
Nuclear Science and Techniques 24 (2013) 060402

————————————
Supported by National Natural Science Foundation of China (NSFC) projects (Nos.11035001,11120101005 and 11175085) and the Priority Academic

Development of Jiangsu Higher education Institutions.

* Corresponding author. E-mail address: cping@ustc.edu.cn

Received date: 2013-01-10

060402-1

General transmission method based on PXI platform for physical
experiments

YAO Lin1,2 CAO Ping1,2,* HUANG Xiru1, 2 SONG Kezhu1 2 AN Qi1,2
1State Key Laboratory of Particle Detection and Electronics (IHEP-USTC), Hefei 230026, China

2Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China

Abstract In this paper, a general method of data transmission system design on PXI platform is proposed. It can be

used in readout system design for physical experiments. It aims at providing reusable and general interfaces for

customized design of PXI while maintaining the transmission performance. It has three main features: (1)universal

logic hardware interface, (2)ethernet based socket software interface, and (3)specific and simple data transmission

protocol. Data transmission on PXI bus can be realized with the said two universal interfaces coordinated by this

specific protocol. Test shows that this method is feasible and stable. This method can be easily reused in readout

system designs for different experiments.

Key words General Transmission Method, PXI, FPGA, Ethernet Socket

1 Introduction

Nowadays, the readout system design for modern

physical experiments faces the improving

requirements of flexible architecture, convenient

management, high availability and expansibility at

high data throughput. The legacy VME based readout

system design methodology is facing more and more

difficulties with these requirements. It is limited

bandwidth and lagging bus architecture prevents it

moves to the road of high data throughput and

availability. The lack of hot-swap supporting also

makes it difficult to meet the requirement of keeping

online at all-time without interruption in a week.

Therefore, other high-speed transmission platforms

like Compact PCI, PCI eXtension for Instruments

(PXI) and Advanced Telecommunications Computing

Architecture (ATCA) have been considered as

replacement of VME. Compact PCI is ruled out for its

lack of dedicated timing or trigger signals. The

attractive features of ATCA include high transmission

bandwidth, data flexible exchange and high

availability. However, its transplanting to physics is

still under construction[1]. The PXI provides integrated

timing and synchronization module to route

synchronization clocks and triggers which matches the

requirement of most experiments quite well. It

supports a maximum data transmission bandwidth of

528 MB/s with 64 bit data width at 66 MHz frequency

while keeping high availability and low cost[2]. For

these reasons PXI is utilized in more and more newly

constructed physical experiments such as the central

timing system of EAST[3], the real time data

acquisition system of TJ-II device[4] and the real time

data acquisition for the HICAT facility[5]. Some other

experiments have adopted PXI to replace the use of

VME for upgrade, such as the DAQ system upgrade of

MAST [6], and the MHD control system of FTU[7].

There are many commercial PXI modules

which can be used directly in readout system design of

physical experiments[4,6]. The commercial modules

have high convenience but low flexibility due to the

mass production. It may not ensure full satisfaction

when facing some specific demands. To meet the

various needs, many scientists start to customize PXI

modules as what they have done under the VME

YAO Lin et al. / Nuclear Science and Techniques 24 (2013) 060402

060402-2

platform before[3,7]. The customized module could be

developed aiming at the exact features of experiment

and could be optimized to obtain higher efficiency.

However, this customized design methodology raises

new problems such as the requirement of longer

developing time and higher cost. In addition,

customized modules are always too dedicated to be

reused in other applications.

To overcome the disadvantages of customized

design method, a PXI platform based general data

transmission method is proposed in this paper. It

provides a universal data transmission interface to

connect heterogeneous data sources from the front-end

electronics and DAQ. The universal interface consists

of hardware interface and software interface. The

hardware part is FPGA internal logic port interface and

the software part is Ethernet socket based interface[8].

To coordinate the multiple data source transmission, a

specific protocol is also proposed. Controlled by this

protocol, the packaged data fed to a port of hardware

interface can be received at the corresponding port of

software interface. Based on this strategy, designers

only need to concentrate on the system function or

data processing implementation without considering

the detail of data transmission.

2 System architecture

This method is aiming at developing PXI based

general and reusable data transmission interfaces while

maintaining the transmission performance. As shown

in Fig.1, it is realized in middleware form, including

hardware middleware and software middleware. The

hardware middleware provides a universal logic port

interface and the software middleware provides

Ethernet based socket port interface. Each functional

hardware module has an individual corresponding

socket port to control and obtain data. A maximum

amount of 255 hardware modules can be supported by

this method. Local area readout system can obtain data

directly through the socket port[9]. Furthermore, long

distance Ethernet communication technologies can be

imported to realize remote readout system[10,11].

The PXI bus is a bidirectional bus. In this paper,

the data transmitted from software middleware to

hardware middleware is called downlink data. The

data transmitted from hardware middleware to

software middleware is called uplink data. The system

is operating based on separated acknowledgements of

the two directional data transmission request. Fig. 2

shows the system’s state diagram.

Fig.1 System architecture.

Fig.2 System state diagram.

The system will begin at Ready state when

power on. When receiving downlink data transfer

request, it resolves the data frame, gets the

identification address of target module and moves to

Configuration state. Regarding to the configuration

status, a successful or failed signal will be returned.

When receiving an uplink transfer request, the system

steps in Arbitration state to decide which hardware

module could start data transmission. If the data

transmission is unsuccessful, it will return a failed

signal. When the data transmission finishes

successfully, the software middleware will resolve and

dispatch the data to corresponding socket port.

Detailed implementation will be introduced in the

following paragraphs.

YAO Lin et al. / Nuclear Science and Techniques 24 (2013) 060402

060402-3

3 Implementation

3.1 System protocol implementation

To ensure the system could accommodate the various

data formats from different hardware modules, a

general and simple protocol is proposed. It restricts the

transmission data format, and all data must be

packaged under this protocol before sent to the

provided interfaces. PXI has two data transfer mode:

single transfer and burst transfer. All data transmission

activities within this system are abstracted as one of

these two modes. The single transfer mode is used to

transfer the downlink data for configuration or control.

It is also used to transfer the slow rate uplink data, e.g.,

the feedback status or temperature data. The burst

transfer mode is used to transfer the large amount

uplink digitalized data.

This protocol defines data frame format for the

two different modes. A 1 Byte address code is defined

to identify the different hardware modules. The

address code 0x00 represents the control module of

this system and other codes from 0x01 to 0xff can be

used to represent up to 255 different modules, which is

the nominal module support number of this method.

For single transfer mode, the data frame length is 4

byte, 1 byte for address code and 3 bytes for valid data.

For burst transfer mode, the data frame length is 1028

byte with a 4 byte header and following 1024 bytes

valid data. The 4 byte header consists of 1 byte address

code and other 3 bytes reserved parameters. The data

frame format is shown as Fig.3 below.

Fig.3 Data frame format.

All data should be packaged under the protocol,

transmitted to the provided interface and can be

obtained from the corresponding interface from the

other side. The PXI bus transmission can be

automatically completed by the middleware. The

detailed realization of hardware and software

middleware is presented.

3.2 Hardware middleware implementation

The hardware middleware is built in a Field

Programmable Gate Array (FPGA). It is the bridge of

the PXI bus and the hardware modules. It receives the

downlink data from the software middleware via PXI

bus and dispatches it to correct hardware module. It

also receives the uplink data from the hardware

modules and forwards it to the software middleware.

The PXI bus transmission is controlled with the help

of PXI interface logic. A FPGA internal on-chip bus

with corresponding bus arbitrator and controller is

designed to accommodate the data transmission of

various hardware modules. A universal logic port

interface is provided to each different hardware

modules. The architecture view of hardware

middleware is shown as Fig.4.

Fig.4 Hardware middleware structure.

The PXI Interface Logic is developed based on

the commercial Intellectual property (IP) core

integrated in FPGA. The different hardware modules

are mounted on the on-chip bus via the provided

universal logic port interface. The on-chip bus is

designed in master-slave structure and the bus

controller is the only master unit while all the mounted

logic port interface modules working as slave units.

Each slave unit must send request before starting

transmission with the master unit and only one slave

unit can occupy the on-chip bus to communicate with

the master unit at a time. The on-chip bus contains a

32 bit bidirectional data bus and a dedicated 8 bit

address bus which can support 255 slave units at most.

YAO Lin et al. / Nuclear Science and Techniques 24 (2013) 060402

060402-4

The logic ports diagram of the slave unit is shown

as Fig.5 below. It provides separated logic ports and

two clock input ports to communicate with the on-chip

bus and hardware modules in different clocks. A

First-In First-Out (FIFO) buffer is applied to deal with

the cross-clock domain communication.

Fig.5 Diagram of logic port interface.

The logic port interface module provides

separated uplink and downlink 32 bit data bus to the

hardware module with corresponding control ports as

shown in Fig. 5. The uplink data transfer has two

modes, single transfer and burst transfer. The two

modes have the same data port but different control

ports. While conflicting, the single transfer mode has

higher priority.

The logic port interface module communicates

with on-chip bus via 32bit bidirectional data bus and

8bit dedicated address bus. It also provides several

control ports. To deal with the transmission

competition of different modules, a bus arbitrator is

developed. Each slave module has its individual

request and enable signal to achieve time sharing of

bus operation, as is shown in Fig.6.

The on-chip bus is a bidirectional bus with 3

different transfer activities in different priorities. The

downlink data transfer has the highest priority, then the

uplink data single transfer and at last the uplink data

burst transfer. Each slave module has its priority value

while initializing. The direction of bus transfer is

determined by the address bus. When the value of

address bus is 0x00, it means the bus is occupied by

one slave to transfer the uplink data. In other situation

it means the bus is transferring downlink data to the

slave whose address code matches current address bus

value. When transferring downlink data, the bus

controller resolves the data frame and fetch the address

code to set the address bus to inform the target slave

unit. The target slave unit should return a read finished

signal to inform the bus transfer operation has finished

correctly. If there’s no such a reply in 8 clock cycles,

the controller will recognize it as a fault, return an

error signal to the software middleware and clear the

address bus.

Fig. 6 On-chip bus connection relationship.

When a hardware module needs to start uplink

data single transfer, it will send a request signal via the

S_WR_REQ port. The bus arbitrator and controller

will acknowledge the request if the bus is free and

there’s no downlink data transfer request. If some else

module sent the same request at the same time, the

arbitration is carried out. Each module will receive its

priority value when system initializing. It can be

configured by user’s will. If the user didn’t configure

the priority value at initialization, the default value is

the same as module address code. The arbitrator and

the controller module will judge the priority of

requesting modules and return the S_WR_EN signal

of the highest priority module to allow it to start the

bus operation.

The uplink data burst transfer is quite similar but

it has the lowest priority than the other two modes.

The burst transfer request will only be acknowledged

when there’s no other transfer request. If there is more

than one module sending the request, the arbitration

starts. It is also determined by the priority value of

each module. When received the enable signal, the

chosen module occupies the on-chip bus and starts to

transfer the 1028 bytes long data frame.

YAO Lin et al. / Nuclear Science and Techniques 24 (2013) 060402

060402-5

3.3 Software middleware implementation

The structure view of software middleware is show as

Fig.7 below. It consists of socket ports, data dispatcher

and device driver. The software interface is the socket

port which provides Ethernet communication method

and supports both local and remote access. All data

communicating via the socket port should follow the

protocol mentioned above.

Fig.7 Software middleware structure.

Each socket has its individual memory space to

communicate with data dispatcher. The data dispatcher

resolves the uplink data frame and fetch the address

header to forward the data to corresponding socket

memory space. The data in single transfer mode and in

burst transfer mode is mapping to two different

memory addresses to communicate between data

dispatcher and device driver. The device driver

realizes software side PXI bus transmission control.

4 Tests

To validate the feasibility and reliability, three PXI 3U

boards with 8 different hardware functional modules

are developed based on this method. They are:

A) A Dual channel digitization board. The

sampling rate of each channel is 80 MSPS in 14 bit.

B) A multifunction board including a 40 MSPS

12 bit ADC, a random signal generator at 10 MHz

frequency and a scaler at maximum count rate of

10MHz.

C) A multifunction board including dual

channel 12 bit TDC with 1ns resolution and a 250 M 8

bit ADC.

The verification platform is on a 32 bit PXI

chassis with 8 slots. The maximum system bandwidth

is 132 MB/s. The PXI chassis controller is PXI-8108

and the operating system running on this controller is

Windows XP[12].

An experiment is carried out for verification.

These three boards are plugged into the chassis. The

system tests are conducted in the laboratory

environment, with an environment temperature around

26ºC (controlled by the air conditioner). Since the data

sampling rate of these module boards far exceeds the

nominal bandwidth of this crate, a software timer is

adopted to send the cyclical start and stop command to

control the sampling operation. In every minute all the

sampling modules will receive the start commands.

And 1 second later, the stop commands will be sent.

The sampled data (about 4.72 Giga bits, which is

equivalent to 590 Mega Bytes) will be transferred

under our method and in every data frame a single bit

even parity code is adopted. If any bit error occurs, a

corresponding record will be generated. After the 24 h

test, no bit error record is observed.

The system data transmission rate is measured

under the following 3 conditions:

a) 80 MSPS single channel in test board A is

sampling without this readout method.

b) 80 MSPS single channel in test board A is

sampling with this readout method applied.

c) All the 3 boards are working with this readout

method applied.

The transmission rate of each situation is

measured in 10 times, and the results are shown in the

following table.

The nominal bandwidth of PXI is a theoretical

one, which is the result of multiplying the bit width by

the system clock frequency. In the actual data

transmission situation, the transmission speed is

mostly limited by the bus scheduling operation. When

one slave device sends a request to conquer the bus for

transmission, it should wait for the permission from

the master device to start it. The permission is usually

generated by the operation systems and a time period

is always needed. This time period is a very important

factor which leads to the difference between the

measured transmission rate and the nominal one. This

tendency could be seen in test under condition c.

YAO Lin et al. / Nuclear Science and Techniques 24 (2013) 060402

060402-6

Because of the competition between the modules, the

transmission speed is less than the tests under

condition a and b but its average speed is still more

than 45 MB/s. With this transmission rate it could

meet data transmission requirement of experiments

such as Daya Bay reactor neutrino experiment[13].
Table 1 Data transmission rated measured in different conditions

Tests 1 2 3 4 5 6 7 8 9 10

a 51.21 50.19 47.46 49.82 49.59 51.13 51.22 49.01 47.14 49.32
b 48.56 47.35 49.34 50.14 49.29 49.16 50.26 48.38 47.67 48.26
c 45.71 46.43 45.18 45.45 46.70 44.81 47.61 44.86 47.80 46.12

5 Conclusion

In this paper, a PXI based general data transmission

method is presented. It provides general interfaces and

corresponding protocol to help customized design of

PXI data readout systems. This method is proposed

based on 32 bit PXI bus. The performance of this

method is measured and it proves this method to be

feasible, effective and easy to use.

When facing higher transmission rate

requirement, this method can be considered to be

transplanted on other bus platform with higher

bandwidth. The 64 bit PXI bus standard can support a

maximum 528 MB/s bandwidth and the PXI Express

standard can support a much higher 5 GB/s bandwidth.

Modifying and transplanting this method to these

platforms is a potential further research field and is

very possible to obtain higher efficiency.

References

1. Larsen R S. Advances in developing next-generation

electronics standards for physics, SLAC-PUB-13684,

June 2009.

2. PXI systems alliance, PXI-1 (PCI eXtensions for

Instrumentation) hardware specification revision 2.2,

2004, http://www.pxisa.org.

3. Zhang Z, Ji Z, Xiao B, et al. Comput Measure Control,

2011, 19: 2241−2244.

4. Ruiz M, Barrera E, Lopez S, et al. Fusion Eng Des, 2004,

71: 135−140.

5. Peters A, Hoffmann T, Schiwickert M. Beam diagnostic

devices and data acquisition for the HICAT facility,

Proceedings of DIPAC, 2005.

6. Shibaev S, Counsell G, Cunningham G, et al. Fusion Eng

Des, 81 2006, 81: 1789−1793.

7. D'Antona G, Cirant S, Davoudi M. IEEE Tns Nucl Sci,

2011, 58: 1503−151.

8. Austin Joint Working Group, Portable Operating System

Interface (POSIX(R)), 1003.1−2008-IEEE Standard for

Information Technology, http://standards.ieee.org/finds

tds/standard/1003.1−2008.html.

9. Rodrigues S, Anderson T E, Culler D E. High-

performance local area communication with Fast Sockets,

Proceedings of the USENIX 1997 annual technical

conference, January 6−10, 1997.

10. Nagai M, Ishidoshiro K, Higuchi T, et al. J Low

Temperature phys, 2012, 167: 689−694.

11. Bauer G, Boyer V, Branson J. et al. IEEE Tns Nucl Sci,

2008, 55: 198−202.

12. PXI 8108 specification, http://sine.ni.com/ds/app/doc/p/

id/ds-273 /lang/zhs.

13. Li F, Ji X, X. Li, et al. IEEE Tns Nucl Sci, 2011, 58:

1723−1727.

