data,

which provides a wealth of information. However, it is

difficult to utilize these data effectively. In this study, we

proposed a new artificial neural network (ANN) approach

to analyze the experimental data of TID effects on BJTs.

An ANN model was built and trained using data collected

from different experiments. The results indicate that the

proposed ANN model has advantages in capturing non-

linear correlations and predicting the data. The trained

ANN model suggests that the TID hardness of a BJT tends

to increase with base current IB0. A possible cause for this

finding was analyzed and confirmed through irradiation

experiments.

Keywords Total ionizing dose effects � Bipolar junction
transistor � Artificial neural network � Machine learning �
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1 Introduction

Bipolar junction transistors (BJTs) are widely used as

analog components in electronic systems [1]. Unfortu-

nately, BJTs exhibit total ionizing dose (TID) effects,

which induce current gain degradation in radiation envi-

ronments []. Such TID effects are complex and influenced

by many factors. A large number of studies have been

conducted on various dependences and underlying

mechanics of TID effects, on bipolar devices 2–6, as well

as on other types of devices [7–10]. Generally, to investi-

gate the correlations between the TID hardness and the

parameters of BJTs, a series of devices should be prepared

for comparison. This method is effective in excluding the

influence of other parameters, but is costly. Many labora-

tories worldwide have been conducting TID experiments

for many years, producing a large amount of experimental

data. Such data are growing rapidly and are readily avail-

able. The correlations between the TID hardness and the

parameters of the BJTs may be extracted from these data.

However, such highly nonlinear data cannot be accurately

described using multiple linear regression. Therefore, a

new generation of computational tools is needed to assist

researchers in extracting valuable information from the

growing volumes of data.
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Machine learning methods can capture correlations in

data and make predictions, thereby providing an alternative

approach for scientific investigations [11]. These methods,

which exhibit huge potential for generalized suitability for

scientific research, have been applied to different research

areas for decades [12]. Examples include genetic research

[11], antibiotic discoveries [13], material design [14–16],

and quantum entanglement simulations [17, 18]. Recently,

machine learning methods have also been successfully

applied in an increasing number of areas in nuclear physics

research [19], including nuclear theories [20–22], experi-

mental methods [23–25], accelerator science [26, 27], and

nuclear data processing [28, 29]. Neural networks are

powerful methods that have proven to be effective for

nonlinear function fitting and accurate prediction [30, 31].

In this paper, we demonstrate that research on radiation

effects could benefit from machine learning methods and

present a machine learning-based scientific discovery

approach for the TID effects of BJTs. Specifically, an

artificial neural network (ANN) model was built and

trained using the data collected from different experiments.

The results indicate that the trained neural network model

has significant advantages over the traditional multiple

linear regression in capturing nonlinear correlations and

predicting data. The trained ANN model suggests that the

TID hardness of a BJT tends to increase with base current

IB0. A possible mechanism for this phenomenon was ana-

lyzed and experimentally verified. Our work indicates that

machine learning methods have advantages in discovering

correlations and predicting experimental data. The pro-

posed approach could be a powerful new tool to discover

correlations from experimental datasets and make predic-

tions for radiation effects.

2 Methods

2.1 Datasets

TID degradation is related to many parameters such as

bias, layout, dose, dose rate, passivation layer, and hydro-

gen content [32–34]. A dataset containing all the related

parameters is perfect for analysis. However, the collected

historical experimental data do not contain all related

parameters. Nevertheless, a dataset containing several

parameters may still be helpful in assisting scientific dis-

covery by providing useful information, as described

herein.

The experimental dataset to be analyzed was collected

from 10 articles [1, 35–43]. The Gummel-plot data of 12

bipolar devices (eight NPNs and four LPNPs) were

obtained from the literature. The Gummel plot records the

collector and base current values at different base-emitter

voltages. Experimental data of bipolar devices irradiated

by cobalt-60 gamma sources with different doses and dose

rates at room temperature were collected. The Gummel

plots before and after irradiation were measured. Degra-

dations of BJTs with different types, VBE, Beta0, IB0, doses,

and dose rates were extracted to create the dataset depicted

in Fig. 1. The dataset contains 565 radiation response data

points for two types of BJTs: NPN and LPNP. VBE is the

base-emitter voltage, whereas Beta0 and IB0 are the corre-

sponding common emitter current gain and base current

before irradiation, respectively. The maximum dose was

1,902 krad(Si). The dose rate was in the range of

0.0015–312 rad(Si)/s. The absorbed doses and dose rates of

silicon were used in this study. The degradation of a BJT is

represented by the change in the base current IB/IB0, where

IB0 and IB are the base currents before and after irradiation,

respectively. The total ionizing dose effects mainly cause

an increase in the base current IB at a fixed base-emitter

voltage VBE, whereas the collector current IC remains

roughly constant [37, 39]. Therefore, IB/IB0 represents gain

degradation of the BJT.

In addition to the Gummel-plot data, the correlations

between degradations and doses or dose rates, obtained via

experimentation, have been exhibited in the literature

[35, 40, 41]. These additional data were adopted as a test

set to verify the generalization of the trained ANN model.

None of the experimental data in the test set were used to

train the ANN.

2.2 Artificial neural network model

We focused on three-layer ANNs, which have proven to

be powerful in studies using relatively small datasets

[44, 45]. The ANNs were implemented using a deep

learning framework called Keras [46]. The inputs of the

ANN are the type, |VBE|, Beta0, IB0, dose, and dose rate.

The first neuron of the input layer represents the type of a

BJT. Specifically, ‘0’ stands for the NPN type and ‘1’

stands for the LPNP type. Each input parameter is nor-

malized to a mean of 0 and standard deviation of 1 over the

training dataset. The output of the ANN was one neuron,

corresponding to the change in the base current in the

logarithm log(IB/IB0). The rectified linear unit (ReLU) [47]

was adopted as the activation function for the first two

layers, while the linear activation function was adopted for

the last layer. The dropout algorithm with the rate of 0.1

was employed for the first two layers. This algorithm is

helpful in improving the generalization performance of

ANNs [48]. The loss function is the mean squared error.

Adam with the default learning rate of 0.001 was employed

as the optimizer to update the weights during the training

process [49]. The batch size was set to 32 for stable con-

vergence during the training [50].
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A suitable number of neurons and training epochs may

vary significantly for different problems. Fivefold cross-

validation (CV) was utilized to identify the suitable number

of neurons in the two hidden layers and training epochs for

fitting our dataset. In this technique, the dataset is randomly

divided into five parts; five ANNs were trained and itera-

tively evaluated. Each ANN was trained using four parts of

the dataset and validated using the remaining part. The CV

technique was helpful in reducing the influence of training

instability. The performance of the ANNs was evaluated

using the mean absolute error (MAE), computed as:

MAE ¼
XN

i¼1

yi � ŷij j=N; ð1Þ

where y and by represent the experimental and predicted

values for log(IB/IB0), respectively, and N represents the

number of data points.

The performance of the ANNs with different training

epochs and neuron numbers is shown in Fig. 2. The

training and validation MAEs are the average values of all

five-fold ANNs. The maximum number of neurons to be

investigated was limited to 20 9 20 considering the small

size of the dataset to be fitted. As can be seen in Fig. 2a, the

MAE on the validation set converged after 1,000 epochs of

training for the different sizes of ANNs evaluated in our

study. Therefore, the number of epochs for training was set

to 1,000. Figure 2b presents the influence of the number of

neurons in the two hidden layers on the valid MAE. The

MAE on the validation set decreased with an increase in

neurons. The distribution of the MAE is symmetrical about

the diagonal. Therefore, it is a good choice to set the

number of neurons in the two layers equal when the total

number of neurons is fixed. Figure 2c shows the MAEs of

the training and validation sets for ANNs with the same

number of neurons in the two layers. As the number of

neurons increased, the MAEs of the training and validation

sets decreased. However, the MAE of the validation set

decreased more slowly than that of the training set. As

shown in Fig. 2d, the difference between the two increased.

A large difference indicates that the model can fit the

training set accurately, but cannot accurately predict the

validation set. This indicates poor generalization perfor-

mance owing to overfitting [51]. To accurately capture the

correlations between data, a good model should have a

small MAE and a good generalization performance. In our

study, we set the number of neurons in each layer to 7.

Figure 3 displays a schematic of the proposed ANN model.

Applying more neurons could reduce the MAE slightly, but

simultaneously reduces the generalization performance.

We preferred fewer neurons to avoid capturing fake cor-

relations caused by overfitting.

Fig. 1 Overview of the dataset: degradation log(IB/IB0) versus (a) type, (b) bias condition VBE, (c) common emitter current gain Beta0, (d) base
current IB0, (e) dose, and (f) dose rate
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3 Results

3.1 Predictions

With the help of CV technology, five ANNs were

trained using different parts of the dataset. The predictions

made by these ANNs were slightly different. We used the

average value as the prediction result. The performance of

the trained ANNs regarding the test set is expressed in

Fig. 4. Figure 4a–g shows that the degradations at different

doses and dose rates predicted by the trained ANN model

agree with the experimental results for the test set. Fig-

ure 4h presents a summary of the predictions for the test

set. The MAE between the predictions and experimental

data was 0.101.

Figure 5 presents a comparison of the learning curves

for the three different models. The performance of our

proposed ANN model was compared with those of the

average and multiple linear regression models. The average

model considers the average value of the training set

samples as the prediction results. As the number of training

samples increased, the MAE on the test set decreased

significantly for the ANN and multiple linear regression

models. When trained with 550 samples, the average MAE

for 10 random runs of the ANN model was the smallest,

which was nearly half of that of the multiple linear

regression model. The results show that the proposed ANN

Fig. 2 Performance of ANNs with different training epochs and

numbers of neurons. (a) Valid MAE for different training epochs. The

valid MAE converges after 1,000 epochs for ANNs with different

numbers of neurons. (b) Valid MAE for ANNs with different numbers

of neurons in two hidden layers. (c) Training MAE and valid MAE for

ANNs with the same number of neurons in the two layers.

(d) Differences between training MAE and valid MAE. For (c) and
(d), the data points in the figures are the average values of 10 random

runs, while their standard deviations are marked with shaded areas.

(Colour figure online)

Fig. 3 Schematic of the proposed ANN model for our dataset.

(Colour figure online)
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model performs better than the traditional multiple linear

regression model in predicting the experimental results.

3.2 Correlations

The trained ANN model fits the experimental data well,

indicating that the trained ANN model successfully learned

the correlations between the degradation and input

parameters in the dataset. These correlations were inves-

tigated by feeding the trained ANN model with specific

inputs. Figure 6 displays the correlations between the

degradation and each parameter generated by the trained

ANN model. Specifically, dose = 100 krad(Si), dose

rate = 100 rad(Si)/s, |VBE| = 0.6 V, Beta0 = 100, and IB0-
= 1 9 10–8 A were selected as the reference parameter

values. The data points in the figures are the average values

of the different CV parts, and the shaded areas represent

their standard deviations. The correlations captured via

multiple linear regression are shown in Fig. 7 for

comparison.

Most correlations captured by the trained ANN model

were consistent with classical theories, whereas a novel

correlation was found. These correlations are nonlinear and

cannot be accurately described using multiple linear

regression model. In Fig. 6a, the degradation trend with

dose is shown. It is apparent that the degradation of the

BJT increases with increasing dose before saturation. In

particular, degradation of the LPNP-type BJT was more

severe and saturated earlier. These phenomena are con-

sistent with those reported in previous studies [35]. As

depicted in Fig. 6b, the degradation at a low dose rate is

more severe, implying that enhanced low dose rate sensi-

tivity (ELDRS) effects are captured in the ANN model.

Figure 6c indicates the consistency with previous research

results that degradation is more severe at lower bias volt-

ages [1]. In Fig. 6d, the captured correlation between

degradation and Beta0 is unclear. It seems that for the

NPN-type device, the degradation increased with Beta0.

However, the degradation changed little with Beta0 for the

LPNP-type. In Fig. 6e, it is noteworthy that the trained

ANN model captured the correlation that degradation of a

BJT will lessen as the pristine base current IB0 increases,

that is, the TID hardness of a BJT tends to increase with

base current IB0. To the best of our knowledge, this

hypothesis has rarely been reported in the literature.

The proposed hypothesis shown in Fig. 6e agrees with

the statistical analyses. The pristine base current IB0 and

VBE are related. To exclude the influence of VBE, the

experimental data of the same bias (VBE = 0.6 V) were

selected to analyze the correlation between IB0 and the

Fig. 4 Performance of the trained ANN model on the test set: (a)–
(g) Experimental results and predictions of degradations at different

doses and dose rates. (h) Summary of the predictions for the test set.

Error bars represent the standard deviations of different CV parts.

(Colour figure online)

Fig. 5 Comparison of learning curves for average model, multiple

linear regression, and ANN. The data points in the figures are the

average values of 10 random runs, while their standard deviations are

marked with shaded areas. (Colour figure online)

123

Machine learning-based analyses for total ionizing dose effects in bipolar junction transistors Page 5 of 11 131



Fig. 6 Correlations captured by the trained ANN model between the

degradation and each parameter. (a)–(e) results from the trained ANN

model with the reference parameters: dose = 100 krad(Si), dose

rate = 100 rad(Si)/s, |VBE| = 0.6 V, Beta0 = 100, and IB0 = 1 9 10–8

A. Shaded areas represent the standard deviations of different CV

parts. (Colour figure online)

Fig. 7 Correlations captured by the multiple linear regression model between the degradation and each parameter. Shaded areas represent the

standard deviations of different CV parts. (Colour figure online)
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degradation log(IB/IB0). The correlation coefficient r was

calculated from the following equation as -- 0.344:

r ¼
P

x� xð Þ y� yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x� xð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
y� yð Þ2

q ; ð2Þ

where x and y represent IB0 and log(IB/IB0), respectively;

and x and y represent the average values. The above value

indicates a weak correlation. The two-tailed p-value

obtained from the Student’s t-test was 0.010, indicating

that the negative correlation coefficient was statistically

significant.

3.3 Mechanism analyses

The possible causes of the proposed hypothesis could be

analyzed using classical TID mechanism theories. For an

ideal NPN BJT, the pristine base current can typically be

approximated as:

IB0 ¼ Aq
Dpni

2

NEWE

exp
VBE � IERs

VT

� �
; ð3Þ

where A is the active emitter area, q is the magnitude of the

electronic charge, DP is the diffusion constant, NE is the

emitter doping, VT is the thermal voltage, WE is the

effective emitter width, IE is the emitter current, and Rs is

the series resistance between the emitter and base [52, 53].

Ionizing radiation increases the base current owing to

the fixed positive oxide-trapped charge (NOT) and interface

traps (NIT) [53]. The base current after gamma irradiation is

often modeled as [34, 53, 54]:

IB ¼ IB0 þ DIR: ð4Þ

The increment in the base current mainly contains two

parts of the electron–hole recombination current:

DIR ¼ DIR�SCR þ DIR�NBS: ð5Þ

One part was located above the emitter–base space-

charge region (SCR). The other was located above the

neutral-base surface (NBS). The excess base current in the

SCR can be expressed as:

DIR�SCR ¼ PEDsqVTpni
2Em

exp
VBE � IERs

2VT

� �
; ð6Þ

where PE is the emitter perimeter, Ds is the surface

recombination velocity, ni is the intrinsic carrier concen-

tration of silicon, and Em is the maximum electric field in

the SCR [53]. The excess base current in the NBS is

expressed as:

DIR�NBS ¼ PEDsqWBn
2
i

2ns
exp

VBE � IERs

VT

� �
� 1

� �
; ð7Þ

where ns is the majority carrier concentration at the surface

and WB is the width from the emitter to collector [53, 55].

The degradation can be written as:

IB/IB0=1+DIR/IB0: ð8Þ

Notably, the total excess base current DIR, which is the

sum of DIR�SCR and DIR�NBS, is proportional to the

perimeter of the emitter PE. The pristine base current IB0 is

proportional to the area of the emitter A. When other

parameters of the BJTs are approximately the same, the

degradation should be proportional to the perimeter-to-area

ratio, that is:

DIR=IB0 / PE=A: ð9Þ

The perimeter increased as the area of emitter A

increased, but the perimeter-to-area ratio (PE/A) tended to

decrease. Consequently, IB/IB0 decreased. Therefore, the

difference in the perimeter-to-area ratio PE/A may be one

of the possible mechanisms leading to the phenomenon that

a BJT with a larger base current IB0 tends to have a smaller

degradation IB/IB0.

3.4 Irradiation experiments

Irradiation experiments were conducted to verify the

influence of the perimeter-to-area ratio on degradation. The

irradiation experiments were performed using a cobalt-60

gamma source at room temperature. Five kinds of NPN

BJTs with different emitter sizes were irradiated, as shown

in Fig. 8a. The other parameters of the BJTs are approxi-

mately the same. The devices were manufactured by

Analog Foundries, based on a 6-inch bipolar process plat-

form. Accounting for the uncertainties caused by manu-

facturing process fluctuations, three devices of each kind

were used for irradiation. The total doses were 40, 80, 120,

and 160 krad(Si), and the dose rate was 0.685 rad(Si)/s in

the experiments. All BJTs were grounded during irradia-

tion. The Gummel-plot data were measured using a semi-

conductor analyzer at room temperature before and after

irradiation. VE was swept from - 0.4 to - 1.2 V, main-

taining VB = VC = 0 V. The delay between irradiation and

every measurement was within 2 h. Typical Gummel-plot

data at different doses are presented in Fig. 8b.

As shown in Fig. 8c, the degradation IB/IB0 increases

linearly with the perimeter-to-area ratio PE/A, which agrees

with Eqs. (8) and (9). The measured correlations between

the degradation and pristine base current at different doses,

shown in Fig. 8d, indicate that a BJT with a larger base

current IB0 tends to have a smaller degradation IB/IB0,

which is consistent with the ANN result. Experiments

confirmed that the perimeter-to-area ratio could be one of

the causes of this phenomenon.
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4 Discussions

4.1 Predictive ability

It should be noted that the trained ANN cannot guar-

antee the degradation prediction for a device that does not

have any data in the training set. This is because of the

systematic deviations between different devices and

experiments. An ANN may overestimate or underestimate

a device that has never been observed. The trained ANN is

more suitable for predicting missing values, such as pre-

dicting degradations at other doses or dose rates in Sect. 3.

More specifically, the ANN was trained to predict missing

values in the training process. The dataset included

experimental data from different devices. During training,

the dataset was shuffled and divided into training and

validation sets. The validation set can be considered the

missing value of the training set. The ANN model was

trained using the training set and verified by predicting the

validation set. Therefore, the performance of the validation

set correlates with ANN’s ability to predict missing values.

As shown in Fig. 9a, the ANN failed to predict the data

from the irradiation experiments in Fig. 8. The degradation

was overestimated and the MAE was as large as 0.45.

However, after the 130 krad Gummel-plot data of the 18

9 18 lm2 NPN were included in the dataset, the predic-

tions of the newly trained ANN model on irradiation

experiments could be significantly improved. As shown in

Fig. 9b, the MAE decreased to 0.14. It is noteworthy that

only the degradations at 130 krad of one device were

included in the dataset, but the predictions of 9 9 9,

9 9 18, 18 9 18, 18 9 36, and 18 9 72 lm2 NPNs at 40,

80, 120, and 160 krad were improved. This implies that the

ANN model learned the correlations from the other devices

in the dataset. When more data are included, predictions

can be further improved. Figure 9c shows the predictions

after 50 krad Gummel-plot data of the 18 9 72 lm2 NPN

were added to the dataset. MAE reduced to 0.09. Note that

all of the experimental data to be predicted in Fig. 9 have

never been used for training.

Fig. 8 Results of the irradiation experiments. (a) Emitter sizes of

BJTs used in experiments. (b) Gummel plots for one of the

18 9 18 lm2 emitter BJTs at different doses. (c) Degradation versus

perimeter-to-area ratio at different doses (VBE = 0.6 V). Error bars

are the standard deviations of the measurement results. Dashed lines

are the linear fitting results of the mean values. (d) Degradation versus
pristine base current at different doses (VBE = 0.6 V). (Colour

figure online)
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4.2 Systematic deviations between different devices

There may be systematic deviations between different

experiments, such as differences between the radiation

sources and measurement instruments. Moreover, devices

from different manufacturers may also exhibit systematic

deviations. Systematic deviations limit the ability to predict

new devices. If we could account for systematic deviations,

the predictions of the new devices could be improved.

We propose a simple method for approximately char-

acterizing the system deviations between devices. We

introduced a factor F to represent the deviation of one

device from the average value of the other devices. To

evaluate the factor F, a multiple linear regression model

was trained using the dataset, excluding the device to be

evaluated. The trained model represents the average of the

other devices. The predictions of the device to be evaluated

are denoted by by, and the actual degradations are denoted

by y. Factor F was calculated by linear fitting as follows:

ŷ ¼ F � y: ð10Þ

Specifically, the fitting coefficient F can be calculated

by:

F ¼
XN

i¼1

ðyi � ŷiÞ=
XN

i¼1

y2i : ð11Þ

If the factor F of a device is larger than 1, the device is

likely to have less degradation than the other devices in the

dataset. The calculated F for the 12 devices in the dataset

ranged from 0.36 to 1.48. The calculated F value was set as

a new feature of the dataset to account for systematic

deviations. A new ANN model with the same structure as

Fig. 9 Performance of predictions on experimental data of Fig. 8.

(a) ANN trained with original dataset. (b) ANN trained with dataset

adding 130 krad Gummel-plot data (18 9 18 lm2 NPN). (c) ANN

trained with dataset adding 130 krad Gummel-plot data (18 9 18 lm2

NPN) and 50 krad Gummel-plot data (18 9 72 lm2 NPN)

Fig. 10 Predictions on irradiation experiments of ANN trained with a

new feature factor F. (a) Predictions versus experimental results in

Fig. 8. (b) Degradations versus pristine base current at different doses

(VBE = 0.6 V). Shaded areas represent the standard deviations of

different CV parts. (Colour figure online)
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the previous model was trained, and the predictions of our

irradiation experiments are shown in Fig. 10. It is clear that

this model can accurately predict the experimental results.

However, the factor F of the device is required when

predicting. This implies that one should have some device

data to compute factor F in advance. In our case, the factor

F was calculated with degradations at 130 krad.

5 Conclusion

We presented a machine learning-based scientific dis-

covery approach for radiation effect research. It is shown

that the machine learning method could be a powerful new

tool to discover correlations from experimental datasets

and make predictions. An ANN model was built and

trained using the dataset collected from different experi-

ments. The results indicate that the proposed ANN model

has advantages over multiple linear regression in capturing

most nonlinear correlations and predicting data. Most

correlations captured by the trained ANN model were

consistent with classical theories, whereas a new correla-

tion was found. The trained ANN model suggests that the

TID hardness of a BJT tends to increase with base current

IB0. Further mechanistic analyses and experiments con-

firmed that the differences in the emitter perimeter-to-area

ratio of the BJTs could be one of the causes of this phe-

nomenon. The ANN model presented in this study was

trained using a relatively small and simple dataset. It is

expected to be more powerful if a larger and more detailed

dataset is provided. We plan to conduct ANN analyses on

the historical data from several laboratories and build

models for other kinds of devices.
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