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Abstract Anomaly detection for the control rod drive

mechanism (CRDM) is key to enhancing the security of

nuclear power plant equipment. In CRDM real-time con-

dition-based maintenance, most existing methods cannot

deal with long sequences and periodic abnormal events and

have poor feature extraction from these data. In this paper,

a learning-based anomaly detection method employing a

long short-term memory-based autoencoder (LSTM-AE)

network and an extreme gradient boosting (XGBoost)

algorithm is proposed for the CRDM. The nonlinear and

sequential features of the CRDM coil currents can be

automatically and efficiently extracted by the LSTM neural

units and AE network. The normal behavior LSTM-AE

model was established to reconstruct the errors when

feeding abnormal coil current signals. The XGBoost

algorithm was leveraged to monitor the residuals and

identify outliers for the coil currents. The results demon-

strate that the proposed anomaly detection method can

effectively detect different timing sequence anomalies and

provide a more accurate forecasting performance for

CRDM coil current signals.

Keywords Anomaly detection � CRDM � LSTM-AE �
Residuals � XGBoost

1 Introduction

The control rod drive mechanism (CRDM) [1] is the

only movable equipment unit in the reactor pressure vessel

and actuator of the reactor control and nuclear safety pro-

tection system. The reactor relies on the CRDM to pull the

control rod to realize reactor start-up, power regulation,

reactive compensation, and safe shutdown. A pressurized

water reactor (PWR) nuclear power plant (NPP) adopts a

magnetic lifting drive mechanism that relies on coil power

to realize control rod action. The control rod moves step-

by-step through the alternating action of the three sets of

coils in the driving mechanism [2]. Each step requires close

cooperation between the three sets of coils and hook claw.

If a slight error occurs, failure to pull, drop, or lift may

occur. Therefore, it is of significant value to investigate

how to improve the CRDM abnormal detection

performance.

Recently, the state parameters used for abnormal

detection of control rods are predominantly vibration sig-

nals, structural noise and inductance values. In actual

control rod operation, each action will produce character-

istic acoustic signals related to the moving parts. The

operation [3] and wear [4] of the CRDM can be judged

using acoustic-sensitive sensors and instruments, which

provides an effective means for CRDM performance

monitoring and fault analysis. Caylor et al. [5] proposed an

abnormal detection method of the CRDM based on the

principle of structural noise detection. The structural noise

was obtained by the sensor, and the signal was analyzed
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and processed to determine the fault. Fault diagnosis based

on structural noise provides a new fault detection method

for the monitoring and maintenance of CRDM in nuclear

reactors. In addition, because the air-gap magnetomotive

force is proportional to the equivalent length of the flux

path, the air-gap length changes significantly when the

actuator is eccentric [6], resulting in a change in the coil

flux and the inductance value of the control rod coil is

affected [7]. Xie et al. [4] proposed a new method for the

state detection of CRDM action components by on-line

measuring the coil inductance value and realized state

detection of CRDM action components. Ling et al. [8]

proposed a model feature-based flow field fusion simula-

tion method applied in CRDM. The research obtained a

fusion simulation result of the CRDM through the hierar-

chical structure of the function-motion-action method,

which presented a new concept for CRDM anomaly

detection. The aforementioned research on CRDM anom-

aly detection can only judge the action component fault,

and the CRDM mainly transmits the signal through the

current during the operation process. To accurately obtain

the characteristic information of the operation process, it is

necessary to study the operation current signal detection

method.

An increasing number of applications involving

machine learning in the nuclear energy field are being

implemented owing to its advantages of rapidly processing

large amounts of data, analyzing and extracting effective

information, etc. Chen et al. [9] designed a neural network

accelerator to efficiently extract amplitude and time

information from row-by-line pulses. Ma et al. [10] used

the LSTM model to achieve optimal estimation of nuclear

pulse parameters. However, development in machine

learning has been slow in nuclear energy anomaly detec-

tion. In other fields, it has been widely used for conditions

monitoring [11], fault diagnosis [12], and anomaly detec-

tion [13] . The effective perception of periodic and non-

linear change characteristics of time-series data has

become a key factor in the effectiveness of various fault

detection and diagnosis models. Traditional anomaly

detection algorithms such as Gaussian anomaly detection

[14, 15], SVM [16, 17], KNN [18, 19], PCA [20, 21] and

isolation forest [22, 23] do not consider anomaly detection

in time series. Reference [24] used a competitive neural

network to establish a prediction model of time series using

historical data and judged whether there was an anomaly

by comparing the difference between predicted and actual

data. Yan et al. used this concept to establish a time-series

state model, and clustering to map the time series to dif-

ferent discrete states, and used the statistical state transition

probability to mine outliers. However, the discrete state

modeling method loses a lot of data information and is

overly reliant on the clustering results. Ergen et al. [25]

used a new recurrent neural network model LSTM to

model the sequence. This model can capture the relation-

ship between sequences well; however, it is too complex to

meet real-time requirements. Moreover, owing to the gra-

dient disappearance problem, the modeling effect of long

sequences is poor. Currently, most methods compare the

difference between the predicted and actual data to deter-

mine abnormality. The hypothesis test data were subjected

to a normal distribution [26], and the 3 r criterion was used

for discrimination. This type of method ignores the real

distribution of data and errors in small datasets.

This study proposes an anomaly detection algorithm

based on LSTM-AE and XGBoost [27] for the coil current

of a CRDM. Hence, this research realizes CRDM anomaly

detection under various abnormal conditions and accu-

rately obtains CRDM characteristic information by moni-

toring the CRDM coil current signal. The proposed method

utilizes the LSTM-AE neural network to automatically

extract the nonlinear and sequential features of the coil

currents and builds a normal behavior model to reconstruct

the residual under abnormal conditions. Long series and

periodic historical current data can be handled and pre-

dicted using the LSTM-AE model. The XGBoost classifi-

cation algorithm is employed to identify outliers in the

reconstructed errors and avoid defects in hypothesis test-

ing. The long series and periodic CRDM coil currents can

be accurately predicted and detected by the generalization

and classification ability of the proposed method.

2 Working principles of CRDM

The CRDM is primarily composed of a drive shaft, coil,

armature, gripper, and other components [28]. As shown in

Fig. 1, each control rod contains one lift coil (LC), mov-

able coil (MC), and stationary coil (SC). The three groups

of electromagnetic coils turn on and off alternately

according to a certain time sequence, and the armature

action is lifted, moved, and stabilized to achieve the rise or

Fig. 1 (Color online) Structure of CRDM
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fall of the control rod. Therefore, the coil current size, on-

off time sequence, and current sequence response of the

hook claw action are extremely important for the mecha-

nism action.

According to the lifting and insertion control signals

shown in Fig. 2a, b, the control rod is lifted or inserted into

the reactor core through the CRDM step motion sequence.

The CRDM coil operates at three voltage levels: high, low,

and zero. After the coil was electrified, a low voltage was

generated on the SC to ensure the control rod remained in a

fixed position. A high voltage was applied to the LC to start

the motion of internal magnetic components. This initial

motion causes the internal clearance between the magnetic

components to close, thereby lifting the control rod. Subse-

quently, a low voltage was applied to the coil to ensure the

gap remained closed, allowing the locking device to connect.

The current was removed from the coil to allow gap opening

and load transfer to the locking device. This control sequence

enables the CRDM to move the control rods during and

insertion actions. Figure 2c, d shows the coil current curve

during the lifting and insertion actions, respectively.

As shown in Fig. 3, the current curve of a SC is divided

into six stages described as follows.

1. Zero current stage: at this stage, the coil current is zero,

and the coil is in an open state.

2. Initial electrification stage: at this stage, the coil

current begins to increase. Because the coil is an

inductive load, the current slowly increases. After

which, the electromagnetic force gradually increases.

When the coil current does not increase to a certain

degree, the magnetic force is small and does not

produce action.

3. Back ditch stage: when the electromagnetic force

increases to a certain extent with the current, the

gripper moves and the current continues to increase.

The magnetic gap on the upper magnet decreases, and

the lifting force increases. However, the position of the

coil changes during the action, and therefore, the

corresponding magnetic flux becomes smaller, and the

coil inductance becomes larger, which leads to a

decrease in current and produces a return channel

during the dynamic current change.

4. When the action is complete, the position of the hook

claw and inductance of the coil no longer change, and

the coil will form a transient steady state. Under this

state, the current continues to rise to the inductive load

Fig. 2 Timing sequence and current waveform for lift and insertion motion

123

Anomaly detection of control rod drive mechanism using long short-term memory-based... Page 3 of 15 127



to charge the current slowly until it stabilizes and

reaches its peak.

5. High-level stage: at this stage, the coil is in a clamping

state.

6. Low-level stage: the control signal is that the low-level

current slowly drops into the low current, and the coil

is in the clamping state.

Abnormal data contain types of anomalies common in

CRDM operations. Figure 4a shows the abnormal current size,

and the fault of the CRDM current control circuit causes the

output current to deviate from the set value. Excessive current

may cause the coil to overheat, and a current that is too small

may cause the armature to be unable to move. Figure 4b shows

the non-action point anomaly. If there is no pit in the rising

section of the current, it can be confirmed that the corresponding

clawdoes not act. This anomaly can easily lead to stick-slip. The

anomaly shown in Fig. 4c represents the backward movement

of the action point. The moving step requires seven actions and

cohesion between the stationary gripper, movable gripper, and

lift armature to cooperate closely.A slight errormay lead topull,

drop, or lift failure. Figure 4d shows slow current rise. As a

result, the action point of the armature lags behind, and it is easy

to pull or slide the rod and scratch the drive shaft.

Based on the aforementioned analysis, the CRDM coil

current information contains the control rod action infor-

mation. Accurate real-time extraction of coil current

characteristics is the key to achieve CRDM abnormal

detection. A schematic of the proposed anomaly detection

method is shown in Fig. 5. The normal coil current

operation data were used as input for the LSTM-AE model

for feature learning, and the normal behavior model(NBM)

was trained. The NBM represents the dynamic relationship

between variables. When the data were normal, the output

of the model was the same as that of the actual result.

When an abnormality occurred, the output of the model

differed significantly from the input data. When the NBM

model was established, the abnormal data were entered into

the NBM test to obtain the reconstruction error, and the

XGBoost algorithm was used to detect the outliers. The

detailed process of anomaly detection using the proposed

LSTM-AE and XGBoost approach is described below.

First, the coil current signal of the control rod drive

mechanism during actual operation was collected, and the

data were cleaned to obtain normal data. Second, based on

the LSTM-AE algorithm, the NBM model was established

using normal data. Finally, the abnormal coil current signal

was used as the input of the trained normal behavior model,

and the residual of the model reconstruction was obtained.

Abnormal point detection of the control rod coil current

was completed as the input for the XGBoost algorithm.

3 LSTM-AE neural network

3.1 The LSTM network

The LSTM model is a type of time-cycling neural net-

work that contains three parts: the input layer, output layer,

Fig. 3 Stationary coil current
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and hidden layer. LSTM can effectively address time-series

learning problems. Its structure is illustrated in Fig. 6.

LSTM has three gated structures to control the state of

the cell, namely the forgetting gate, the input layer gate,

and the output layer gate. The input and output gates

control the memory cell input and output activation. The

forget gate updates the state of the cell. The storage cell

update is given by the following equation:

Fig. 4 CRDM coil current anomaly type. a Abnormal current size. b Backward movement of the action point. c Non-action point anomaly.

d Slow current rise

Fig. 5 (Color online) Schematic diagram of CRDM anomaly detection using LSTM-AE and XGBoost
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ft ¼sgmoidðwxfxt þ whfht�1 þ bfÞ; ð1Þ

it ¼sgmoidðwxixt þ whiht�1 þ biÞ; ð2Þ

gt ¼ tanhðwxgxt þ whght�1 þ bgÞ; ð3Þ

ot ¼sigmoidðwxoxt þ whoht�1 þ boÞ; ð4Þ

st ¼ft � st�1 þ it � gt; ð5Þ

ht ¼ot � tanhðstÞ; ð6Þ

where i indicates the input gate, o is the output gate, f is the

forgetting gate, ft indicates the state of the cell at the pre-

vious time, st indicates the memory cell, ht indicates the

final output, and � represents the element-wise multipli-

cation. wxf , whf and bf are the neuron weights of ft. wxi, whi

and bi are the neuron weights of it. wxg, whg and bg are the

neuron weights of gt. wxo, who, bo are the neuron weights of

ot.

3.2 The LSTM-AE neural network

The LSTM-Autoencoder is divided into an encoder and

decoder. The input data features are learned by the encoder,

and then, the reconstruction errors are calculated by the

decoder. Set the input data sequence x1; x2; . . .; xn can be

defined as Xif gni¼1 where n indicates the size of the data

window. For each input data Xi ¼ xi1; xi2; . . .; xinf g, the

state vector of the encoder hidden layer corresponding to

column i is as follows:

Xti
g ¼ kðWxti þ Rhðt�1ÞiÞ; ð7Þ

hðt�1Þi is the output state vector of the first decoding unit at

t � 1. xti denotes the input vector. W, R is the m� d-

m� m-order coefficient weight matrix. Function k(.) is

typically set as the ‘tanh’ activation function. By entering

each column vector in xi in the encoder section, the output

is as follows:

hti ¼ kencu ðxti; hðt�1ÞiÞ: ð8Þ

For the output of the i encoding unit at time t, u is the

parameter set for the encoding part. kencu ð:Þ is typically set

as the ‘tanh’ activation function. The output

sequence htif gnii�1 was obtained using the coding part set.

The output sequence was pooled using Eqs. (9), and (11).

hi ¼
Pni

j¼1 hti

ni
; ð9Þ

hi ¼ht;ni; ð10Þ

hi ¼MAX htif gnii¼1; ð11Þ

where j denotes the number of rows of hti. After the pooling

operation, hi enters the encoder part, and the input can be

reconstructed as follows:

ĥti ¼kdecu ðhi; ^hðt�1ÞiÞ; ð12Þ

x̂ti ¼qðĥtiÞ; ð13Þ

where x̂ti denotes the reconstructed data. ĥti is the implied

state vector for the decoder, and kdeccu ð:Þ and qð:Þ are

typically set to the ‘tanh’ function. Finally, the LSTM-AE

model can be determined by minimizing function aaa. The

LSTM-AE network structure is shown in Fig. 7.

3.3 XGBoost

The XGBoost algorithm integrates several CART trees.

XGBoost is an optimized distributed gradient-lifting

Fig. 6 Architecture of a long

short-term memory (LSTM)

unit
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algorithm. The main advantages of this algorithm are its

efficiency, flexibility, and portability to other systems. The

superior performance of XGBoost in supervised machine

learning is the reason for choosing it to train the coil cur-

rent anomaly classification in this context.

The XGBoost structure is shown in Fig. 8. In each

algorithm iteration, residual errors are used to modify the

previous classifier and optimize the loss function, which is

given by

JðaÞ ¼ LðaÞ þ XðaÞ; ð14Þ

a represents the trained parameter, L represents the loss

function, X represents the regular term, and the output of

the model ŷi is voted on by the set F of the k tree:

ŷi ¼
Xk

i¼1

fkðxiÞ; fk 2 F: ð15Þ

The objective function is converted at t time to

JðtÞ ¼
Xn

i¼1

Lðyi; ŷiÞ þ
Xt

k¼1

XðfkÞ; ð16Þ

where n denotes the predicted amount. ŷi represents:

ŷðtÞ ¼
Xt

k¼1

fkðxiÞ ¼ ŷðt�1Þ þ ftðxiÞ: ð17Þ

The regularization term of the decision tree XðfkÞ is

expressed as follows:

XðfkÞ ¼ cT þ 1

2
k
XT

j¼1

w2
j ; ð18Þ

where c denotes the complexity of the leaf. T indicates the

number of leaf nodes. k denotes the penalty factor. w

denotes the fraction vector. Assuming that the loss function

is the mean square error, the objective function can be

obtained as follows:

Fig. 7 Structure of LSTM-AE neural network

Fig. 8 Structure of XGBoost
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JðtÞÞ �
Xn

i¼1

½giwqðxiÞ þ
1

2
ðhiw2

qðxiÞÞ�

þ cT þ 1

2
k
XT

j¼1

w2
j ;

ð19Þ

q(.) represents a function that assigns data points to the

corresponding leaf nodes, gi represents the first derivative

of the loss function, and hi represents the second derivative.

The loss function can be expressed as the sum of the loss

values of leaf nodes.

JðtÞ �
XT

j¼1

X

i2Ij
gi

 !

wj þ
1

2

X

i2Ij
hi þ k

 !

w2
j

" #

þ cT

Gj ¼
X

i2Ij
gi;Hj ¼

X

i2Ij
hi

ð20Þ

Ij represents all the leaf node data. Therefore, the opti-

mization of the objective function is equivalent to deter-

mining the minimum quadratic function.

4 Results

The experimental data were obtained from nuclear

power plant 1-4 megawatt-class pressurized water reactor

nuclear power (NPP) units. In the cold CRDM requalifi-

cation test of this NPP, we collected and stored the LC,

MC, SC currents, and vibration data through the RGL

system. In this study, we conducted an anomaly detection

investigation on the CRDM with an SC current as the

research object. Based on the staff operational reports

during the test, this experiment collected 20 cycles of

normal coil current data as a sample set, with each cycle

lasting 792 ms. During the construction of the LSTM-AE

model, 80% of the sample set (16 cycles of normal coil

data) was used as the training set and 20% (four cycles of

normal coil data) was used as the test set. Four types of

typical anomalies appeared in the control bar card Shib-

boleth report during the test process. In this study, four

types of anomalous coil currents were selected as the val-

idation set of the LSTM-AE model, where each type of

anomalous data contained four cycles. To enhance training

efficiency of the deep learning model, all data were nor-

malized between 0 and 1.

4.1 NBM based on LSTM-AE

In this case, the NBM of an induced CRDM was

established using an LSTM-AE neural network with an SC

current as the model input. Normal operational data were

obtained based on the operational log. Twenty cycles of

observations were obtained from the sample. All datasets

were standardized, and the ratio of the training and test sets

was 8:2. To demonstrate the effects of the established

NBM model. Figure 10 describes the reconstruction result

of NBM based on the LSTM-AE model. It can be observed

that the curves of the reconstructed sample and that of the

raw sample are almost coincident. This indicates that the

established NBM can reconstruct the normal samples well.

In the LSTM-AE training process, the time step and

number of hidden layers are important parameters. These

determine the effects of NBM. The evaluation metrics for

different combinations of these two parameters are shown

in Fig. 9. Increasing the number of time steps and hidden

layers will lead to a waste of training resources; therefore,

the number of time steps is set from 0 to 10, and the

number of hidden layers is set from 2 to 14. The results

show that fewer time steps can improve the performance of

the model when the number of implied layers is extremely

small. The model performs best when the time step is

greater than 0 and the number of implied layers is greater

than 6. The evaluation metrics for both the training and test

sets were extremely low. This indicates that the model has

a relatively high degree of generalization and accuracy.

The final structure with a time step of 6 and 10 implied

layers is chosen, at which point the model has the lowest

RMSE and MAPE metrics.

The NBM constructed by the LSTM-AE neural network

can reconstruct normal samples well; however, it cannot

reconstruct abnormal samples, which is the main reason

why the reconstruction error can effectively distinguish

normal from abnormal samples.

In this study, the experiment proved the rationality of

the reconstruction error. Figures 11 and 12 describe the

reconstruction result and error curves under normal and

four abnormal conditions. Figure 11 describes the recon-

struction result and error curve of the normal samples.

Under normal circumstances, the NBM model has high

reconstruction accuracy, and the reconstruction error of the

sample is below 0.05. However, the change in parameters

leads to an increase in the reconstruction error when an

anomaly occurs, and the reconstruction errors under the

four abnormal conditions are all greater than 0.06. Fig-

ure 12 describes in detail the reconstruction accuracy of

samples in four common anomalies, compared with

Fig. 11, the reconstruction accuracy of the sample is

reduced. Thus, compared with normal samples, anomaly

samples are more difficult to reconstruct using the NBM.

The aforementioned experimental results prove that the

reconstruction error obtained by the NBM can significantly

reflect the difference between normal samples and

anomalies. Thus, it is reasonable to treat the reconstruction

error as an efficient feature for anomaly detection.
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Fig. 9 (Color online) The performance of the LSTM-AE model on difference combination. Red box indicates the best combination

Fig. 10 Reconstruction precision of NBM based on LSTM-AE model
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Fig. 12 Example for reconstruction with four different anomalies.

a Reconstruction precision and error under abnormal current size.

b Reconstruction precision and error under the non-action point

anomaly. c Reconstruction precision and error under the backward

movement of the action point. d Reconstruction precision and error

under slow current rise

Fig. 11 Example for

reconstruction with normal

condition. a Reconstruction

precision. b Reconstruction

error
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4.2 Anomaly detection based on XGBoost

Because the LSTM-AE model training data are normal

coil currents, anomalous reconstruction errors were

obtained when the validation set containing anomalous

data was input to the trained model. Owing to limited

anomaly data in the cold CRDM requalification test, we set

the anomaly data with a small amount of noise to obtain

2400 anomaly reconstruction error data, each of which

contained 400 data, where each data contained four cycles.

These anomalous reconstruction error data were used as the

sample set for XGBoost, with 70% of the sample set as the

training set, and 30% as the test set. The reconstruction

error obtained by the NBM was input into the XGBoost

anomaly detection algorithm as the final feature, and four

common anomaly detection results were obtained. Fig-

ure 13 shows an example of detection results for four

common anomalies, and red points represent the detected

outliers. It can be observed that significant outliers can be

detected and contain some early and small anomalies.

Fig. 13 Detection results of

XGBoost. Red points represent

detected outliers. a Abnormal

current size. b The non-action

point anomaly. c The backward

movement of the action point.

d slow current rise

Table 1 Detection errors with XGBoost for four different anomalies

Abnormal situation 1 2 3 4

Precision 99.67 99.62 99.56 99.73

Recall 91.58 96.33 96.85 92.32
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This shows that it is reasonable to use XGBoost to detect

abnormal reconstruction features. To better evaluate the

performance of the anomaly detection algorithm, this study

used the most common indicators to measure the perfor-

mance of anomaly detection. Precision and recall are the two

most commonly used evaluation indices for classification

purposes. Precision represents the ratio of the correct total

number predicted by themodel to the total number predicted,

and recall rate is the ratio of the correct total number to the

actual target number. The correct total number predicted in

the classification was the correct number of categories cor-

responding to the maximum probability. The precision and

recall rate formulae are as follows:

Precision ¼ TP

TPþ FP
; ð21Þ

Recall ¼ TP

TPþ FN
: ð22Þ

The true positive (TP) is the number of correct predictions.

The false positive (FP)is the number of predicted errors. A

false negative (FN) is the number not detected. TPþ FP

denotes the number of correct predictions. TPþ FN is

expressed as the actual correct number.

Table 1 shows the accuracy and recall of the four anomaly

detection methods. It can be observed that XGBoost has

good precision and recall rates for the detection results of

these four anomalies. To further validate the performance of

the classification models. Figure 14 shows the receiver

operating curve (ROC) under the four abnormal conditions

characteristic curve. The transverse axis is the false positive

rate (FPR) of the model, and the longitudinal axis is the true

positive rate (TPR). It can be observed that theROCcurves in

four abnormal cases are closer to the upper left of the two-

dimensional plane. This shows that XGBoost has good

classification performance for outlier detection.

4.3 Comparison

Through the aforementioned experiments, the reason-

ability of the proposed anomaly method is proved. To

verify the detection performance of the proposed method,

three groups of comparative experiments were performed

in this study. The first group of experiments verifies the

prediction effect of the NBM based on the LSTM-AE

model. The second group of experiments was designed to

verify the performance of the XGBoost anomaly detection.

To demonstrate the superiority of the LSTM-AE method

more clearly in establishing the NBM, the proposed method

was compared with common reconstruction or prediction

models. Comparisons between LSTM-AE, AE, LSTM, and

ARIMAmodels are shown in Fig. 15. AE and LSTM-AE are

reconstruction models, whereas ARIMA and LSTM are

prediction models. The LSTM model adopts a two-layer

structure; the number of neurons in the two layers is 32 and

64, respectively. The parameters p, d, and q of the ARIMA

model were 10, 1, and 10, respectively. It can be observed

that the AE neural network has the worst effect, the LSTM

Fig. 14 ROC curves of four

different anomalies
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model has a better prediction effect than the ARIMAmodel,

and the LSTM-AE model has a better reconstruction effect

than the other three models. Table 2 lists the RMSE and

MAPE of the four methods for the training and test datasets.

Compared with the AE method, the LSTM-AE method

reduced the RMSE by 96.51% and MAPE by 88.69% on the

training dataset. Compared with ARIMA, the LSTM-AE

method reduced the RMSE and MAPE by 77.55% and

76.51%, respectively, on the training dataset. Comparedwith

LSTM, the LSTM-AE method reduced the RMSE by

Fig. 15 (Color online)

Comparison of forecasting

performance between ARIMA,

LSTM, AE and LSTM-AE

model

Table 2 Comparison of error of different forecasting models

Model Train Test

RMSE MAPE RMSE MAPE

AE 0.315 0.849 0.317 0.855

ARIMA 0.049 0.452 0.049 0.396

LSTM 0.031 0.223 0.036 0.265

LSTM-AE 0.011 0.096 0.009 0.093

Fig. 16 Visualization of ROC

for different algorithms
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64.51% and MAPE by 56.95% on the training dataset.

LSTM-AE was also significantly better than the remaining

three methods on the test dataset. Consequently, the LSTM-

AE method can better establish the normal behavior model

(NBM) of the CRDM coil current.

To further verify the performance of XGBoost anomaly

detection, the proposed method was compared with com-

mon classification algorithms. The original data were input

to the common classification algorithm after the recon-

struction residual was obtained by the NBM model and

compared with XGBoost, such as XGBoost, OCSVM,

Iforest, LOF, and KNN. Among them, the OCSVM choo-

ses the radial basis function as the kernel function. The

penalty coefficient was set to 10. The insensitivity coeffi-

cient was set at 0.28. The number of forest trees was set at

100. The number of neighbors in the LOF and that of the

KNN was set to 20.

The ROC curves for the five algorithms are shown in

Fig. 16. Compared with OCSVM, Iforest, LOF, and KNN,

the ROC curve of XGBoost is closer to the upper left and

has a larger area of the two-dimensional plane. This indi-

cates that XGBoost has a better anomaly classification

effect.

The specific values of the precision and recall indicators

of the five algorithms for the four common anomalies are

listed in Table 3. In the four abnormal cases, the precision

and recall indexes of XGBoost were significantly better

than those of SVM, Iforest, LOF, and KNN. This indicates

that XGBoost has a better classification accuracy. XGBoost

improves the precision by 31.77% and recall by 31.36% on

average compared with the other three classification algo-

rithms. This verifies the effectiveness of XGBoost for

CRDM coil current anomaly detection and identification.

5 Conclusion

This study presents a hybrid anomaly detection method

based on the combination of the LSTM-AE neural network

and XGBoost algorithm for the coil current of CRDM. The

proposed method utilizes the LSTM-AE neural network to

automatically extract nonlinear and sequential features of

the coil currents and builds a normal behavior model to

reconstruct the residual under abnormal conditions. The

long series and periodic historical current data can be

handled and predicted using the LSTM-AE model. The

XGBoost classification algorithm was employed to identify

outliers in the reconstructed errors and avoid defects. The

proposed method inherits the generalization and classifi-

cation abilities of these two techniques to realize the

accurate detection of abnormal points and anomalies for

CRDM. The results demonstrate that the proposed method

enhances the prediction performance and classification

accuracy compared with other detection methods. Finally,

it can be confirmed that this solution offers promising

applications for improving the safety and reliability of

nuclear reactors.
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