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Abstract  This paper presents a novel approach to seek the bar width for ripple filter used in pencil beam scanning 

proton therapy. A weight decay quadratic programming method is employed for the new optimization strategy. 

Compared to the commonly used iterative-least-square technique, the ripple filter derived by the proposed method not 

only has better depth dose uniformity, i.e., the dose uniformity is within 0.5%, but also has triangle-like vertical 

cross-sectional shape which is suitable for manufacture. Moreover, the new method has such good robust 

characteristics that it is also applicable to the real application with unavoidable measurement errors and noises. The 

simulation results of this study may be helpful in improving the design of the ripple filter. 
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1 Introduction 

One of the main advantages of proton therapy is the 

depth dose profile, which has been named Bragg peak. 

The few-mm-wide pristine Bragg peak allows to 

irradiate a well localized region within the body, 

keeping low the dose release in the proximal (entrance 

plateau) and distal (tail) regions. If the tumor cells are 

bigger than the width of the Bragg peak, superposition 

of several Bragg peaks from the different beam 

energies is introduced to make a uniform radiation 

dose over the tumor.  

For pencil beam scanning, the target is irradiated 

layer by layer with the different beam energy. 

However, switching time between energy layers is a 

major contribution to the overall time. Few energy 

layers may result in large ripple produced on the 

flat-top depth-dose curve, which becomes serious for 

low energy. The ripple filter, which is of great interest 

in recent years[1‒5], is used to address this problem. Fig. 

1 shows the vertical cross-section of the commonly 

used ripple filter. After inserting the ripple filter 

perpendicular to the beam, the Bragg peak of the 

proton beam will become smooth[1,3]. 
Although Weber and Kraft[1] have presented a 

least square (LS) objective function to seek the width 

of the ripple bar, they have not mentioned the method 

to solve it. In Ref.[2], iterative-least-square technique 

(ILST) is introduced to optimize the weights. In this 

paper, a new quadratic objective function is proposed 

for designing the width of the ripple filter bar. Besides, 

the ILST is also used to optimize the LS function for 

the comparison.  

 
Fig.1  Vertical cross-sectional view of ripple filter bar. 

2 Optimization methods 

The purpose of the treatment planning is to provide a 

desired biological dose which is calculated via 

multiplying the physical dose by the relative biological 

effectiveness (RBE). As recommended by the ICRU[6], 

RBE is set to 1.1 in this paper. 

The principle of the analytical computation for 

the ripple filter design used in Ref.[1] is adopted in 

this study. When the proton beam passes through the 
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ripple filter with the thickness tr, the dose distribution 

will be shifted to a certain water-equivalent value that 

corresponds to tr along the beam direction. Therefore, 

when the proton beam passes through the ripple filter 

perpendicularly to the beam direction, the pristine dose 

Bragg peak will be transformed by the ripple-bars into 

a superposition of displaced Bragg curves. Gaussian 

Bragg peaks were chosen to generate homogeneous 

depth dose profiles with a low ripple for the smoothing 

effect after superposition[1,3,5]. To form the dose profile 

close to Gaussian shape in the peak region, the weight 

of proton component has to be calculated. Since the 

weight of the proton component passing through the 

ripple-bar step is proportional to the width of the 

ripple-bar step, the weight determines the shape of the 

ripple bar. 

Additionally, the difference of proton fluence 

caused by the nuclear interaction in the ripple filter 

and water is taken into account for the computation. 

After proton beam passing through the ripple filter, the 

biological dose is modulated as follows: 
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where dmod(zi) represents the modulated biological 

dose at a depth zi; ∆z is the step size of the dose points; 

λ is the period of the groove structure; jmin and jmax are 

defined as the value of the minimum and maximum 

water-equivalent thickness of ripple bar divided by ∆z, 

respectively; dphy(zi+j) is the pristine physical dose at a 

depth zi+j; wj is the weight of the jth segment of proton 

beam; fj , the fluence difference introduced by the jth 

step of ripple-bar, as described in Eq.(2)[7]: 
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where tj=t(zj) = 1.19tr(zj) is the water equivalent 

thickness of ripple filter in z direction; λrf = 69.54 cm 

is the nuclear interaction length of plexiglass; mp = 

0.012 cm-1; R is the proton range in water. 

To simplify the analysis, (1) can be further 

written as the following matrix form: 
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where Dmod is modulated biological dose; aij = 

2Δz·dphy(zi+j) fj /λ; m is the dimension of Dmod; n=jmax – 

jmin+1, which is the dimension of weight W; A is a m×n 

matrix; W is a n×1 vector and wj≥0. Since it is often 

the case that m>n, then (3) is an over-determined 

equation thus there might be no unique solution. 

Besides, the coefficient matrix A is usually 

ill-conditioned so that the solution of (3) is derived by 

solving an optimization problem. In this paper, two 

optimization methods with different objective function 

are used and compared for the ripple filter bar design. 

2.1 Iterative least-squares technique 

ILST is a commonly used method for solving the least 

square objective function[8‒10] with relatively fast 

converge rate and good performance of averaging out 

the noisy data. In hadron therapy range modulation 

field, Schaffner et al.[2] utilized the ILST to produce 

the large, biologically uniform spread-out Bragg peak 

(SOBP) depth dose from the small SOBPs. The weight 

updating in two consecutive iterations (kth iteration and 

(k−1)th iteration) can be calculated by 
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where g is set to 1 inside of the SOBP and 0 outside; 

P(zi) is the prescribed biological dose at a depth zi. 

2.2 Quadratic programming method 

A large condition number of the matrix A, i.e., larger 

than 100, may result in the different order of 

magnitudes of the derived weights value wj. This will 

lead to the manufacture difficulties of the ripple filter 

because the normalized value of wj is proportional to 

the width of the jth ripple bar. For example, if wj+1 is 

100 times smaller than wj and the width of the jth 

segment is 10 μm, then the required width of the 

(j+1)th segment is 0.1 μm which might beyond the 

manufacture precision (1 μm). To prevent the weights 

from growing too large, a new objective function is 

proposed in this study, it consists of a least square item 
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and an extra weight decay item[11]. 

Min 0.5||P-AW||2+0.5γ|| W||2  

s.t wj0, j=1,2,…,n               (5) 

where ǁ·ǁ represents Frobenius norm operation; P (m×1) 

is the prescribed biological dose; γ (γ ≥ 0) is a 

parameter that determines how strongly large weights 

are penalized. The larger γ is, the more uniform 

weights are. Particularly, when γ = 0, Eq.(5) becomes 

min0.5||P-AW||2                            

s.t wj0, j=1,2,…,n            (6) 

The problem (6) is a special case of (5). 

Problem (6) is a least square optimization problem 

with nonnegative constrains. Problem (5) can be 

written in the standard quadratic form as follows: 

Min 0.5WT(ATA+γI)W-(PTA)W  

s.t wj0, j=1,2,…,n                (7) 

where I is a n×n identity matrix. Problem (7) can be 

solved by a quadratic programming method (QPM) [12]. 

Adding the weight decay term in ripple bar design can 

improve generalization[11]. 

2.3 Performance evaluation 

The optimized results with ILST[2] and QPM are 

compared in this paper. Moreover, the robustness 

(anti-noise ability) of two methods which specified as 

the dose difference was also examined. 
r=(dn-d0)d0                  (8) 

where dn and d0 represent the dose derived from the 

noise data and original data, respectively; r is the 

relative dose variation, which represents the 

robustness of the filter. The smaller r is, the stronger 

robustness is. 

3 Results and discussion 

In this study, a typical beam delivery system for proton 

therapy is simulated with Geant4. Bragg peaks 

obtained from the simulation are used to evaluate the 

methods. Since the Bragg peaks of proton beams 

becomes narrow with the decrease of energy, the 

relative low energy of 70 MeV is chosen in the 

simulation.  

3.1 Simulated model 

As shown in Fig. 2, the schematic of the simulated 

model consists of a kapton window located at the end 

of the beam transport line, a nozzle, and a water tank 

phantom. The components of the nozzle are scanning 

magnets, vacuum chamber, beam monitors, a ripple 

filter and etc. The scanning magnets are used to steer 

the beam. And the vacuum chamber is designed to 

reduce the beam scattering. The beam monitors, are 

ionization chambers with an equivalent water 

thickness of 1.1 mm. The ripple filter is used to 

smooth the flat-top region of the SOBP. The distance 

between the isocenter and the ripple filter is 50 cm. 

The momentum spread for protons is set as 

Δp/p=0.05%. 

 
Fig.2  Schematic of the simulation model. 

3.2 SOBP dose uniformity with ripple filter 

designed by QPM 

Fig.3 shows the dose uniformity with and without 

ripple filters for proton beams of 70 MeV. As 

illustrated in Fig.3(a), for the same scanning step (3.2 

mm), the dose uniformity is as high as 24.7% without 

ripple filter and the dose uniformity sharply falls down 

to less than 2.5% when a 3 mm ripple filter was added 

to the system. In Fig.3(b), the dose uniformity is more 

than 20.7% without ripple filter, while with ripple 

filter the maximum dose scanning error decreases to 

less than 2.5% with the same step (3 mm). 

As described in Ref.[3], the widths of distal 

fall-off (80%–20% distal falloff) are both moderate 

(less than 3 mm). 

3.3 Comparison between ILST and QPM 

Fig.4 illustrates the simulation results with ILST and 

QPM when pencil beam scanning step is 2.14 mm (a 

random value). As shown in Fig.4(a), the depth dose 

distribution with QPM (solid line) is more uniform and 

closer to the ideal value (1.00 in the figure) than that 

with ILST (dashed line). Particularly, the maximum 

dose uniformity with QPM is 0.5%, which is less than 

that with ILST 0.7%. In addition, the shape of ripple 
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filter with QPM is closer to triangle than that with 

ILST as shown in Fig.4(b). The reason is that the extra 

weight decay item prevents the value of the individual 

weight which corresponds to the width of ripple filter 

bar from growing too large. Therefore, the width of 

ripple filter bar tends to have the same order 

magnitude. Therefore, its corresponding ripple filter 

bar is close to the triangle shape and so that is 

convenient for manufacture. 

 

 

Fig.3  Depth dose distributions for 70 MeV proton beams: (a) 
comparison between with and without use of 3 mm ripple filter 
Scanning step of 3.2 mm; (b) comparison between with and 
without use of 2.8 mm ripple filter, scanning step of 3 mm. 

In the real application, the dose is measured in the 

experiment instead of deriving by the simulation. Then 

the unavoidable measurement error of dose should be 

considered. The noise with Gaussian distribution was 

added to the simulation dose in this study. Fig.5 shows 

the relative dose variation and the ripple filter shape 

curve difference while the 5% noise is added in the 

simulation. The dose difference value with QPM and 

ILST is shown in Fig.5(a). The calculated standard 

deviation of the relative dose uniformity with QPM 

(0.0039) is smaller than that with ILST (0.0042). 

Fig.5(b) further compares the filter shape difference, 

the horizontal axes represents the shape difference 

with and without noise data. The smaller values 

derived by QPM indicates its stronger robustness. In 

other words, the proposed QPM is capable of 

obtaining the similar ripple filter even using the data 

with noise, which is preferred in the real application. 

The good robustness is due to good generalization 

ability of the QPM. The results of scanning step of 3.2 

mm with the use of 3 mm ripple filter are similar. 

 

 

Fig.4  Simulation results of two methods with 2 mm ripple 
filter: (a) depth dose comparison; (b) ripple filter bar shapes. 

 

 

Fig.5  Robustness comparison of two methods with the use of 
2 mm ripple filter: (a) depth dose difference; (b) shape 
difference. 

 

Fig.6 compares the individual proton beam Bragg 

curves and the corresponding lateral dose distribution 
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at different positions with and without ripple filter. The 

relative dose of the modulated curves are higher than 

that of the pristine Bragg curve at the depth of 

modulated Bragg peak as illustrated in Fig.6(a). This 

phenomenon is also reflected from Fig.6(b), in which 

the lateral dose distribution of proton beam without 

ripple filters are both lower than that with ripple filters. 

Besides, the curves for A and B is close to each other 

in Fig.6(b), which indicates there is slight difference of 

lateral dose distribution at Bragg peak between two 

different ripple filters. This is due to the proton beam 

is scattered by different ripple filters mainly according 

to Moliere theory[13,14]. 

        

Fig.6  Comparison of the simulation results of dose distribution with and without 2 mm ripple filter at the energy of 70MeV. (a) 
individual proton Bragg curves. BQPM, BILST indicate the Bragg curves with ripple filter designed by QPM and ILST respectively, 
while PPB represents the pristine Bragg curve without ripple filter. Point A and B are the Bragg peak position of the BQPM and 
BILST, respectively. A and C are at the same depth, and that for B and D. (b) lateral dose distribution corresponding to A, B, C, D. 

4 Conclusion 

A new design approach for ripple filter bar was 

proposed in this paper. The new approach uses the new 

objective function with QPM. It has been successfully 

applied to calculate the weights, which were further 

converted to the ripple filter dimension. Compared to 

the ILST, the proposed method not only achieves 

better performance, i.e., better depth dose uniformity 

and ripple filter’s shape for manufacture, but also has 

better robustness characteristics. This ripple filter can 

be manufactured more accurately and achieve a good 

flatness of the SOBP at the same time. 
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