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Abstract  In this paper, a general method of data transmission system design on PXI platform is proposed. It can be 

used in readout system design for physical experiments. It aims at providing reusable and general interfaces for 

customized design of PXI while maintaining the transmission performance. It has three main features: (1)universal 

logic hardware interface, (2)ethernet based socket software interface, and (3)specific and simple data transmission 

protocol. Data transmission on PXI bus can be realized with the said two universal interfaces coordinated by this 

specific protocol. Test shows that this method is feasible and stable. This method can be easily reused in readout 

system designs for different experiments. 
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1 Introduction 

Nowadays, the readout system design for modern 

physical experiments faces the improving 

requirements of flexible architecture, convenient 

management, high availability and expansibility at 

high data throughput. The legacy VME based readout 

system design methodology is facing more and more 

difficulties with these requirements. It is limited 

bandwidth and lagging bus architecture prevents it 

moves to the road of high data throughput and 

availability. The lack of hot-swap supporting also 

makes it difficult to meet the requirement of keeping 

online at all-time without interruption in a week. 

Therefore, other high-speed transmission platforms 

like Compact PCI, PCI eXtension for Instruments 

(PXI) and Advanced Telecommunications Computing 

Architecture (ATCA) have been considered as 

replacement of VME. Compact PCI is ruled out for its 

lack of dedicated timing or trigger signals. The 

attractive features of ATCA include high transmission 

bandwidth, data flexible exchange and high 

availability. However, its transplanting to physics is 

still under construction[1]. The PXI provides integrated 

timing and synchronization module to route 

synchronization clocks and triggers which matches the 

requirement of most experiments quite well. It 

supports a maximum data transmission bandwidth of 

528 MB/s with 64 bit data width at 66 MHz frequency 

while keeping high availability and low cost[2]. For 

these reasons PXI is utilized in more and more newly 

constructed physical experiments such as the central 

timing system of EAST[3], the real time data 

acquisition system of TJ-II device[4] and the real time 

data acquisition for the HICAT facility[5]. Some other 

experiments have adopted PXI to replace the use of 

VME for upgrade, such as the DAQ system upgrade of 

MAST [6], and the MHD control system of FTU[7]. 

There are many commercial PXI modules 

which can be used directly in readout system design of 

physical experiments[4,6]. The commercial modules 

have high convenience but low flexibility due to the 

mass production. It may not ensure full satisfaction 

when facing some specific demands. To meet the 

various needs, many scientists start to customize PXI 

modules as what they have done under the VME 
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platform before[3,7]. The customized module could be 

developed aiming at the exact features of experiment 

and could be optimized to obtain higher efficiency. 

However, this customized design methodology raises 

new problems such as the requirement of longer 

developing time and higher cost. In addition, 

customized modules are always too dedicated to be 

reused in other applications. 

To overcome the disadvantages of customized 

design method, a PXI platform based general data 

transmission method is proposed in this paper. It 

provides a universal data transmission interface to 

connect heterogeneous data sources from the front-end 

electronics and DAQ. The universal interface consists 

of hardware interface and software interface. The 

hardware part is FPGA internal logic port interface and 

the software part is Ethernet socket based interface[8]. 

To coordinate the multiple data source transmission, a 

specific protocol is also proposed. Controlled by this 

protocol, the packaged data fed to a port of hardware 

interface can be received at the corresponding port of 

software interface. Based on this strategy, designers 

only need to concentrate on the system function or 

data processing implementation without considering 

the detail of data transmission. 

2 System architecture 

This method is aiming at developing PXI based 

general and reusable data transmission interfaces while 

maintaining the transmission performance. As shown 

in Fig.1, it is realized in middleware form, including 

hardware middleware and software middleware. The 

hardware middleware provides a universal logic port 

interface and the software middleware provides 

Ethernet based socket port interface. Each functional 

hardware module has an individual corresponding 

socket port to control and obtain data. A maximum 

amount of 255 hardware modules can be supported by 

this method. Local area readout system can obtain data 

directly through the socket port[9]. Furthermore, long 

distance Ethernet communication technologies can be 

imported to realize remote readout system[10,11]. 

The PXI bus is a bidirectional bus. In this paper, 

the data transmitted from software middleware to 

hardware middleware is called downlink data. The 

data transmitted from hardware middleware to 

software middleware is called uplink data. The system 

is operating based on separated acknowledgements of 

the two directional data transmission request. Fig. 2 

shows the system’s state diagram. 

 

Fig.1  System architecture. 

 

Fig.2  System state diagram. 

The system will begin at Ready state when 

power on. When receiving downlink data transfer 

request, it resolves the data frame, gets the 

identification address of target module and moves to 

Configuration state. Regarding to the configuration 

status, a successful or failed signal will be returned. 

When receiving an uplink transfer request, the system 

steps in Arbitration state to decide which hardware 

module could start data transmission. If the data 

transmission is unsuccessful, it will return a failed 

signal. When the data transmission finishes 

successfully, the software middleware will resolve and 

dispatch the data to corresponding socket port. 

Detailed implementation will be introduced in the 

following paragraphs. 
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3 Implementation 

3.1 System protocol implementation 

To ensure the system could accommodate the various 

data formats from different hardware modules, a 

general and simple protocol is proposed. It restricts the 

transmission data format, and all data must be 

packaged under this protocol before sent to the 

provided interfaces. PXI has two data transfer mode: 

single transfer and burst transfer. All data transmission 

activities within this system are abstracted as one of 

these two modes. The single transfer mode is used to 

transfer the downlink data for configuration or control. 

It is also used to transfer the slow rate uplink data, e.g., 

the feedback status or temperature data. The burst 

transfer mode is used to transfer the large amount 

uplink digitalized data.  

This protocol defines data frame format for the 

two different modes. A 1 Byte address code is defined 

to identify the different hardware modules. The 

address code 0x00 represents the control module of 

this system and other codes from 0x01 to 0xff can be 

used to represent up to 255 different modules, which is 

the nominal module support number of this method. 

For single transfer mode, the data frame length is 4 

byte, 1 byte for address code and 3 bytes for valid data. 

For burst transfer mode, the data frame length is 1028 

byte with a 4 byte header and following 1024 bytes 

valid data. The 4 byte header consists of 1 byte address 

code and other 3 bytes reserved parameters. The data 

frame format is shown as Fig.3 below. 

 

Fig.3  Data frame format. 

All data should be packaged under the protocol, 

transmitted to the provided interface and can be 

obtained from the corresponding interface from the 

other side. The PXI bus transmission can be 

automatically completed by the middleware. The 

detailed realization of hardware and software 

middleware is presented. 

3.2 Hardware middleware implementation 

The hardware middleware is built in a Field 

Programmable Gate Array (FPGA). It is the bridge of 

the PXI bus and the hardware modules. It receives the 

downlink data from the software middleware via PXI 

bus and dispatches it to correct hardware module. It 

also receives the uplink data from the hardware 

modules and forwards it to the software middleware. 

The PXI bus transmission is controlled with the help 

of PXI interface logic. A FPGA internal on-chip bus 

with corresponding bus arbitrator and controller is 

designed to accommodate the data transmission of 

various hardware modules. A universal logic port 

interface is provided to each different hardware 

modules. The architecture view of hardware 

middleware is shown as Fig.4. 

 

Fig.4  Hardware middleware structure. 

The PXI Interface Logic is developed based on 

the commercial Intellectual property (IP) core 

integrated in FPGA. The different hardware modules 

are mounted on the on-chip bus via the provided 

universal logic port interface. The on-chip bus is 

designed in master-slave structure and the bus 

controller is the only master unit while all the mounted 

logic port interface modules working as slave units. 

Each slave unit must send request before starting 

transmission with the master unit and only one slave 

unit can occupy the on-chip bus to communicate with 

the master unit at a time. The on-chip bus contains a 

32 bit bidirectional data bus and a dedicated 8 bit 

address bus which can support 255 slave units at most. 
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The logic ports diagram of the slave unit is shown 

as Fig.5 below. It provides separated logic ports and 

two clock input ports to communicate with the on-chip 

bus and hardware modules in different clocks. A 

First-In First-Out (FIFO) buffer is applied to deal with 

the cross-clock domain communication. 

 

Fig.5  Diagram of logic port interface. 

The logic port interface module provides 

separated uplink and downlink 32 bit data bus to the 

hardware module with corresponding control ports as 

shown in Fig. 5. The uplink data transfer has two 

modes, single transfer and burst transfer. The two 

modes have the same data port but different control 

ports. While conflicting, the single transfer mode has 

higher priority. 

The logic port interface module communicates 

with on-chip bus via 32bit bidirectional data bus and 

8bit dedicated address bus. It also provides several 

control ports. To deal with the transmission 

competition of different modules, a bus arbitrator is 

developed. Each slave module has its individual 

request and enable signal to achieve time sharing of 

bus operation, as is shown in Fig.6. 

The on-chip bus is a bidirectional bus with 3 

different transfer activities in different priorities. The 

downlink data transfer has the highest priority, then the 

uplink data single transfer and at last the uplink data 

burst transfer. Each slave module has its priority value 

while initializing. The direction of bus transfer is 

determined by the address bus. When the value of 

address bus is 0x00, it means the bus is occupied by 

one slave to transfer the uplink data. In other situation 

it means the bus is transferring downlink data to the 

slave whose address code matches current address bus 

value. When transferring downlink data, the bus 

controller resolves the data frame and fetch the address 

code to set the address bus to inform the target slave 

unit. The target slave unit should return a read finished 

signal to inform the bus transfer operation has finished 

correctly. If there’s no such a reply in 8 clock cycles, 

the controller will recognize it as a fault, return an 

error signal to the software middleware and clear the 

address bus. 

 

Fig. 6  On-chip bus connection relationship. 

When a hardware module needs to start uplink 

data single transfer, it will send a request signal via the 

S_WR_REQ port. The bus arbitrator and controller 

will acknowledge the request if the bus is free and 

there’s no downlink data transfer request. If some else 

module sent the same request at the same time, the 

arbitration is carried out. Each module will receive its 

priority value when system initializing. It can be 

configured by user’s will. If the user didn’t configure 

the priority value at initialization, the default value is 

the same as module address code. The arbitrator and 

the controller module will judge the priority of 

requesting modules and return the S_WR_EN signal 

of the highest priority module to allow it to start the 

bus operation. 

The uplink data burst transfer is quite similar but 

it has the lowest priority than the other two modes. 

The burst transfer request will only be acknowledged 

when there’s no other transfer request. If there is more 

than one module sending the request, the arbitration 

starts. It is also determined by the priority value of 

each module. When received the enable signal, the 

chosen module occupies the on-chip bus and starts to 

transfer the 1028 bytes long data frame. 
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3.3 Software middleware implementation 

The structure view of software middleware is show as 

Fig.7 below. It consists of socket ports, data dispatcher 

and device driver. The software interface is the socket 

port which provides Ethernet communication method 

and supports both local and remote access. All data 

communicating via the socket port should follow the 

protocol mentioned above. 

 

Fig.7  Software middleware structure. 

Each socket has its individual memory space to 

communicate with data dispatcher. The data dispatcher 

resolves the uplink data frame and fetch the address 

header to forward the data to corresponding socket 

memory space. The data in single transfer mode and in 

burst transfer mode is mapping to two different 

memory addresses to communicate between data 

dispatcher and device driver. The device driver 

realizes software side PXI bus transmission control. 

4 Tests  

To validate the feasibility and reliability, three PXI 3U 

boards with 8 different hardware functional modules 

are developed based on this method. They are:  

A) A Dual channel digitization board. The 

sampling rate of each channel is 80 MSPS in 14 bit. 

B) A multifunction board including a 40 MSPS 

12 bit ADC, a random signal generator at 10 MHz 

frequency and a scaler at maximum count rate of 

10MHz. 

C) A multifunction board including dual 

channel 12 bit TDC with 1ns resolution and a 250 M 8 

bit ADC.  

The verification platform is on a 32 bit PXI 

chassis with 8 slots. The maximum system bandwidth 

is 132 MB/s. The PXI chassis controller is PXI-8108 

and the operating system running on this controller is 

Windows XP[12]. 

An experiment is carried out for verification. 

These three boards are plugged into the chassis. The 

system tests are conducted in the laboratory 

environment, with an environment temperature around 

26ºC (controlled by the air conditioner). Since the data 

sampling rate of these module boards far exceeds the 

nominal bandwidth of this crate, a software timer is 

adopted to send the cyclical start and stop command to 

control the sampling operation. In every minute all the 

sampling modules will receive the start commands. 

And 1 second later, the stop commands will be sent. 

The sampled data (about 4.72 Giga bits, which is 

equivalent to 590 Mega Bytes) will be transferred 

under our method and in every data frame a single bit 

even parity code is adopted. If any bit error occurs, a 

corresponding record will be generated. After the 24 h 

test, no bit error record is observed.  

The system data transmission rate is measured 

under the following 3 conditions: 

a) 80 MSPS single channel in test board A is 

sampling without this readout method.  

b) 80 MSPS single channel in test board A is 

sampling with this readout method applied.  

c) All the 3 boards are working with this readout 

method applied.  

The transmission rate of each situation is 

measured in 10 times, and the results are shown in the 

following table. 

The nominal bandwidth of PXI is a theoretical 

one, which is the result of multiplying the bit width by 

the system clock frequency. In the actual data 

transmission situation, the transmission speed is 

mostly limited by the bus scheduling operation. When 

one slave device sends a request to conquer the bus for 

transmission, it should wait for the permission from 

the master device to start it. The permission is usually 

generated by the operation systems and a time period 

is always needed. This time period is a very important 

factor which leads to the difference between the 

measured transmission rate and the nominal one. This 

tendency could be seen in test under condition c. 
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Because of the competition between the modules, the 

transmission speed is less than the tests under 

condition a and b but its average speed is still more 

than 45 MB/s. With this transmission rate it could 

meet data transmission requirement of experiments 

such as Daya Bay reactor neutrino experiment[13]. 
Table 1  Data transmission rated measured in different conditions 

Tests 1 2 3 4 5 6 7 8 9 10 

a 51.21 50.19 47.46 49.82 49.59 51.13 51.22 49.01 47.14 49.32 
b 48.56 47.35 49.34 50.14 49.29 49.16 50.26 48.38 47.67 48.26 
c 45.71 46.43 45.18 45.45 46.70 44.81 47.61 44.86 47.80 46.12 

5 Conclusion 

In this paper, a PXI based general data transmission 

method is presented. It provides general interfaces and 

corresponding protocol to help customized design of 

PXI data readout systems. This method is proposed 

based on 32 bit PXI bus. The performance of this 

method is measured and it proves this method to be 

feasible, effective and easy to use.  

When facing higher transmission rate 

requirement, this method can be considered to be 

transplanted on other bus platform with higher 

bandwidth. The 64 bit PXI bus standard can support a 

maximum 528 MB/s bandwidth and the PXI Express 

standard can support a much higher 5 GB/s bandwidth. 

Modifying and transplanting this method to these 

platforms is a potential further research field and is 

very possible to obtain higher efficiency. 
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