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Abstract Extracting the equation of state (EOS) and

symmetry energy of dense neutron-rich matter from

astrophysical observations is a long-standing goal of

nuclear astrophysics. To facilitate the realization of this

goal, the feasibility of using an explicitly isospin-depen-

dent parametric EOS for neutron star matter was investi-

gated recently in [1–3]. In this contribution, in addition to

outlining the model framework and summarizing the most

important findings from [1–3], we report a few new results

regarding constraining parameters characterizing the high-

density behavior of nuclear symmetry energy. In particular,

the constraints on the pressure of neutron star matter

extracted from combining the X-ray observations of the

neutron star radius, the minimum–maximum mass M ¼
2:01 M�, and causality condition agree very well with

those extracted from analyzing the tidal deformability data

by the LIGO ? Virgo Collaborations. The limitations of

using the radius and/or tidal deformability of neutron stars

to constrain the high-density nuclear symmetry energy are

discussed.

Keywords Neutron star � Equation of state � Symmetry

energy

1 Introduction

In this mini-review as our contribution to the conference

proceedings, we present some new results along with the

most important findings originally reported in [1–3]. For

more detailed discussions of our recent work on this topic,

we refer the readers to [1–3].

As one of the most exotic objects in the universe, several

extreme conditions, such as high density [4], strong mag-

netic field [5, 6], and high frequency [7], may exist in

neutron stars. To describe their properties, the equation of

state (EOS), namely, the relationship between energy

density and pressure, of neutron-rich matter is needed.

Great efforts have been devoted in both nuclear physics

and astrophysics to understand the nature of neutron stars

[4, 8–13]. In fact, to better constrain the underlying EOS of

neutron star matter, many research facilities are currently

operating, updating, or under construction around the world

[14, 15], such as various advanced X-ray satellites and

Earth-based large telescopes, the Neutron Star Interior

Composition Explorer (NICER), various gravitational

wave detectors, and advanced radioactive ion beam facil-

ities. New observations and experiments at these facilities

provide us with great opportunities to address some of the

controversies regarding the EOS of neutron-rich matter

especially at densities significantly higher than the satura-

tion density q0 of cold nuclear matter.
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On the experimental and observational side, several

useful constraints on the EOS at supra-saturation densities

are known in addition to the empirical properties of nuclear

matter around q0. For example, the pressure of symmetric

nuclear matter (SNM) has been constrained at densities

between about 2 and 4.5 q0 based on transport model

analyses of the collective flow data in relativistic heavy-ion

collisions [8]. In addition, kaon productions in heavy-ion

reactions have provided additional constraints on the

nuclear EOS at densities between 1.2 and 2.2 q0 [16, 17].

However, the isospin-dependent part of the EOS of neu-

tron-rich matter, i.e., the density dependence of nuclear

symmetry energy EsymðqÞ, is less constrained so far.

Moreover, the LIGO and Virgo Collaborations have

recently extracted a bounding band on the EOS of neutron

star matter based on their first direct detection of gravita-

tional waves from the binary neutron star merger event

GW170817. More quantitatively, the pressure at twice the

nuclear saturation density was found to be

3:5þ2:7
�1:7 � 1034 dyn cm�2 at 90% confidence level [18]. We

should note that all the reported EOS constraints are

qualitatively consistent but suffer from large uncertainties.

On the theoretical side, essentially all existing nuclear

many-body theories have been used to predict the EOS of

neutron star matter using various interactions. For example,

more than 500 EOSs from relativistic mean field (RMF)

and Skyrme–Hartree–Fock calculations have been reported

up to 2014 [19, 20]. However, even the EOSs for the

simplest npel matter in neutron stars remain controversial,

not to mention other particles or various phase transitions

that may exist or occur in the core of neutron stars. This is

mainly because of the large uncertainties associated with

the symmetry energy Esym [21, 22] especially at high

densities. The symmetry energy has only been constrained

around or below q0. At higher density, neither the value nor

the trend has been well determined yet. For most EOSs, the

Esym keeps increasing with density, but for some EOSs, the

Esym first increases and then remains constant or even

decreases with density. It is thus important to take full

advantage of the existing and forthcoming data to further

constrain the EOS and the related EsymðqÞ.
Interestingly, great breakthroughs have been made in

recent years in observing the properties of neutron stars,

such as their masses [23, 24], radii [25], spin frequencies

[7], tidal deformabilities [26], and moments of inertia [27].

While the existing constraints on the EOS and Esym are

mostly based on terrestrial nuclear laboratory experiments

so far, fruitful efforts have also been devoted by many

people to constrain the EOS and symmetry energy using

astrophysical observations. Our recent contributions to this

world-wide effort are based on an explicitly isospin-

dependent parametric EOS [1–3]. Compared with using

predictions based on various nuclear many-body theories,

the parameterized EOS allows us to investigate some

common issues and draw some useful conclusions inde-

pendent of the particular many-body theories and/or

interactions used. In addition to investigate the sensitivities

of various astrophysical observables to the major features

of the EOS of neutron star matter, we also make efforts to

tackle the inverse-structure problem, i.e., using observa-

tional data to constrain the EOS parameters. In particular,

we choose in the present work the mass, radius, and tidal

deformability as the observational constraints to narrow

down the EOS parameter space.

In our recent work, the following astrophysical obser-

vations were used to constrain the EOS parameters. The

largest mass of observed neutron stars is about 2.0 M�
[23, 24]. It provides a lower limit on the EOS and has ruled

out many interactions. The radii of neutron stars remain

controversial owing to many difficulties involved, such as

determining the distance accurately and modeling the

spectrum absorptions reliably with different atmosphere

models in the X-ray observations. Nevertheless, many

studies have been carried out to constrain the radius based

on the thermal emissions from quiescent low-mass X-ray

binaries and photospheric radius expansion bursts [28–33].

More recently, the first detection of a binary neutron star

merger event GW170817 [18, 34–36, 36–41] has also led

to new constraints on the radius for canonical neutron stars

with a mass of 1.4 M�. Interestingly, all the extracted radii

are consistent and lie in the range of approximately 11–

14 km. We adopt the range 10:62\R1:4\12:83 km from

[25] in our studies. The tidal deformability K is uniquely

determined by the EOS [42–45]. It can thus be used to

constrain the EOS parameter space. Quantitatively,

improved analyses of the GW170817 [26] estimated the

dimensionless tidal deformability to be around

70�K1:4 � 580 for canonical neutron stars [18].

This paper is organized as follows: The details of con-

structing the EOS are presented in Sect. 2. Section 3 is

devoted to narrowing down the EOS parameter space using

the observations of mass, radius, and tidal deformability.

The extracted constraints on the EOS and symmetry energy

are discussed in Sect. 4, and a summary is given in Sect. 5.

2 Model framework for investigating
the properties of neutron stars

As the available theories often predict different ten-

dencies for the EOSs, the multi-parameter polytropic EOSs

are widely used in modeling the core EOS of neutron stars
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[46–50]. For example, a long time ago Topper [46] sug-

gested a power-exponent EOS of the form

P ¼ K�1þð1=nÞ ð1Þ

where K and n are constants. A series of EOSs can be

obtained by varying K and n; see, e.g., Refs. [51, 52].

Recently, Read et al. [48] considered a parametric EOS

including several piecewise polytropes above q0, namely,

P ¼ Ki�
Ci ; d

�

q
¼ �P

1

q
; qi�1 � q� qi: ð2Þ

Each piece of the piecewise-polytropic EOS is specified by

three parameters: the initial density, the coefficient Ki, and

Ci. These parametric EOSs can be used to study the

properties of neutron stars by solving the Tolman–Op-

penheimer–Volkoff (TOV) equations. However, they are

isospin independent. Since we are interested in under-

standing the inner compositions as well as the relationship

between symmetry energy and the properties of neutron

stars, we constructed an isospin-dependent parametric EOS

in Ref. [1].

We start by using the so-called parabolic approximation

for nucleon specific energy of asymmetric nuclear matter

(ANM):

Ebðq; dÞ � E0ðqÞ þ EsymðqÞd2; ð3Þ

where E0ðqÞ is the nucleon specific energy in SNM and d is

the isospin asymmetry d ¼ ðqn � qpÞ=q. Next, we use the

parameterizations

E0ðqÞ ¼ E0ðq0Þ þ
K0

2

q� q0

3q0

� �2

þ J0

6

q� q0

3q0

� �3

; ð4Þ

EsymðqÞ ¼ Esymðq0Þ þ L
q� q0

3q0

� �
þ Ksym

2

q� q0

3q0

� �2

þ Jsym

6

q� q0

3q0

� �3

:

ð5Þ

The above equations approach their Taylor expansions

asymptotically when the density reaches q0. In addition to

the binding energy E0ðq0Þ of SNM and symmetry energy

Esymðq0Þ at q0, the other parameters involved have the

asymptotic meanings of being the incompressibility K0,

skewness J0 of SNM, as well as the slope L, curvature

Ksym, and skewness Jsym of the symmetry energy.

The EOS of neutron star matter is the relationship

between energy density and pressure. The energy density

includes contributions from baryons and leptons:

�ðq; dÞ ¼ �bðq; dÞ þ �lðq; dÞ: ð6Þ

The energy density of baryons can be written as

�bðq; dÞ ¼ qEbðq; dÞ þ qMN; ð7Þ

where MN is the average rest mass of nucleons. The isospin

asymmetry d in Eq. (3) is uniquely determined by EsymðqÞ
via

ln � lp ¼ le ¼ ll � 4dEsymðqÞ; ð8Þ

where the chemical potential is defined as

li ¼
o�ðq; dÞ
oqi

: ð9Þ

Combining the above with the charge neutrality condition

qp ¼ qe þ ql; ð10Þ

we can obtain the particle fractions at different densities of

neutron stars core. Taking Eq. (3) into Eq. (7) and choos-

ing MN ¼ 939 MeV, the energy density of baryons can be

obtained.

The energy density of leptons can be calculated based

on the noninteracting Fermi gas model (�h ¼ c ¼ 1):

�lðq; dÞ ¼ g/ðtÞ ð11Þ

with

g ¼ m4
l

8p2
;/ðtÞ ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffi
1 þ t2

p
ð1 þ 2t2Þ � ln t þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 þ t2

p� �
;

ð12Þ

and

t ¼ 3p2qlð Þ1=3

ml

: ð13Þ

The pressure of the system can be calculated numerically

by

Pðq; dÞ ¼ q2 d�ðq; dÞ=q
dq

: ð14Þ

Here, we have constructed a parametric EOS with param-

eters E0ðq0Þ, Esymðq0Þ, K0, J0, L, Ksym, and Jsym. We

emphasize that if Eqs. (4) and (5) are considered as Taylor

expansions, they indeed become progressively inaccurate

for large densities and do not converge when q[ 1:5q0.

However, since we regard them as parameterizations and

all the coefficients are to be determined by the observa-

tions, we can still use Eqs. (4) and (5) to describe the high-

density behavior of EOSs. Detailed demonstrations can be

found in Ref. [1].

Among all the parameters, E0ðq0Þ, K0, Esymðq0Þ, and L

have been constrained by the terrestrial nuclear experi-

ments. In particular, E0ðq0Þ is well accepted as

� � 16 MeV. Extensive studies over the last few decades

have constrained the incompressibility of SNM as

240 	 20 MeV [53, 54] or K0 ¼ 230 	 40 MeV [55]. The
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surveys of 53 analyses of different kinds of terrestrial and

astrophysical data available up to 2016 have constrained

the most probable values of Esymðq0Þ and L to be

31:7 	 3:2 MeV and 58:7 	 28:1 MeV, respectively.

However, few constraints are available for the high-order

parameters Ksym, Jsym, and J0. Only several very rough

constraints for J0 are known based on different analyses in

[28, 56], namely, �1280� J0 � � 10 MeV, �494� J0 �
�10 MeV, �690� J0 � � 208 MeV, or �790� J0 �
�330 MeV, respectively. They are generally consistent,

but cover different ranges. Nevertheless, some calculations

based on nuclear many-body theories have indicated that

[1, 40, 57]: �400�Ksym � 100 MeV, �200� Jsym �
800 MeV, and �800� J0 � 400 MeV, respectively. It

should be noted that some approximate relationships

among the parameters of symmetry energy are suggested in

[40, 58–64] based on the systematics of many predictions

using various many-body theories and interactions. To

focus on the effects of the high-density parameters on the

properties of neutron stars and use the observational data to

constrain the EOS parameter space, we fix the low-density

parameters at their most probable values: E0ðq0Þ ¼
�16 MeV, K0 ¼ 230 MeV, Esymðq0Þ ¼ 31:7 MeV, and

L ¼ 58:7 MeV, while varying the high-density parameters

within their uncertainty ranges of �400�Ksym �
100 MeV, �200� Jsym � 800 MeV, and �800� J0 �
400 MeV, respectively.

After obtaining the EOS from Eqs. (3), (11), and (14)

for the core of neutron stars, we should connect it to the

crust EOSs at the core–crust transition density and make

sure that the baryon density, pressure, and energy density

all keep increasing. More specifically, we use the NV EOS

[65] for the inner crust and the BPS EOS [66] for the outer

crust. The transition density can be calculated by the

dynamical [66–69] or thermodynamical [70–72] methods.

The transition density calculated from the thermodynami-

cal method is slightly overestimated compared with the

dynamical method, but this does not affect our conclusions.

Thus, we choose the thermodynamical method in the pre-

sent calculations. The incompressibility of neutron star

matter can be expressed as

Kl ¼q2 d2E0

dq2
þ 2q

dE0

dq
þ d2 q2 d2Esym

dq2
þ 2q

dEsym

dq

�

� 2E�1
sym q

dEsym

dq

� �2
#
:

ð15Þ

A transition of Kl from being positive to negative indi-

cates the onset of dynamical instability in neutron star mat-

ter. As a result, cluster starts to form in the curst. Therefore,

the core–crust transition density can be obtained by solving

the condition Kl ¼ 0. For more details, see Ref. [1].

With the EOS constructed consistently throughout the

neutron star from its core to surface, the properties of

neutron stars are obtained by solving the TOV equations

[73, 74]

dP

dr
¼� GðmðrÞ þ 4pr3P=c2Þð�þ P=c2Þ

rðr � 2GmðrÞ=c2Þ ; ð16Þ

dmðrÞ
dr

¼ 4p�r2; ð17Þ

where G is the gravitation constant, c is the speed of light,

and m(r) is the gravitational mass enclosed within a radius

r. The dimensionless tidal deformability K is related to the

second Love number k2, neutron star mass M, and radius R

via

K ¼ 2

3
k2 �

R

M

� �5

: ð18Þ

The tidal Love number k2 depends on the stellar struc-

ture and can be calculated using a very complicated dif-

ferential equation coupled to the TOV equation [42, 43].

More details about the formalism and code used in this

work to calculate k2 can be found in, e.g., [44, 45].

3 Observational constraints on the EOS
parameter space

In this section, we study the combined constraints of

neutron star mass, radius, and tidal deformability from

astrophysical observations on the values of Ksym, Jsym, and

J0, namely, M
 2:01 M�, 10:62�R1:4 � 12:83 km, and

70�K1:4 � 580, respectively. For this purpose, we first

calculate the constraints of mass, radius, and tidal

deformability in the Ksym–Jsym plane with fixed J0 and then

the overall constraints are summarized in the three-di-

mensional parameter space of Ksym–Jsym–J0. The crust and

core EOSs are connected at the transition density. More-

over, the transition pressure is required to always remain

positive, i.e., Pt 
 0 MeV, to maintain thermodynamical

stability throughout the interior of neutron stars.

The constraints of mass, radius (left panel), and tidal

deformability (right panel) in the Ksym � Jsym plane with

J0 ¼ �100; 0; 100; and 200 MeV, respectively, are shown

in Fig. 1. The parameter space within the three lines are

supported by the present observations. We can see from the

left panel that R1:4 ¼ 12:83 km can set an upper limit on

the parameters and exclude larger Ksym and Jsym from the

right side. While the lower limit R1:4 ¼ 10:62 km shows

more apparent effects from the left side for smaller Ksym,

effects of the mass constraint M ¼ 2:01 M� become

dominant for larger Ksym. It is interesting to note that the

slopes of the radius lines are larger than one, indicating that
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the radius depends more strongly on Ksym than Jsym. This is

easy to understand because the central density of neutron

stars with 1.4 M� is around several times q0. Around such

densities Ksym effectively determines the EOS while Jsym

affects the EOS at higher densities. More quantitatively, by

varying the J0 from �100 to 200 MeV, the radius just

shifts to the left slightly. On the other hand, the mass

depends more strongly on the Jsym as we discuss in more

detail later.

Similar tendencies for the tidal deformability can be

seen in the right panel of Fig. 1. Comparing the left and

right panels, it is seen that the radius shows stricter con-

straints on the parameters plane. Thus, the constraints of

tidal deformability are consistent with but weaker than the

radius constraints. Fortunately, future observations of more

neutron star mergers are expected to help improve the

constraints using the tidal deformabilities. In addition,

based on the definition of K in Eq. (18), an underlying

relation may exist between the K1:4 and R1:4. We note that

in [34, 36, 37] it was suggested that K1:4 / Ra
1:4 with a

between about 5 and 7. However, our results shown in

Fig. 1 demonstrate that the K1:4–R1:4 correlation does exist

but is more linear. We refer the interested reader to [3] for a

detailed discussion on this interesting issue.

To show the overall constraints on the Ksym and Jsym

parameters for any value of J0, the constant surfaces of

M ¼ 2:01 M� (green), R1:4 ¼ 10:62 km (blue), and

R1:4 ¼ 12:83 km (magenta) are shown in the three-di-

mensional parameter space of Ksym–Jsym–J0 in Fig. 2. As

the constraints of radius are stronger than those of tidal

deformability, we only show the constant surfaces of radius

here. The arrows show the directions that satisfy the cor-

responding constraints. Take the surface of

R1:4 ¼ 10:62 km, for example, the constant surface means

that all the points with different combinations of Ksym, Jsym,

and J0 on this surface lead to the same R1:4 ¼ 10:62 km.

The constant surface is numerically calculated as follows:

In running the three loops through Ksym, Jsym, and J0, we

start from initializing Ksym ¼ �400 MeV and

Jsym ¼ �200 MeV. Then, by varying J0 from �800 to

400 MeV, we find the point generating a star with M ¼ 1:4

M� and R ¼ 10:62 km. Repeating the process by

increasing in steps Ksym to 100 MeV and Jsym to 800 MeV,

we find new combinations of the three parameters

Fig. 1 The constraints of mass

(in unit of M�), radius (left

panel, in unit of km), and tidal

deformability (right panel) in

the Ksym–Jsym plane with fixed

J0 ¼ �100; 0; 100; and

200 MeV, respectively (Color

online)
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maintaining the configuration of M ¼ 1:4 M� and

R ¼ 10:62 km. The constant surfaces of M ¼ 2:01 M� and

R1:4 ¼ 12:83 km are calculated similarly.

Let us first focus on the constant surfaces of neutron star

radius. It is well known that the radius of neutron stars with

M ¼ 1:4 M� depends strongly on the density dependence of

nuclear symmetry energy, see, e.g., [75]. It is seen from

Fig. 2 that the two surfaces are almost perpendicular to the

Ksym axis. This is consistent with the results shown in Fig. 1

and supports the finding that R1:4 is more sensitive/insensi-

tive to Ksym/J0 and thus more dependent on the symmetry

energy EsymðqÞ. When Ksym decreases, the EOS becomes

softer if all other parameters are fixed. Thus, to support a

neutron star of mass 1.4 M� with smaller Ksym, Jsym and J0

have to be sufficiently large. This is the reason that the

surfaces of constant radii incline toward the right side. To

obtain larger radii, Ksym and Jsym should also be larger; thus,

the surface of R1:4 ¼ 10:62 km is on the right side of

R1:4 ¼ 12:83 km. It should be noted that L is fixed at its

most probable value of 58.7 MeV in these calculations. The

effects of changing the value of L within its own uncertainty

range on constraining the EOS and symmetry energy are

currently under investigation and will be reported elsewhere.

Next, let us examine the constant surface of M ¼ 2:01

M�. It is seen that the surface is rather flat with large Jsym

regardless of the Ksym value. It then goes up toward the top

right corner where Ksym and Jsym are both small. With the

large Ksym and Jsym values, the symmetry energy is stiff. In

this case, the isospin asymmetry d of neutron star matter at b
equilibrium is very small at high densities according to

Eq. (8). Based on Eq. (3), d2 can significantly suppress the

contributions from the symmetry energy, namely, Ksym and

Jsym, to the total pressure. Thus, the constant mass surface is

very flat and J0 plays the dominant role when Ksym and Jsym

are relatively large. WhenKsym and Jsym become smaller, d at

high densities increases and can be 1 for super-soft symmetry

energies. In this case, the symmetry energy plays a more

important role in determining the total pressure. To support

neutron stars with masses larger than 2.01 M�, J0 has to be

large enough to sufficiently stiffen the EOS. Therefore, the

constant mass surface bends upward to the top right corner.

The space surrounded by the three surfaces satisfies all

the constraints from the mass, radius, and tidal deforma-

bility measurements considered in the present work. We

can see that the EOS parameter space is apparently nar-

rowed down, especially in the Ksym direction. However,

more constraints from other observations or terrestrial

experiments are needed to further restrict the EOS

parameter space. In addition, the causality condition also

provides natural constraints on the EOS parameter space as

we discussed in detail in Ref. [2].

4 Constraining the EOS and symmetry energy
of dense neutron-rich matter using astrophysical
observations

The observational constraints discussed above can be

used to set limits on the EOS and symmetry energy.

Detailed discussions on our results can be found in Ref. [2].

While each observation may only limit the EOS in certain

density region, or only provide an upper or lower limit,

multiple observables together may lead to crosslines that

help remove some degeneracies or provide complimentary

information on the EOS. Taking the R1:4 ¼ 12:83 km

constraint, for example, as shown in Fig. 2, its intersection

line with M ¼ 2:01 M� surface sets a lower limit for the

EOS parameters Ksym, Jsym, and J0. In contrast, the

causality surface provides an upper limit, see the right

panel of Fig. 8 in Ref. [2]. Combining all the constraints of

mass, radius, and causality (the tidal deformability is less

constraining than the radius), all the points in the sur-

rounded space or on the boundary surfaces can survive.

The calculated EOSs and symmetry energy from these

points can satisfy all the constraints, which means that the

constraints on them can be extracted.

As an illustration of how the constraints can help limit the

EOS, shown in Fig. 3 are 45 EOSs with parameters on the

Fig. 2 Observational constraints of the maximum mass of neutron

stars and the radius of canonical neutron stars on the EOS of dense

neutron-rich matter in the Ksym, Jsym, and J0 parameter space. The

green, magenta, and orange surfaces represent M ¼ 2:01 M�,

R1:4 ¼ 12:83 km, and R1:4 ¼ 10:62 km, respectively. Reproduced

from [1] (Color online)
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constrained R1:4 ¼ 12:83 km surface. It is seen that for a

certain density, both the upper and lower limits can be found

for a given parameter set. By plotting a large number of

EOSs constrained by the mass, radius, and causality all

together, common upper and lower limits on the EOS sat-

isfying all the constraints considered can be obtained for all

densities relevant for neutron stars. In other words, we can

generate a constrained band on the plot of energy density

versus pressure. Similarly, the constrained band on sym-

metry energy can also be obtained, see Ref. [2] for details.

To compare our constrained EOS with the constraint from

LIGO ? Virgo [18] (a constrained band on the plot of

pressure as a function of baryon density), we transform our

EOS into the pressure as a function of baryon density and

plot the constraints we extracted with the shadowed range in

Fig. 4. The upper and lower limits of the shadowed range

are determined by the surfaces of causality and M ¼ 2:01

M�, respectively. The pressure extracted from the binary

neutron star merger by the LIGO ? Virgo Collaborations

[18] is shown as the red boundary for a comparison. We can

see that the two extracted boundaries of pressures in neutron

stars are in good agreement. As we did not use the

deformability in deriving the boundary of pressure, there is

no self-correlation in comparison with the LIGO ? Virgo

results. Similarly, the upper and lower limits on nuclear

symmetry energy at supra-saturation densities can also be

extracted [2].

5 Summary

In summary, we have constructed an isospin-dependent

parametric EOS for neutron star matter based on the

parabolic approximation for nucleon specific energy in

ANM. The low-order parameters (E0ðq0Þ, K0, Esymðq0Þ,

and L) characterizing the EOS and symmetry energy

around the saturation density are fixed at their most prob-

able values known mostly from terrestrial nuclear experi-

ments, while the high-order parameters (Ksym, Jsym, and J0)

characterizing the high-density behaviors of nuclear EOS

and symmetry energy are varied within their uncertain

ranges based on predictions of nuclear many-body theories.

We have found that the radius and tidal deformability of

neutron stars with M ¼ 1:4 M� depend appreciably on the

Ksym and Jsym parameters while the L parameter plays a

dominating role [3]. Moreover, the parametric EOS enables

us to extract significant constraints on the EOS and nuclear

symmetry energy from astrophysical observations. The

EOS parameter space is significantly narrowed down by the

astrophysical observations of the minimum–maximum

mass M ¼ 2:01 M�, radius range of

10:62�R1:4 � 12:83 km, and the range of tidal deforma-

bility 70�K1:4 � 580 of neutron stars. In particular, the

constraints on the pressure of neutron star matter extracted

using the X-ray observations of neutron star radius, the

minimum–maximum mass M ¼ 2:01 M�, and causality

condition agree very well with those extracted from ana-

lyzing the tidal deformability data by the LIGO ? Virgo

Collaborations. As more observational data become avail-

able, the theoretical framework established in our recent

work [1–3] is expected to be useful for establishing tighter

constraints on the EOS and symmetry energy of dense

neutron-rich matter.

Acknowledgements We would like to thank Prof. Lie-Wen Chen,
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Fig. 3 45 examples of EOSs calculated from the parameter sets on

the surface of R1:4 ¼ 12:83 km

Fig. 4 Pressure (shaded region) as a function of baryon density in

neutron star matter at b equilibrium extracted using the recent X-ray

observations of neutron star radii, known minimum–maximum mass

of neutron stars and the causality condition in comparison with the

LIGO ? Virgo result at 90% confidence level (red boundary) using

their measurement of the tidal deformabilities [18]. Reproduced from

[2] (Color online)
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21. B.A. Li, À. Ramos, G. Verde, I. Vidaña, Topical issue on nuclear

symmetry energy. Eur. Phys. J. A 50, 9 (2014). https://doi.org/10.

1140/epja/i2014-14009-x

22. L.W. Chen, Symmetry energy in nucleon and quark matter. Nucl.

Phys. Rev. 34, 20 (2017). https://doi.org/10.11804/NuclPhysRev.

34.01.020

23. P.B. Demorest, T. Pennucci, S.M. Ransom et al., A two-solar-

mass neutron star measured using Shapiro delay. Nature 467,

1081–1083 (2010). https://doi.org/10.1038/nature09466

24. J. Antoniadis, P.C.C. Freire, N. Wex et al., A massive pulsar in a

compact relativistic binary. Science 340, 448 (2013). https://doi.

org/10.1126/science.1233232

25. J.M. Lattimer, A.W. Steiner, Constraints on the symmetry energy

using the mass–radius relation of neutron stars. Eur. Phys. J. A

50, 40 (2014). https://doi.org/10.1140/epja/i2014-14040-y

26. B.P. Abbott, R. Abbott, T.D. Abbott et al., (LIGO Scientific

Collaboration and Virgo Collaboration) GW170817: observation

of gravitational waves from a binary neutron star inspiral. Phys.

Rev. Lett. 119, 161101 (2017). https://doi.org/10.1103/PhysRev

Lett.119.161101

27. B. Link, R.I. Epstein, J.M. Lattimer, Pulsar constraints on neutron

star structure and equation of state. Phys. Rev. Lett. 83, 3362

(1999). https://doi.org/10.1103/PhysRevLett.83.3362

28. A.W. Steiner, J.M. Lattimer, E.F. Brown, The equation of state

from observed massed and radii of neutron stars. Astrophys. J.

722, 33 (2010). https://doi.org/10.1088/0004-637X/722/1/33
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