Determination of ²¹⁰Pb and ²¹²Pb in water and their radiological impact to the public *via* drinking water

JIA Guogang^{*} TORRI Giancarlo

National Institute of Environmental Protection and Research, 00144 Roma, Italy

Abstract A sensitive and accurate method for determining ultra low-level ²¹⁰Pb and ²¹²Pb in water samples through double measurements was developed. Pb was pre-concentrated as hydroxides, separated from alkaline earth elements as PbS precipitate, purified by an anion exchange resin chromatography column, precipitated as PbSO₄ for source preparation and counted by a low background β -counter. The procedure was checked with IAEA reference materials, and the results agreed well with the recommended values. The minimum detectable activity was 0.062 mBq·L⁻¹ for ²¹⁰Pb and 0.053 mBq·L⁻¹ for ²¹²Pb with a 48 L water sample. Seventeen drinking water samples were analyzed, with a Pb recovery of 88.8±5.5%, and the typical activity concentrations were 0.191–15.1 mBq·L⁻¹ for ²¹⁰Pb and of 1.12–5.77 mBq·L⁻¹ for ²¹²Pb. The estimated committed effective doses to adult members of the public in Italy due to intake of ²¹⁰Pb and ²¹²Pb in drinking water were 0.096–7.59 µSv·a⁻¹ and 0.005–0.025 µSv·a⁻¹, respectively. **Key words** ²¹⁰Pb, ²¹²Pb, Dose evaluation, Drinking water

1 Introduction

The general public are exposed to radiations from naturally occurring radioactive elements in the earth's crust and from cosmic radiation of extraterrestrial origin. It is reported that natural sources contribute more than 98% of the global human radiation dose, excluding medical exposures^[1]. The global average dose from natural sources is about 2.4 mSv/a. About one-third of this dose is due to external radiation (terrestrial plus cosmic), and remaining two-thirds are due to inhalation and ingestion of radionuclides in air, water and food.

There is an elevated concern about the radiological characteristics and impact of drinking water. In fact, the naturally occurring radionuclides, such as those in the uranium series and the thorium series (238 U, 234 U, 226 Ra, 228 Ra, 228 Th, 222 Rn, 210 Pb, 210 Po), exist ubiquitously in drinking water, and often contribute significantly to internal dose to the population. Although gross α and β activity measurements can serve as a screening tool for authority to control drinking water quality, for dose

estimation it is necessary that the specific radionuclide in drinking water should be identified and their individual activity concentrations measured, due to the fact that the dose coefficients are only related to the specific radionuclides.

Among the concerned radionuclides, there are four lead radioisotopes in nature, i.e. β - and γ -emitting ²¹⁰Pb ($T_{1/2}$ = 22.23 a) and ²¹⁴Pb ($T_{1/2}$ =26.8 min) in the uranium series, β - and γ -emitting ²¹²Pb ($T_{1/2}$ = 10.64 h) in the thorium series, and β - and γ -emitting ²¹¹Pb $(T_{1/2}=36.1 \text{ min})$ in the actinium series. Due to their chemical behaviors, lead compounds are rather insoluble in natural water and are usually adsorbed onto solid particles, hence the relatively low contents of lead isotopes in water. Among the four lead radioisotopes, ²¹⁴Pb and ²¹¹Pb, of very short half-lives and low contents or poor abundance, are not measurable in an effective time of sample preparation and separation, but ²¹⁰Pb and ²¹²Pb are measurable. Especially, ²¹⁰Pb with its daughter ²¹⁰Po ($T_{1/2}$ =138.4 d) are of great concern from the standpoints of radiation protection due to their radiotoxicity, as they can accumulate in sources of food and drinking waters and contribute to nearly half of the dose from total internal

^{*} Corresponding author. *E-mail address:* guogang.jia@isprambiente.it Received date: 2011-08-23

irradiation by ingested natural radionuclides^[2-6]. Therefore, routine monitoring of the ²¹⁰Pb concentrations in water is important.

For studies on the contamination level, accumulation and migration rate, cycling process, and bioavailability contaminant of specific in environmental media, and on the radiation impact assessment, monitoring ²¹⁰Pb in biological and environmental materials often requires methods that are sensitive, reliable and applicable to samples of considerable chemical complexity. There are five methods for determination of ²¹⁰Pb: (1) direct counting of the low-energy (46.5 keV) y-ray of ²¹⁰Pb using γ -spectrometry with a low energy HPGe-detector^[7,8]; (2) separation of ²¹⁰Po, which is an indirect decay product of 210 Pb, and counting of its α activity by α -spectrometry^[9,10]; (3) co-precipitation of ²¹⁰Pb with Ba or Pb as a sulphate or sulfide, dissolving the sulphate in EDTA or dissolving the sulfide in HCl, mixing the obtained solution with scintillation cocktail and measuring by liquid scintillation counting^[11-13]; (4) separation of ²¹⁰Bi, the direct progeny of ²¹⁰Pb, and counting of its β activity^[14]; and (5) separation of Pb and counting of the β activity of the in-growing ²¹⁰Bi^[15-18]. We have discussed the advantages and disadvantages of these methods in detail^[16,17], and concluded that Pb separation is a practical, sensitive and fast method.

In contrast to ²¹⁰Pb analysis, methodology studies on determination of ²¹²Pb in water samples are scarce^[19,20]. In fact, γ -spectrometry is preferably used to measure ²¹²Pb in water samples, but its minimum detection activity (MDA: ~ 0.1 Bq·L⁻¹) is too high to determine the ²¹²Pb contents in most water samples, especially the environmental waters; while β -counter can be used to accurately determine ²¹²Pb in water, but radiochemical concentration and separation of ²¹²Pb from water is needed.

Based on ²¹⁰Pb determination procedures for environmental samples, more experiments were made on herein^[16,17], aimed at developing a sensitive and accurate technique for determining ²¹⁰Pb and ²¹²Pb in water samples through double measurements, and at applying the technique for ²¹⁰Pb and ²¹²Pb studies in health physics, geochronology and environmental science.

2 Experimental

2.1 Apparatus

Bismuth-210 for ²¹⁰Pb determination and ²¹²Pb-²¹²Bi for ²¹²Pb determination were measured using a 10-channel low-level β -counter (Berthold LB770, Germany). The counting efficiency for ²¹⁰Pb measurement was calibrated by PbSO₄ precipitate source obtained from a standard ²¹⁰Pb solution, and that for ²¹²Pb measurement was done by PbSO₄ precipitate source separated from a standard ²³²U solution, which was old enough to reach radioactive equilibrium between ²³²U and its progeny ²¹²Pb. The counting efficiencies of 48.2% for ²¹⁰Bi and 88.4% for ²¹²Pb-²¹²Bi were obtained, and the background was \leq 0.0061 cps.

2.2 Reference materials and reagents

The ²³²U and ²¹⁰Pb standard solutions for instrument calibration, the reference materials (IAEA-315 and IAEA-434) for quality control and the BIO-RAD-AG 1-X4 resin (100-200 mesh) for Pb separation were supplied by Amersham (UK), IAEA and the Bio-Rad Laboratories (Canada), respectively. Pb(NO₃)₂ was used to prepare the carrier solution for Pb separation, and all other reagents were of analytical grade.

2.3 Column preparation

The anion-exchange resin, BIO-RAD-AG 1-X4 (100–200 mesh), was sequentially treated with 6 mol·L⁻¹ NaOH, 6 mol·L⁻¹ HCl and distilled water to remove any fine particles and unexpected components. Twelve grams of the resin were loaded in an ion-exchange column (Φ 13 mm×250 mm). Before use, the column was conditioned with 20 mL HCl (1.5 mol·L⁻¹).

2.4 Sampling

In this work, drinking water was defined as water that can be used for drinking, including bottled mineral water, tap water, well water and lake water etc. Seventeen drinking water brands were sampled, most of which were popularly consumed in Italy. Due to great variability of the ²¹⁰Pb and ²¹²Pb concentrations in environmental water samples and the short half-life of ²¹²Pb, a big volume of water (20–50 L) for each brand was taken and the relevant analysis was done as immediately as possible after sampling (within 24 h). Therefore, the reported results of ²¹⁰Pb and ²¹²Pb corresponded to the date of sample analyses.

2.5 Preliminary tests

Preliminary tests for determining ²¹⁰Pb and ²¹²Pb in water samples were based on the procedure in Refs.[16,21], in which Pb separation was conducted by co-precipitation with lead and/or iron hydroxide, absorption with a BIO-RAD-AG 1-X4 anion-exchange resin column, purification by precipitation Pb as PbS in 6 mol·L⁻¹ ammonium acetate and source preparation as PbSO₄.

2.5.1 Eliminating the interferences

Lead forms two series of compound, the stable plumbous salts in which it is bivalent and forms the Pb^{2+} (resembling the Ba²⁺ in many ways), and the less stable covalent plumbic compounds resembling the stannic compound, in witch it is quadrivalent. The plumbic compounds are either insoluble or hydrolysed by water to PbO₂. The fate and mobility of lead in environmental water are governed by its chemical and biological behaviours. Due to formation of many precipitates, such as PbO, PbO₂, PbS, PbCO₃, PbSO₄, lead halides etc, the concentrations of dissolved Pb in environmental waters including drinking water are generally low and variable, depending on formation of soluble complexes. Therefore, for accurate determination of ²¹⁰Pb and ²¹²Pb in environmental waters, big sampling volumes of 20–50 L are needed.

When the procedure mentioned above was used to treat the big-volume water samples, in many cases a big quantity of precipitate was obtained in the process of Pb pre-concentration. It was found that the precipitate is mainly carbonates, due to the fact that (1) the environmental or mineral water samples often contain a certain amount of HCO_3^- (30–1343 mg·L⁻¹), and (2) many transitional and alkaline earth metals can precipitate with CO_3^{2-} in basic conditions. Although the carbonates can be destroyed by adding HCl or HNO_3 while heating, a big quantity of cations, especially Ca^{2+} , are left in the solution, interfering the Pb²⁺ adsorption on the resin exchange column and deteriorate effective separation from uranium and radium in the next step. We tried to separate Pb as PbSO₄ precipitate. While this way worked well for 1.0 g soil or sediment^[17], it did not seem very effective when a big quantity of Ca present in the sample solution, as a big quantity of PbSO₄ and CaSO₄ was obtained, and the latter is not easily soluble in 10–20 mL of 6 mol·L⁻¹ NH₄Ac. A big volume of 6 mol·L⁻¹ NH₄Ac (100–300 mL) could dissolve CaSO₄ completely, but low Pb recovery was observed due to the increasing solubility of PbSO₄.

Therefore, we tried to reverse the original analytical procedure of resin exchange separation and PbS purification. After Pb co-precipitation and dissolution, PbS precipitation was made first by adding 20-30 g NH₄Ac and 8 mL of 0.5 mol·L⁻¹ Na₂S at pH 6-7. In this case, all the alkaline earth elements remain in solution and were eliminated by centrifugation. The obtained black PbS and FeS were then dissolved by HCl for further purification by anion resin exchange column. This modification proved successfully in the high Pb recovery and short analytical time, in the effective elimination of silicon gel before resin separation and prevention from blocking, and in the improved column and/or decontamination effects from main αβ-emitters, such as uranium, thorium, radium and other progenies.

2.5.2 The measurement principle

As mentioned above, due to their short half-lives and low abundance, ²¹⁴Pb and ²¹¹Pb in water sample are not detectable after chemical separation. It is difficult to detect ²¹²Pb in water directly by using γ -spectrometry with an MDA of ~ 0.1 Bq·L⁻¹ due to its low activity concentration in most of the water samples, and there is few reports concerning the determination of ²¹²Pb in water samples by chemical separation methods^[20]. On the contrary, a number of authors reported their determination of ²¹⁰Pb in water samples by physical and chemical methods^[8,16]. ²¹⁰Pb through its daughter ²¹⁰Bi can be determined with ease by the routinely used instrument — low background β-counter. As mentioned in Ref.[16], more accurate ²¹⁰Pb concentration can be obtained when ²¹⁰Pb and ²¹⁰Bi have reached the secular equilibrium about 30 days after the Pb source preparation.

In experiments for determining ²¹⁰Pb in water, ²¹²Pb through both ²¹²Pb and ²¹²Bi could be determined simultaneously with ²¹⁰Bi, the daughter of ²¹⁰Pb, using low-background β-counter after pre-concentration and separation. As a typical result, Fig.1a shows the β counting rate as a function of time after the Pb source preparation from a mineral water sample based on the recommended procedure. After careful treatment of the data, it was found that the figure can be well resolved into two fractions. The first fraction, located in the counting time of 0-2 days, is dominated by the ²¹²Pb-²¹²Bi decay, as shown in the insert of Fig.1a, while second fraction, located in the time after 2 day counting, is characterized by ²¹⁰Bi ingrowth from ²¹⁰Pb (Fig.1b). Therefore, after deducting the count contribution of the instrumental and reagent backgrounds and the contribution of ²¹⁰Bi in-growth, the first fraction can be used to calculate the ²¹²Pb activity concentration in water through extrapolation to the Pb separation time, and from the second fraction, the ²¹⁰Pb activity concentration can be calculated.

Fig.1 The ²¹²Pb-²¹²Bi decay and ²¹⁰Bi in-growth curve of a Pb source obtained from a potable water sample collected in Italy.

As shown in Fig.2, the finding was confirmed by analysis of a water sample characterized with very low ²¹⁰Pb activity (0.24 cpm). Therefore, simultaneous determination of ²¹⁰Pb and ²¹²Pb in water samples is achievable based on the principle of double measurements using a low background β -counter. The detailed procedure for Pb pre-concentration and separation and equations to calculate the ²¹⁰Pb and ²¹²Pb activity concentrations are given in Section 2.6.

Fig.2 The ²¹²Pb-²¹²Bi decay and ²¹⁰Bi in-growth curve of a Pb source obtained from a tap water sample collected in Italy.

2.5.3 Detection efficiency of the instrument

A standard solution of ²¹⁰Pb was used to calibrate efficiency of the low background β -counter for determination of ²¹⁰Pb. The 1 mL ²¹⁰Pb standard solution (12.7 Bq·mL⁻¹), 0.8 mL Pb²⁺ carrier (25 mg Pb²⁺·mL⁻¹) and 20 mL 2 M HNO₃ were added in a beaker, which was then heated to reach the isotopic equilibrium. After cooling to room temperature, PbSO₄ precipitation and source preparation were done

following the procedure given in Section 2.6.4. About one month after the source preparation, the ²¹⁰Pb activity was determined by measuring the in-growth activity of its progeny ²¹⁰Bi. The counting time was flexible to ensure the relative counting statistic error of \leq 2%. The detection efficiency for ²¹⁰Pb was obtained as ratio of the detected activity of ²¹⁰Pb+²¹⁰Bi to the given value of ²¹⁰Pb.

A standard solution of ²³²U was used to calibrate the efficiency of the instrument for determination of ²¹²Pb. The age of the solution was long enough to achieve the secular equilibrium with its progenies (²²⁸Ra, ²²⁸Ac, ²²⁸Th, ²²⁴Ra, ²²⁰Rn, ²¹⁶Po and ²¹²Pb). A beaker was added with 0.607 Bq (0.0571 $Bq \cdot mL^{-1}$) of ²³²U or ²¹²Pb standard solution, 1 mL Fe³⁺ carrier (40 mg Fe³⁺ per mL), 0.8 mL Pb²⁺ carrier (25 mg Pb²⁺ per mL) and 20 mL 2 mol·L⁻¹ HNO₃. It was heated to reach isotopic equilibrium. After cooling to room temperature, ²¹²Pb separation and source preparation were done following the procedure given in Section 2.6.1–2.6.4. The activity of ²¹²Pb-²¹²Bi was immediately determined after reaching their radioactive equilibrium. The counting time was flexible to ensure the relative counting statistic error of \leq 2%. The detection efficiency for ²¹²Pb was obtained as ratio of the detected activity rate of ²¹²Pb+²¹²Bi to the given standard value of ²³²U or ²¹²Pb.

2.6 Recommended procedure

2.6.1 Pre-concentration of Pb from water samples Concentrated HCl of 30–50 mL, 1 mL Fe³⁺carrier (40 mg Fe³⁺ per mL) and 1 mL Pb²⁺ carrier (25 mg Pb²⁺ per mL) were added to a water sample of 20–50 L. After 30 min stirring for isotopic exchange between carriers and analytes, the solution was adjusted to pH 9–10 with concentrated ammonia solution to precipitate iron and lead as hydroxides and carbonates, and well mixed. After the precipitate settled down, the supernatant was carefully siphoned off and the precipitate slurry was centrifuged at 4000 rpm. The supernatant was discarded and the precipitate was dissolved with 30–40 mL concentrated HCl. The solution was then transferred to a beaker and heated to boil for digestion with 2 mL of 30% H₂O₂.

2.6.2 Separation of Pb from alkaline earth elements The obtained solution (about 150 mL) was neutralized

to pH 1.0–1.5 with ammonia solution, and 20–30 g NH₄Ac was added and dissolved by heating, then 8 mL 0.5 mol·L⁻¹ Na₂S were added. In this case, PbS was precipitated while most of Ca²⁺ and Mg²⁺ would remain in the solution. After centrifugation, the supernatant was discarded and the black precipitate was collected. Dissolving the precipitate with 4 mL concentrated HCl and 26 mL water, digestion was made by adding 2 mL 30% H₂O₂. The solution was filtered using a Millipore filter paper (pore size: 0.1 μ m).

2.6.3 Purification of Pb

The obtained solution in an acidity of 1.5 mol·L⁻¹ HCl was passed through a pre-conditioned anion-exchange resin column at room temperature and a free flow rate. After washing with 40 mL 1.5 mol·L⁻¹ HCl, Pb was eluted with 60 mL distilled water at free flow rate, and the separation time (t_0 , min) of the pair ²¹⁰Pb/²¹⁰Bi and ²¹²Pb was recorded.

2.6.4 Source preparation, measurement and calculation

The collected eluant was added with 3 mL concentrated H₂SO₄, and was evaporated until fuming to destroy the organic matters by oxidation with 1 mL 30% H₂O₂. Both the precipitate and solution were centrifuged. The supernatant was discarded and the precipitate was filtered on a weighed filter paper of Φ 24 mm (Whatman 42). The sample was dried at 110°C until constant weight (about 1 h) and weighed again to calculate the Pb chemical yield. ²¹²Pb was measured immediately by a low background β-counter after the chemical separation. The time interval between the separation time of 212 Pb (t_0) and the start of the ²¹²Pb measurement was recorded as t_1 (min), and the counting time of ²¹²Pb as t_2 (min). ²¹⁰Pb was determined by measuring the in-growth activity of its progeny ²¹⁰Bi ($T_{1/2}$ =120 h) about one month after the separation. The time interval between the separation time of ²¹⁰Pb (t_0 , min) and the start of the ²¹⁰Bi measurement was recorded as t_3 . The ²¹⁰Pb activity concentration in the water sample $(C_{Pb-210}, Bq \cdot L^{-1})$ can be calculated by

$$C_{\text{Pb-210}} = A_{\text{Bi-210}} / [(1 - e^{-\lambda_{\text{Bi-210}}t_3})\eta_1 W]$$
(1)

where $A_{\text{Bi-210}}$ is the net count rate of ²¹⁰Bi (cps), $\lambda_{\text{Bi-210}}=9.604\times10^{-5} \text{ min}^{-1}$ is the decay constant of ²¹⁰Bi, η_1 is detection efficiency for ²¹⁰Bi, *Y* is the chemical yield, and *v* is the sampling volume (L). The ²¹²Pb concentration in the water sample (C_{Pb-212} , Bq·L⁻¹) can be calculated by:

$$C_{\text{Pb-212}} = A_{\text{Pb-Bi-212}} \lambda_{\text{Pb-212}} t_2 / [(1 - e^{-\lambda_{\text{Pb-212}} t_2}) e^{-\lambda_{\text{Pb-212}} t_1} \eta_2 Y_V] (2)$$

where, $A_{Pb-Bi-212}$ is the net count rate subtracting the contribution of the blank and ²¹⁰Bi (cps), λ_{Pb-212} = 1.086×10⁻³ min⁻¹ is decay constant of ²¹²Pb, and η_2 is the detection efficiency for ²¹²Pb(²¹²Bi).

As ²¹²Bi is of $T_{1/2}$ =60.54 min, but 4–5 h are needed from Pb separation and source preparation to ²¹²Pb measurement, by the time of measurement ²¹²Pb-²¹²Bi will have reached the radioactivity equilibrium. Therefore, in Eq.(2) the radioactivity equilibrium correction of ²¹²Pb-²¹²Bi is neglected. In order to reduce affection of the growing count contribution of ²¹⁰Bi, the counting time of ²¹²Pb/²¹²Bi can be 30–60 min as far as the counting statistic error concerns, and in this case the decay correction of ²¹²Pb during the ²¹²Pb measurement can be negligible. Therefore, Eq.(2) can be simplified as:

$$C_{\text{Pb-212}} = A_{\text{Pb-Bi-212}} / [e^{-\lambda_{\text{Pb-212}} t_1} \eta_2 Y_V]$$
(3)

2.7 The minimum detectable activity

Considering the blank count rates (0.364 ± 0.016 cpm), counting time (1440 min or 60 min), counting efficiencies of the instrument for ²¹⁰Pb+²¹⁰Bi (48.2%) and for ²¹²Pb+²¹²Bi (88.4%), the radiochemical yields (88.8±5.5%), the in-growth or decay factor (²¹⁰Pb: 100%, ²¹²Pb: 63.8%) and the sampling quantity (48 L), the minimum detectable activity (MDA) of the method for water sample are 0.062 mBq·L⁻¹ for ²¹⁰Pb and 0.053 mBq·L⁻¹ for ²¹²Pb^[22].

3 Results and discussion

Uncertainties of the activity concentrations were estimated using all the uncertainties associated with the instrument calibration, the carrier addition to the sample, the counting statistics of the sample and the blank sources, etc.

3.1 Quality control

In general, the following approaches can be used to

review the quality of a radioanalytical method: (1) to analyze the certified reference materials or similar matrices and to compare the obtained results with the recommended values, (2) to participate the comparison activities between different international laboratories, and (3) to analyze the spiked samples. Due to the fact that large amounts of water as the reference material for ²¹⁰Pb and ²¹²Pb analysis were not available, instead, we used reference material IAEA-315 marine sediment. The reference material of about 2 g was leached based on the procedure in Ref.[17]. The obtained leachates were analyzed following the recommended procedure for water samples. The precision was evaluated by the relative standard deviation obtained from a set of six analyses. The accuracy was assessed by the term of relative bias, which reflects the difference between the experimental mean and recommended value of the ²¹⁰Pb activity concentration. Due to the presence of unsupported ²¹⁰Pb in the IAEA-315, the fraction of unsupported ²¹⁰Pb should be corrected to the reference date.

The ²¹⁰Pb and ²¹²Pb activity concentrations in IAEA-315 are shown in Table 1. The mean ²¹⁰Pb concentration in IAEA-315 was found to be $30.8\pm5.9\%$ Bq·kg⁻¹ (decay correction to 1st Jan. 1993) from six analyses, and the <10% precision of analyses is well acceptable as far as such a low activity is concerned. The relative bias obtained from the analyses is +2.3% for ²¹⁰Pb, showing that the mean activity concentrations of ²¹⁰Pb are in good agreement with the recommended value of 30.1 $Bq \cdot kg^{-1}$ (the 95%) confidence interval: 26.0-33.7 Bq·kg⁻¹). The mean ²¹²Pb concentration in IAEA-315 was found to be 26.5 ± 3.2 Bq·kg⁻¹. Although IAEA did not issue any recommended value for ²¹²Pb, the reliability of the ²¹²Pb activity concentration may be judged from the recommended value for ²²⁸Th that is in secular equilibrium with its predecessors $^{\rm 228}Ra$ and $^{\rm 232}Th$ (27.0 Bq·kg⁻¹). In fact, the ²¹²Pb activity in the IAEA-315 sample is also in equilibrium with ²²⁸Th, as its decay products are of short half-lives, and ²²⁰Rn escaped from the sealed container is negligible ($\leq 2\%$).^[23] In this case, the obtained relative standard deviation and the relative bias of 212 Pb are $\pm 12\%$ and -1.8%, respectively. The deviation for ²¹²Pb is bigger than that for ²¹⁰Pb, mainly due to multi-corrections for its decay,

the instrument background, reagent background, and interference of the ²¹⁰Bi in-growth from ²¹⁰Pb. However, the data of ²¹²Pb can still be considered as well acceptable and in good agreement with the recommended value [27.0 (24.0–28.9) Bq·kg⁻¹] for ²²⁸Th. Experiments showed that determination of ²¹²Pb in closed (unsealed) soil sample can well predict the concentrations of ²²⁸Ra and ²³²Th. Although the residence time of ²²⁰Rn and its progenies in the closed samples are not well known, ²²⁰Rn escaping seems negligible, too.

Table 1 The ²¹⁰Pb and ²¹²Pb concentrations (in $Bq\cdot kg^{-1}$), corrected to the date of 1st Jan. 1993, in the IAEA-315 marine sediment*

Sample No.	Sample weight / g	Pb yield / %	²¹⁰ Pb	²¹² Pb	²¹² Pb/ ²¹⁰ Pb
1	2.2724	93.3	27.5	22.2	0.808
			±1.2	±1.7	
2	2.0251	99.1	31.5	27.8	0.883
			± 1.4	±2.0	
3	2.3418	92.2	31.3	24.4	0.781
			± 1.4	±1.6	
4	2.0241	93.1	30.4	25.8	0.850
			± 1.4	± 1.8	
5	2.2622	92.0	33.0	31.5	0.954
			±1.5	± 1.9	
6	1.5548	94.4	31.0	27.3	0.882
			± 1.4	± 2.0	
Mean±SD		94.0	30.8	26.5	0.860
		±2.6	± 1.8	± 3.2	± 0.062
(Range)		(92.0-	(27.5–	(22.2–	(0.808-0.9541)
		99.1)	33.0)	31.5)	

* The recommended value (95% confidence interval) of 210 Pb and 228 Th are 30.1 (26.0–33.7) and 27.0 (24.0–28.9) Bq·kg⁻¹, respectively.

The method was also used to participate the inter-laboratory measurement of ²¹⁰Pb concentration in IAEA-434 phosphogypsum (IAEA-CU-2008-4) organized by IAEA. The ²¹⁰Pb concentration we obtained was 680 ± 28 Bq·kg⁻¹, while the certified value is 680 ± 58 Bq·kg⁻¹.

3.2 Concentrations of ²¹⁰Pb and ²¹²Pb in drinking water

The ²¹⁰Pb and ²¹²Pb are intermediate members of the ²³⁸U and ²³²Th decay series, arising from ²²⁶Ra through ²²²Rn, ²¹⁸Po, ²¹⁴Pb, ²¹⁴Bi and ²¹⁴Po, and from ²²⁸Ra through ²²⁸Ac, ²²⁸Th, ²²⁴Ra, ²²⁰Rn and ²¹⁶Po. Measurements of ²¹⁰Pb and ²¹²Pb in water, soil,

sediment, sand, rock and biological samples are important for studies in health physics, environmental science and geology, as they are not only radiologically toxic but also biologically harmful, and can be tracers for a number of processes of their geochemical cycling, ecological migration, biological uptake rate and availability in the atmosphere, hydrosphere and biosphere.

As shown in Table 2, typical activity concentrations in the drinking water samples are of $0.191-15.1 \text{ mBq} \cdot \text{L}^{-1}$ for ²¹⁰Pb and $1.12-5.77 \text{ mBq} \cdot \text{L}^{-1}$ for 212 Pb. The activity ratio for 212 Pb/ 210 Pb is 0.289–16, averaged at 2.58±4.08. Concentrations of uranium, thorium and radium isotopes, and ²¹⁰Po, in the same water samples were also determined (Table 3). Comparisons of the activity concentrations of ²¹⁰Po^[24], and uranium, thorium and radium isotopes showed that the ²¹⁰Pb and ²¹²Pb activity concentrations in almost all water samples were much lower than that of uranium isotopes, but much higher than that of thorium isotopes, and more or less in the same levels as ²²⁶Ra, ²²⁸Ra and ²¹⁰Po. And the activity disequilibria could be observed for the pair of ²¹⁰Pb/²²⁶Ra and ²¹²Pb/²²⁸Ra in the water samples, though ²¹⁰Pb and ²¹²Pb are the most important progenies of ²²⁶Ra and ²²⁸Ra, respectively.

Statistic correlation analyses between the components were made. No correlations of ²¹⁰Pb/²²⁶Ra and ²¹²Pb/²²⁸Ra concentrations in the drinking water samples were observed, even though each pair belongs to the same decay series and with the same oxidation state of 2+. The carbonate presenting in the water samples is an important complexion agent, but no statistic correlations were observed for the pair of neither ²¹⁰Pb/HCO₃⁻ nor ²¹²Pb/HCO₃⁻, indicating little effect of HCO_3^- or CO_3^{2-} on the ²¹⁰Pb and ²¹²Pb dissolution and behaviors of the lead isotopes seem different from radium in water containing HCO3-. A correlation between ²¹⁰Po and ²¹⁰Pb was found in the drinking water samples. The correlation equation reads $[^{210}Po]=0.721[^{210}Pb]+1.65 (R^2=0.4254, n=17, P<0.05).$ This is because ²¹⁰Pb and ²¹⁰Po have similar chemical behaviors of valent 2+ and 4+ in water, and ²¹⁰Po is the granddaughter of ²¹⁰Pb.

Sample code and name (origin)		Water volume / L	Pb yield /%	²¹⁰ Pb	²¹² Pb	²¹² Pb/ ²¹⁰ Pb
1	Blues Aura (Umbria)	45.95	90.5	0.327±0.018	1.17±0.07	3.57
2	Egeria (Roma)	28.2	83.6	10.2±0.4	3.22±0.18	0.317
3	Guizza (Pescara)	38.0	93.9	3.62±0.15	1.12 ± 0.08	0.308
4	Panna (Firenze)	28.0	92.6	5.11±0.21	1.77 ± 0.11	0.346
5	Rocchetta (Perugia)	36.9	88.1	$1.78{\pm}0.08$	2.82±0.15	1.58
6	Lete (Caserta)	28.8	94.4	3.26±0.14	1.67±0.11	0.512
7	Vitasnella (Brescia)	27.8	91.0	8.65±0.36	3.17±0.18	0.367
8	Sangemini (Terni)	28.0	94.4	$1.80{\pm}0.08$	3.14±0.17	1.74
9	Brioblu Rocceetta (Perugia)	39.0	85.2	$1.44{\pm}0.06$	2.79±0.15	1.94
10	Vera (Padova)	38.4	89.9	6.66±0.28	1.93±0.11	0.289
11	San Benedetto (Vinece)	41.9	86.0	3.69±0.15	1.63 ± 0.10	0.442
12	Lieve (Perugia)	46.0	89.7	0.806 ± 0.036	4.03±0.20	5.01
13	Ferrarelle (Caserta)	27.8	93.1	4.27±0.18	3.26±0.18	0.764
14	Uliveto (Pisa)	40.0	85.4	0.458 ± 0.024	2.48±0.14	5.41
15	Capannelle (Roma)	29.2	72.0	15.1±0.6	5.77±0.30	0.383
16	CSM tap water (Roma)	48.0	89.7	0.191±0.12	3.22±0.19	16.9
17	Magliana tap water (Roma)	37.5	89.9	0.562 ± 0.028	2.27±0.13	4.05
Mean± <i>SD</i>			88.8 ± 5.5	3.99±4.11	2.67±1.15	2.58±4.08
(R	ange)		(72.0–94.4)	(0.2–15.1)	(1.12-5.77)	(0.29–16.9)

 Table 2
 The ²¹⁰Pb and ²¹²Pb concentrations (in mBq·L⁻¹) in some Italian drinking water samples

Table 3 The radioisotope concentrations (in $mBq \cdot L^{-1}$) in drinking water samples collected in Italy*

Samples	²³⁸ U	²³⁴ U	²³⁵ U	²³² Th	²³⁰ Th	²²⁸ Th	²²⁶ Ra	²²⁸ Ra	²²⁴ Ra	²¹⁰ Po
1	16.8±0.9	17.1±0.9	0.86±0.17	0.0011±0.0002	0.0021±0.0003	0.100±0.004	4.76±0.23	1.50±0.18	0.64±0.24	0.40±0.04
2	59.8±2.4	84.4±3.3	3.31±0.33	0.0019±0.0004	0.0053±0.0007	0.927±0.057	3.56±0.25	10.2±0.9	2.17±0.36	11.3±0.5
3	6.14±0.29	6.43±0.30	0.29±0.05	0.0010±0.0003	0.0006±0.0004	0.0048±0.0014	1.19±0.10	1.23±0.24	1.12±0.23	0.50±0.04
4	7.21±0.38	13.2±0.6	0.35±0.08	0.0012±0.0003	0.0033±0.0006	0.0674 ± 0.0032	2.49±0.17	1.95±0.27	0.35±0.16	3.39±0.20
5	2.33±0.15	3.37±0.19	0.16±0.04	0.0019±0.0013	0.0075±0.0023	0.0830±0.0067	2.72±0.20	1.18±0.21	0.73±0.21	1.01±0.06
6	20.5±1.2	23.3±1.3	0.98±0.21	0.0007 ± 0.0002	0.0026±0.0003	0.176±0.006	3.07±0.21	2.92±0.38	0.90±0.24	1.37±0.11
7	78.5±4.2	71.4±3.8	4.10±0.54	0.0008 ± 0.0002	0.0015±0.0004	0.166±0.006	26.6±1.2	5.01±0.41	0.93±0.16	7.37±0.45
8	14.2±0.7	13.4±0.7	0.42±0.11	0.0008 ± 0.0003	0.0033±0.0007	0.0653±0.0037	8.74±0.47	3.47±0.33	0.64±0.19	1.29±0.10
9	1.39±0.20	2.09±0.23	0.08±0.05	0.0008 ± 0.0004	0.0008 ± 0.0007	0.0449±0.0033	1.61±0.11	0.74±0.22	0.53±0.26	5.93±0.36
10	12.0±0.8	15.3±1.0	0.99±0.21	0.0007 ± 0.0002	≤ 0.0008	0.0068±0.0008	0.50±0.06	0.55±0.11	0.46±0.17	1.48±0.09
11	12.4±0.7	21.6±1.0	0.68±0.14	0.0014±0.0004	≤ 0.0008	0.325±0.013	0.52±0.06	0.10±0.14	<mda< td=""><td>2.71±0.19</td></mda<>	2.71±0.19
12	2.91±0.18	5.02±0.24	0.20±0.05	0.0013±0.0002	0.0014±0.0003	0.0307±0.0016	2.95±0.20	2.54±0.27	1.11±0.28	0.32±0.03
13	16.0±0.8	20.7±1.0	1.22±0.18	0.0018±0.0003	0.0017±0.0005	1.32±0.05	60.8±2.3	25.7±1.9	3.17±0.45	10.7±0.6
14	4.13±0.23	8.29±0.37	0.27±0.05	0.0027±0.0014	0.0036±0.0032	0.897±0.031	14.4±0.7	6.19±0.63	1.34±0.35	0.61±0.06
15	103±3	135±4	3.48±0.41	0.0019±0.0004	0.0023±0.0006	0.219±0.008	1.11±0.22	4.95±0.86	1.01±0.44	6.55±0.36
16	0.206±0.064	0.249±0.066	<mda< td=""><td>0.0011±0.0003</td><td>0.0010±0.0005</td><td>0.0649±0.0030</td><td>10.8±0.6</td><td>11.8±1.1</td><td>7.97±1.12</td><td>0.13±0.01</td></mda<>	0.0011±0.0003	0.0010±0.0005	0.0649±0.0030	10.8±0.6	11.8±1.1	7.97±1.12	0.13±0.01
17	7.22±0.36	7.55±0.37	0.51±0.10	0.0013±0.0004	0.0012±0.0007	0.0014±0.0010	4.97±0.28	1.53±0.25	1.53±0.61	0.15±0.01
Mean±SD	21.4 ±29.7	26.4±36.3	1.12±1.30	0.0013±0.0006	0.0023±0.0019	0.265±0.393	8.87±14.9	4.80±6.32	1.45±1.84	3.25±3.72
(Range)	(0.206–103)	(0.249–135)	(<mda-4.1)< td=""><td>(0.0007-0.0027)</td><td>(0.0008-0.0075)</td><td>(0.0014–1.32)</td><td>(0.50-60.8)</td><td>(0.10-25.7)</td><td>(MDA-7.97)</td><td>(0.13–11.3)</td></mda-4.1)<>	(0.0007-0.0027)	(0.0008-0.0075)	(0.0014–1.32)	(0.50-60.8)	(0.10-25.7)	(MDA-7.97)	(0.13–11.3)

* Refer to Table 2 for name (origin) of the drinking water samples.

3.3 Committed effective dose for adult public members due to intake of ²¹⁰Pb and ²¹²Pb in drinking water

The risk evaluation of lead for the general public involves radiological and biological toxicities. In this paper, only the radiological toxicity is evaluated. Assuming an annual water consumption of 730 L·a⁻¹, as is specified in Guidelines for Drinking-Water Quality^[25,26]. Based on the ²¹⁰Pb and ²¹²Pb activity concentration in each water sample in Table 2, the annual intake rate, and the dose coefficients of 0.69 μ Sv/Bq for ²¹⁰Pb and 0.006 μ Sv/Bq for ²¹²Pb per unit intake recommended by the International Commission on Radiological Protection^[27], the annual committed effective doses to the adult public members for each type of water intake were shown in Table 4. The doses are $0.096-7.59 \ \mu \text{Sv} \cdot \text{a}^{-1}$, averaged at $2.13\pm2.08 \ \mu \text{Sv} \cdot \text{a}^{-1}$, from ²¹⁰Pb intake, and 0.005-0.025 µSv·a⁻¹, averaged at 0.012±0.005 µSv·a⁻¹, from ²¹²Pb in the analyzed drinking waters. The major dose contribution of lead is from ²¹⁰Pb, and the dose fraction from ²¹²Pb is only about 0.56%, which seems less significant.

Table 4 Committed effective doses (in μ Sv·a⁻¹) to adults of the public in Italy from intake of ²¹⁰Pb and ²¹²Pb in drinking water.

Samples	²¹⁰ Pb	²¹² Pb	²¹⁰ Pb+ ²¹² Pb	²¹² Pb/ ²¹⁰ Pb
1	0.165	0.0051	0.170	0.0310
2	5.12	0.0141	5.14	0.0028
3	1.82	0.0049	1.83	0.0027
4	2.57	0.0077	2.58	0.0030
5	0.895	0.0123	0.907	0.0138
6	1.64	0.0073	1.65	0.0044
7	4.36	0.0139	4.37	0.0032
8	0.908	0.0138	0.922	0.0151
9	0.724	0.0122	0.736	0.0169
10	3.35	0.0084	3.36	0.0025
11	1.86	0.0072	1.87	0.0038
12	0.406	0.0177	0.42	0.0435
13	2.15	0.0143	2.16	0.0066
14	0.231	0.0109	0.242	0.0471
15	7.59	0.0253	7.62	0.0033
16	0.096	0.0141	0.110	0.1469
17	0.283	0.0100	0.293	0.0352
Mean±SD	2.13±2.08	$0.0121 {\pm} 0.0049$	2.14±2.08	0.0219±0.0366
(Range)	(0.1–7.6)	(0.005-0.025)	(0.1–7.6)	(0.0025-0.147)

*Refer to Table 2 for name (origin) of the drinking water samples.

As far as all the measured radioisotopes are concerned^[24,28], the total doses for all the drinking water samples are 2.81–38.5 μ Sv·a⁻¹, averaged at 10.9±10.6 μ Sv·a^{-1[3]}, being well below the reference level of the committed effective dose (100 μ Sv·a⁻¹) recommended by the WHO for drinking water. As shown in Table 5, the dose contribution fractions from ²¹⁰Pb and ²¹²Pb are 1.25%–55.7%, averaged at 21.2±15.9%. Therefore, the two lead isotopes, mainly ²¹⁰Pb, play an important role in the internal exposure due to drinking water intake.

Table 5 The dose contribution fractions from the mostimportant radioisotopes of uranium, thorium, radium, poloniumand lead.

Samples U		Th	Ra	Ро	Pb
1	34.2	0.17	50.5	10.1	4.88
2	19.5	0.19	22.7	37.8	19.6
3	12.2	0.01	25.2	12.2	50.4
4	9.25	0.05	19.4	38.1	33.1
5	6.36	0.18	37.1	27.7	28.4
6	23.5	0.15	32.7	18.3	25.2
7	21.9	0.04	33.2	26.8	18.1
8	14.6	0.06	54.1	17.2	14.0
9	1.81	0.04	10.7	76.5	10.8
10	16.1	0.01	6.64	21.5	55.7
11	21.3	0.31	2.87	42.0	33.1
12	9.63	0.08	66.1	9.70	14.5
13	3.40	0.18	66.3	24.3	5.62
14	5.93	0.65	82.3	7.20	3.25
15	34.0	0.05	11.3	23.5	31.1
16	0.18	0.04	97.2	1.25	1.25
17	18.7	0.02	66.2	4.63	10.4
Mean±SD	14.9±10.3	0.13±0.16	40.3±28.1	23.5±18.2	21.2±15.9
(Range)	(0.2–34.2)	(0.01-0.65)	(2.8–97.2)	(1.3–76.5)	(1.3–55.7)

* Refer to Table 2 for name (origin) of the drinking water samples.

4 Conclusion

The method is devoted for determination of ultra low-level ²¹⁰Pb and ²¹²Pb concentrations in water samples through double measurements. Accuracy of the method was checked with IAEA reference materials, and the result agreed well with the recommended values. The minimum detectable activity is 0.062 and 0.053 mBq·L⁻¹ for ²¹⁰Pb and ²¹²Pb, respectively, with a 48 L water sample. Seventeen drinking water samples were analyzed, with an average Pb recovery of 88.8±5.5%, and the typical activity concentrations are 0.191–15.1 and 1.12–5.77 mBq·L⁻¹ for ²¹⁰Pb and ²¹²Pb, respectively. The committed effective doses to adult members of the

public in Italy due to drinking water intake are estimated at 0.096-7.59 and $0.005-0.025 \ \mu Sv \cdot a^{-1}$ for²¹⁰Pb and ²¹²Pb, respectively, hence a more important dose contributor of ²¹⁰Pb than ²¹²Pb. The dose contribution fractions from ²¹⁰Pb and ²¹²Pb together are 21.2±15.9% taking into account all the measured radioisotopes. The method is a sensitive and accurate, being a useful technique for ²¹⁰Pb and ²¹²Pb studies in health physics, geochronology and environmental sciences.

References

- UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). Sources, effects and risks of ionising radiation. United Nations, 2000, New York, NY.
- 2 Ham G J, Wilkins B T, Ewers L W. Radiat Prot Dosimetry, 2001, 93: 151–159.
- 3 Jia G G, Torri G, Magro L. J Environ Radioact, 2009, 100: 941–949.
- 4 Pietrzak-Flis Z, Chrzanowski E, Dembinska S. Sci Total Environ, 1997, 203: 157–165.
- 5 Pietrzak-Flis Z, Suplinska M M, Rosiak L. J. Radioanal Nucl Chem, 1997, 222: 189–193.
- 6 Smith-Briggs J L, Bradley E J, Potter M D. Sci Total Environ, 1986, **54**: 127–133.
- 7 Bolivar J P, Garcia-Tenorio R, Garcia-Leon M. Appl Radiat Isot, 1996, 47: 1069–1075.
- 8 Schery S D. Anal Chem, 1980, **52:** 1958–1959.
- 9 Holtzman R B. J Radioanal Nucl Chem, 1987, 115: 59– 70.
- 10 Paatero J, Hatakka J, Mattsson R, *et al.* Radiat Prot Dosimetry, 1998, 77: 191–198.
- Brown S A. J. Radioanal Nucl Chem, 2005, 264: 505– 509.

- Schönhofer F, Wallner G. Radioact Radiochem, 2001, 12: 33–38.
- 13 Katzlberger C, Wallner G, Irlweck K. J Radioanal Nucl Chem, 2001, 249: 191–196.
- 14 Desideri D, Guerra F, Meli M A, *et al.* J Radioanal Nucl Chem (Letters), 1995, **200**: 385–396.
- 15 Jia G G, J Radiochem Nucl Chem, 1994, **16:** 1–8 (in Chinese).
- 16 Jia G G, Belli M, Blasi M, et al. J Radioanal Nucl Chem, 2001, 247: 491–499.
- 17 Jia G G, Torri G. Appl Radiat Isot, 2007, 65: 1-8.
- 18 Santos E E, Lauria D C, Amaral E C S, et al. J Environ Radioact, 2002, 62: 75–86.
- Nuccetelli C, Risica S. Appl Radiat Isot, 2008, 66: 1657– 1660.
- 20 Parsa B, Obed R N, Nemeth W K, Suozzo G. Health Phys, 2004, 86: 145–149.
- Jia G G, Belli M, Blasi M, *et al.* Appl Radiat Isot, 2000,
 53: 115–120.
- 22 Currie L A. Anal Chem, 1968, 40: 586–593.
- 23 Michel J, Moore W S, King P T. Anal Chem, 1981, 53: 1885–1889.
- 24 Jia G G, Torri G. Appl Radiat Isot, 2007, **65:** 849–857.
- 25 WHO. Guidelines for Drinking-Water Quality, Second edition, 1998, Geneva (Switzerland).
- 26 WHO. Guidelines for Drinking-Water Quality, Third edition, 2004, Geneva (Switzerland).
- 27 ICRP, Age-dependent doses to members of the public from intake of radionuclides: Part 5. Compilation of ingestion and inhalation dose coefficient, Ann ICRP 1996, 26(1), ICRP Publication 72, Pergamon Press, Oxford.
- Jia G G, Torri G, Ocone R, *et al.* Appl Radiat Isot, 2008,
 66: 1478–1487.