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Abstract  Based on the statistical characteristics of energy spectrum and the features of spectrum-shifting in 

spectrometry, the parameter adjustment method of Gaussian function space was applied in the simulation of 

spectrum-shifting. The transient characteristics of energy spectrum were described by the Gaussian function space, 

and then the Gaussian function space was transferred by parameter adjustment method. Furthermore, the 

spectrum-shifting in measurement of energy spectrum was simulated. The applied example shows that the parameters 

can be adjusted flexibly by this method to meet the various requirements in simulation of energy spectrum-shifting. 

This method was one parameterized simulation method with good performance for the practical application. 
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1 Introduction 

Nuclear signal generator and relevant generation 

method are one of the most important tools in the 

research of digital nuclear instruments. Using nuclear 

signal that meets the demand of diversity, flexibility, 

variability and repeatability can verify the 

performance of the digital nuclear instrument directly. 

In the measurement of energy spectrum, the peak 

position shift problems occur usually. Such as the 

magnification of photomultiplier tube and its spectral 

response, the photon yield of scintillator (for the fixed 

energy rays) changes with temperature, which will 

cause the output pulse amplitude of detector change 

and the peak position shift. In addition, the 

magnification of linear pulse amplifier that changes 

with temperature will cause peak position shift. 

Furthermore, the magnification of photomultiplier in 

detector will be influenced by the changes of count 

rate and high pressure, which will also cause the peak 

position shift[1,2]. This article combines the statistical 

characteristics of energy spectrum with the features of 

spectrum-shifting in the radioactivity measurement, 

and then gives the simulation method of gamma 

spectrum-shifting based on the parameter adjustment 

of Gaussian function space. 

2 Gaussian function space 

The Gaussian function space is constructured by 

multiple Gaussian basis functions[3‒7].  

Assume a Gaussian function as Φ(t), Φ(t) is given as 
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σ is the standard variance, and k is translation value. 

Assume the telescopic translation function of Φ(t) 

is Φjk(t), Φjk(t) is given as 
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where j is the telescopic size. 

The following inner product can be acquired. 
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When σ takes the minimum value, <Φjk(t), 

Φjk′(t)> (k≠k′) is near zero, for example, when σ=0.15, 

the consequence of <Φ0k(t), Φ0k′(t)>(k≠k′) is the order 

of magnitude of 10–5, when σ=0.1, the consequence of 

<Φ0k(t), Φ0k′(t)>(k≠k′) is the order of magnitude of 

10–11, which can be regarded as zero.  

In addition, it is easy to get that <Φ0k(t), Φ0k(t)> 

=1 from formula (2). The following relationship can be 

established by formula (5). 

)'()()( ' kktt jkjk              (6) 

where δ(k‒k′) = 0 (k≠k′), δ(k-k′) = 1(k=k′). So, it can be 

considered that when σ take the minimum value, Φjk(t) 

has the orthogonality relationship. The space Vj= 

span{Φjk(t)}(j,k∈Z), which formed from Φjk(t), can be 

regarded as the Gaussian function space and then Φjk(t) 

can be regard as the orthogonal basis in space Vj . 

Using Pjf(t) to present the projection of f(t) in the 

Gaussian function space Vj : 
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If f(t)∈Vj, signal f(t) can be expressed further 

with basic functions in space Vj as follow: 
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where cjk is the weight of linear combination, and is 

given by 

cjk=<f(t),jk(t)> (9) 

In radioactivity measurement, energy spectrum 

signal f(n) can be regarded as the discrete form of 

some function like f(t)∈V0. 

3 The expression of the γ energy spectrum by 

Gaussian function space 

Multiple small Gaussian functions can be used to get 

the good approximation and simulation of radioactive 

energy spectrum[8,9], and the multi-scale analysis can 

extract characteristics of signal effectively[10,11]. The 

short transient characteristics of energy spectrum can 

be described by using Gaussian function space, and 

the parameter adjustment for the state transition of 

Gaussian function space combined with statistical 

fluctuation characteristics of energy spectrum can be 

employed to simulate the spectrum-shifting in energy 

spectrum measurement. In fact, the projection of 

energy spectrum on the function space Vj made up of 

Gaussian functions is expressed linearly by multiple 

Gaussian functions, and each Gaussian function can 

affect the count of all channels by its weight, namely 

the count of any channel will be affected by adjacent 

channels, moreover, the more adjacent channel has, the 

greater effect it will cause. This method is accord with 

the statistical characteristics of actual spectrum.  

Take the example of γ energy spectra, the 

representation of Gaussian function space can be 

expressed in details as below. 

Assume the original energy spectrum is f(n) 

(n=1…N), where N is the total number of channels, 

and the gross count is Ntotal. Using Gaussian function 

to show it in following steps: 

      Regard the original spectrum f(n) as a 

continuous function f(t), and choose a Gaussian 

function space Vj, which is chosen as j≥0 usually, then 

the projection of f(t) in the Vj is given by 
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According to formula (9), cjk= <f(t), Φjk(t)>, for 

convenience, it can be expressed as 
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Parameter λ is the same as the λ in formula (2), f(2jk) 

can take the average of local area where t=2jk. In the 
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actual calculation, Φjk(t) can take several or dozens of 

discrete values at local area where t=2jk, which will 

reduce the calculation amount of formula (10) greatly. 

The final energy spectrum f′(n) can be obtained 

according to the rounding and discretization of 

following formula. 

total
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Formula(12) can be regarded as the revised 

formula for the nonorthogonality of Gaussian function 

space, f′(n) according to formula (12) is exactly the 

space expression of energy spectrum. 

4 Simulation of γ spectrum-shift within the 

Gaussian function space 

The original energy spectrum can be decomposed to 

the combination of uniform distribution, Gaussian 

distribution, exponential distribution and polynomial 

distribution, which can be used to the effective 

simulation of nuclear energy spectrum[6]. Primitive 

preceding analysis shows that the peak position shift 

often happens in the energy spectrum measurement. 

Therefore, in order to solve the simulation problem of 

peak position shift, the further research is very 

necessary. If the shift of the energy spectrum can be 

simulated by effective methods, undoubtedly, it is of 

great significance to the study of energy spectrum. 

Peak position shift may be caused by many factors, but 

the generally available model is expressed as in Fig.1. 

The gamma ray excitation signal is determined 

by the radioactive nuclide. Observable parameters of 

the Gaussian function space are very sensitive to the 

external environment and test conditions, such as the 

temperature, the counting rate, the change of high 

voltage and other factors. 

      The principle of Gaussian function space to 

simulate the gamma energy spectrum shift is: using a 

Gaussian function space to describe the instantaneous 

or short time gamma spectrum; Gaussian function 

space parameters (e.g., mean, standard variance) will 

be adjusted over time, which has the adjustment 

pattern made of requirements to simulate the external 

environment and test conditions, such as the changing 

temperature, the diverse counting rate, the changing 

high pressure and other factors. Finally, the random 

numbers will be generated to simulate energy 

spectrum shift and statistical fluctuation process. The 

generation of random numbers can take random 

sampling method of the Gaussian mixture function or 

discrete direct sampling method. 

 

Fig.1  Model of γ spectrum-shifting. 

4.1 The random sampling of Gaussian mixture 

function. 

The random sampling of Gaussian mixture function 

was realized by the additive sampling method[12,13]. 

first of all, normalize the energy spectrum in Gaussian 

function space into the form of following formula 


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where, Pn ≥ 0, ∑Pn = 1(n = 1…M), fn(x) is a Gaussian 

density function which is related to parameter n(n ＝ 

1,2,…M), and M is the number of Gaussian density 

functions. Secondly, determine n by random sampling 

to get the random number (x) by random sampling 

according to function fn(x). 

4.2 Discrete direct sampling method  

Firstly, normalize the energy spectrum in Gaussian 

function space into a density function ρ(x), the discrete 

distribution function of F(x) is given as 





xxi

xxF )()(              (14) 

where xi is the discrete point of density function ρ(x), 

that is also the serial number of the channel of energy 

spectrum, ρ(xi) is the corresponding probability, and 

∑ρ(xi)=1 (I=1…N). With the random number x 

calculated according to the sampling of (15), 

simulation of F(x) distribution on energy spectrum can 

be obtained, ε is the random number of uniform 

distribution within [0, 1][14,15]. 



HUANG Hongquan et al. / Nuclear Science and Techniques 24 (2013) 060405 

060405-4 









I

1i
i

1I

1i
iIF xxwhenxx )()(,        (15) 

where xI is just the random number xF of distribution 

function F(x).  

4.3 Example analysis  

With the model shown in Fig.1, the shift of  40K γ 

spectrum shown by S1(.) in Fig.2 can be simulated. 

The γ spectrum is measured by the 1024-channel NaI 

(Tl) scintillation spectrometer, with the gross count of 

1.9247×105, namely Ntotal=1.9247×105. The selected 

Gaussian function space is V3, which has 128 Gaussian 

functions, and has the standard variance σ (σ=1).The 
40K γ spectrum curve in the Gaussian function space is 

shown by S2(-) in Fig.2. 

 

Fig.2  Original γ spectrum(·) and γ spectrum in Gaussian 
function space(—) of 40 K. 

For simplicity, only the steady spectrum shift 

to the right (that is, the energy spectrum shift at a 

constant speed and in the direction of high energy) was 

simulated, the simulation method of shift to left is 

similar. Actually, the transfer process of Gaussian 

function space can be designed as linear or non-linear 

mode to simulate the complex spectrum shift by the 

influence of temperature and humidity.  

Assumed the number of shift channels is 40, 

then the continuous shift process can be dispersed into 

80 Gaussian function spaces, namely, the interval 

between the two adjacent Gaussian function spaces is 

0.5 channel. In fact, interval can get 0.1, 0.2, 0.3, ..., 1, 

1.1, 1.2, etc., the smaller the interval is, the more 

accurate the shift process of energy spectrum can 

achieve, which is also the main advantage of this 

method. In addition, because the channel is an integer, 

so it must get the integer energy spectrum after 

rounding operation on the sampled channels of 

Gaussian function space finally. 

Figure 3 shows the shift process of the entire 

energy spectrum. The dashed line(--) represents each 

entire energy spectrum in different time in the 

spectrum measurement, shifting from left to right, the 

shorter the time is，the lower the curve is. The solid 

line(-) represents the entire energy spectrum after 

shifting for 40 channels, with a gross count of 

1.9247×105. Figure 4 shows the ultimate energy 

spectrum without shifting, and one with shifting. 

 

Fig.3  Shift process of entire spectrum in Gaussian function 
spaces. 

 

Fig.4  Shifting spectrum (—) and no-shifting spectrum (o). 

Figure 5 shows the statistical fluctuation 

process by generating random numbers to simulate 

energy spectrum shift, which has peak position shift to 

the right way for 40 channels. From this example, it is 

clear that the Gaussian function space can be used to 

simulate the gamma energy spectrum shift as a state 

transition method conveniently, realistically and 

visually. In addition, the model can be easily used to 

simulate the fluctuation process of energy spectrum 
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when measuring environment or condition, such as 

detector resolution, external temperature and humidity, 

changes. Actually, the state transition of Gaussian 

function space is completed by parameter adjustment 

of the Gaussian function, such as mean value 

adjustment and standard variance adjustment. 

 

Fig.5  Simulation of statistical fluctuation process for γ 
spectrum-shifting. 

This article only gives a simulation instance of 

spectrum shift in the direction of high energy. The 

simulation method of spectrum shift in the direction of 

low energy is similar. 

The parameters can be flexibly adjusted to satisfy 

the requirements of the diversity for the simulation of 

spectrum shift. For example, the transition state can be 

designed as linear or non-linear function to simulate 

the spectrum shift in a complex environment, the 

number of Gaussian function spaces can be increased 

to simulate the spectrum shift with slow speed, and the 

parameter j (j = 0, 1, 2, 3...) in formula (3) can be used 

to increase or decrease the dimension of Gaussian 

function space in order to improve the accuracy of the 

energy spectrum, or improve the ability of inhibiting 

statistical fluctuation and increase computing speed. 

Comparison of theoretical spectrum peak and 

sampling spectrum peak after shifting is showed in 

Table 1 and Fig.6. Two curves in Fig.6 almost coincide 

with each other, and most of errors in these channels 

are 0.07%‒2%, as showed in Table 1, indicating that 

this method is practicable. Where, the gross count is 

increased to Ntotal=1.9247×106 in order to improve the 

simulating accuracy of the energy spectrum. 

In the energy spectrum measurement, γ-ray 

spectrum-shifting occurs usually when the conditions 

change, such as the high voltage, temperature, count 

rate, etc, and the forms of shift are very different. 

However, with our proposed method, random nuclear 

signals, which meet the demand of diversity, flexibility, 

variability and repeatability under complex conditions, 

can be easily generated to simulate the spectrum 

-shifting, because these conditions can be described 

collectively, not respectively, by the state transition of 

Gaussian function space. In the course of studying on 

the digital nuclear instrument and algorithm, the 

spectrum- shifting is usually considered under all 

conditions, not one condition. In fact, it is not 

necessary and impractical to measure the 

spectrum-shifting under a special condition. Therefore, 

random nuclear signals generated by this method can 

meet the demand of spectrum-shifting processing in 

the studying on the digital nuclear instrument and 

algorithm, and this method can improve the 

performance of instrument. 

 

Fig.6  Comparison of theoretical spectrum peak and sampling 
spectrum peak after shifting. solid line(-): sampling value of 
spectrum after shifting; dashed line(··): theoretical value of 
spectrum after shifting. 

5 Conclusion 

This article proposed an approach that combines the 

statistical characteristics of energy spectrum with the 

features of spectrum-shifting in the radioactivity 

measurement, and gives the simulation method of 

gamma spectrum-shifting based on the parameter 

adjustment of Gaussian function space. The spectrum- 

shifting in energy spectrum measurement can be 

simulated by the description of short transient 

characteristics of energy spectrum in Gaussian 

function space, and the parameter adjustment for the 

state transition of Gaussian function space. 

The instances show that, by this method, the 

parameters can be flexibly adjusted to satisfy the 
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requirements of the diversity for the simulation of 

spectrum shift. The parameterized simulation method 

has a good performance in actual application. 

Table 1  Comparison of theoretical spectrum peak and sampling spectrum peak after shifting 

Ch Theo- 

val 

Samp- 

val 

Error 

(%) 

Ch Theo- 

val 

Samp- 

val 

Error 

(%) 

Ch Theo- 

val 

Samp- 

val 

Error 

(%) 

Ch Theo- 

val 

Samp- 

val 

Error 

(%) 

Ch Theo- 

val 

Samp- 

val 

Error 

(%) 

400 1445 1464 1.3 420 1920 2021 5.26 440 2707 2789 3.03 460 2488 2579 3.66 480 1283 1287 0.31 

401 1450 1511 4.2 421 1961 1949 –0.61 441 2730 2752 0.81 461 2442 2463 0.86 481 1223 1245 1.8 

402 1456 1508 3.6 422 2004 2067 3.14 442 2749 2695 –1.96 462 2392 2367 –1.05 482 1164 1185 1.8 

403 1465 1469 0.27 423 2047 2077 1.47 443 2765 2849 3.04 463 2340 2330 –0.42 483 1107 1099 –0.72 

404 1476 1517 2.8 424 2091 2107 0.77 444 2778 2897 4.28 464 2286 2352 2.89 484 1051 1059 0.76 

405 1489 1510 1.4 425 2136 2115 –0.98 445 2787 2746 –1.47 465 2229 2178 –2.29 485 997 972 –2.51 

406 1504 1467 –2.5 426 2180 2215 1.6 446 2793 2911 4.22 466 2171 2209 1.75 486 945 955 1.06 

407 1521 1658 9 427 2224 2234 0.45 447 2795 2688 –3.83 467 2111 2150 1.85 487 895 886 –1.01 

408 1540 1601 4 428 2269 2186 –3.66 448 2793 2735 –2.08 468 2050 2003 –2.29 488 847 833 –1.65 

409 1561 1587 1.7 429 2313 2364 2.2 449 2788 2727 –2.19 469 1987 1969 –0.91 489 800 798 –0.25 

410 1584 1693 6.9 430 2356 2368 0.51 450 2779 2794 0.54 470 1924 1940 0.83 490 756 764 1.06 

411 1610 1620 0.62 431 2398 2351 –1.96 451 2766 2834 2.46 471 1859 1882 1.24 491 714 694 –2.80 

412 1637 1677 2.4 432 2440 2485 1.84 452 2750 2830 2.91 472 1795 1756 –2.18 492 674 726 7.72 

413 1666 1647 –1.14 433 2480 2551 2.87 453 2729 2687 –1.54 473 1730 1714 –0.92 493 637 573 –10.05 

414 1698 1725 1.59 434 2519 2505 –0.56 454 2705 2721 0.59 474 1664 1655 –0.54 494 601 576 –4.16 

415 1731 1765 1.96 435 2556 2524 1.25 455 2677 2587 –3.36 475 1599 1604 0.31 495 567 553 –2.47 

416 1766 1769 0.17 436 2591 2605 0.54 456 2646 2600 –1.74 476 1535 1503 –2.08 496 536 515 –3.92 

417 1802 1840 2.1 437 2623 2671 1.83 457 2612 2672 2.3 477 1471 1422 –3.33 497 506 541 6.92 

418 1840 1904 3.48 438 2654 2583 –2.68 458 2574 2542 –1.24 478 1407 1446 2.77 498 478 498 4.18 

419 1879 1962 4.42 439 2682 2621 –2.27 459 2533 2559 1.03 479 1345 1346 0.07 499 453 432 –4.64 

In Table 1, Ch: channel; Theo-val: theoretical value of spectrum after shifting; Samp-val: sampling value of spectrum after shifting; Error (%): relative error, 
[(Samp-val)-(Theo-val)]/(Theo-val).
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