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Angle-resolved photoemission spectroscopy in Hubbard model based on cluster perturbation∗
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Angle-resolved photoemission spectra (ARPES) are calculated in the Hubbard model by using cluster pertur-
bation method. It is found that in a cluster of 12 sites, the local density of states displays the phase transition
from normal conductor to Mott insulator with the increase of the electron-electron coupling. We show that a
pseudogap develops from the metallic phase to the insulating phase. Evidence of spin-charge separation is also
verified in the calculated single particle spectral functions.
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I. INTRODUCTION

As an important issue in condensed matter physics, strong
correlations originating from electron-electron interactions
are related to interesting phenomena of high temperature su-
perconductivity, colossal magnetic resistance [1–3], and the
metal-insulator transition known as Mott transition, to which
extensive research efforts, theoretical [4, 5] and experimen-
tal [6–8], have been made. The studies on Mott transition
are of great help in understanding some fundamental physical
phenomena, such as high temperature superconducting.

Angle-resolved photoemission spectroscopy (ARPES) is a
powerful tool to study the electronic structures in solids, even
solids of strong electron-electron interactions [9–11]. Be-
ing of high energy and momentum resolution it enables bulk
sensitive observation [12] and provides reliable information
about electron structures of solids. It has been used to inves-
tigate many kinds of materials including the Mott insulators.

However, sometime theoretical calculations fail to give rea-
sonable interpretations for ARPES experiments due to the
strongly correlated electrons, where the usual approximation-
s of many-body quantum mechanics become invalid for such
systems. Among them, to describe properties of the low-
dimensional strongly correlated cuperate material for ARPES
experiments, the Hubbard model with nearest-neighbour hop-
ping and on-site Coloumb repulsion is often used [13, 14].
To solve lattice models with local interaction, the cluster per-
turbation theory (CPT) is mostly used, especially for Hub-
bard model of half-filling or non-half-filling [15–18]. Such
a method can be viewed as a cluster extension of strong-
coupling perturbation theory. With the CPT method, we can
deal with a lattice model of many more sites. We can calcu-
late the Green’s function with a given wave vector and obtain
a large number of poles of the Green’s function, hence a high
spectrum resolution. In this paper, we studied the single parti-
cle spectral function of the low-dimensional Hubbard model
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with CPT method. The model and CPT approach, and the
numerical results and discussion, are presented.

II. MODEL AND METHOD

A. Hubbard model

The Hubbard model is the basic model to describe systems
of correlated electrons. It describes that electrons of spin σ
can hop between sites on a lattice. Its Hamiltonian is given
by

H = −t
∑
〈i,j〉;σ

(c†iσcjσ + c†jσciσ) + U
∑
i

ni↑ni↓, (1)

where, 〈i, j〉 denotes the nearest-neighbor sites; t is the hop-
ping energy; U is the on-site Coulomb repulsion; c†iσ and ciσ
are creation and annihilation operators, respectively, for elec-
trons of spin σ on site i; and niσ = c†iσciσ is the electron
number operator on site i. The average density of electron
per site is n = Ne/N , where N is the number of sites, Ne

is the number of electrons, and n/2 is the band filling. If
U = 0, this model reduces to the tight-binding model; while
if U ≥ t, the strong repulsion suppresses states with more
than one electron per site.

B. Cluster perturbation theory

The CPT theory is an approximation scheme applied to lat-
tice models with local interactions. The basic idea is to divide
the infinite lattice into identical disconnected clusters, with
each cluster containing N lattice sites. The clusters can be
solved exactly and the inter-cluster hopping terms are treated
at the first order in strong-coupling perturbation theory. We
use CPT to calculate one-particle properties of the Hubbard
model. Exact diagonalization is applied to the unit cluster to
calculate the Green’s function and then extended to the full
infinite lattice. The complete Hamiltonian of the system can
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be written as the sum of the one-body part H0 and the inter-
action part V

H = H0 + V, (2)

H0 =
∑

R

HR
0 , V =

∑
R, R’,i,j

V RR’
ij c†RicR′j , (3)

where HR
0 is the Hubbard Hamiltonian of the cluster corre-

sponding to R which is the vector of the cluster superlattice
and V is the nearest-neighbor hopping between adjacent clus-
ters.

The quantity we are interested in is the one-particle Green’s
function, which is defined as

G(k, z) = Ge(k, z) +Gh(k, z), (4)

Ge(k, z) = 〈Ω|c(k)
1

z −H + E0
c†(k)|Ω〉, (5)

Gh(k, z) = 〈Ω|c†(k)
1

z +H − E0
c(k)|Ω〉, (6)

where, z = ω + iη, c†(k) and c(k) are the creation and an-
nihilation operators, respectively, on wave vector k; E0 is the
ground energy; and |Ω〉 is the ground state. From Eqs. (4)–
(6), one obtains the single-particle spectral function

A(k, ω) = −2 lim
η→0+

ImG(k, ω + iη), (7)

whereA(k, ω) is the probability for an electron of momentum
~k to have an energy ~ω. The negative-frequency part of the
function comes from Gh, which can be accessed by ARPES
in experiments.

The lowest-order approximation of the full single-particle
Green’s function can be written as

Gij(Q, z) =

(
G(z)

1− V (Q)G(z)

)
ij

, (8)

where Q is the cluster superlattice wave vector, and V (Q) is
the Fourier transformation of the N ×N hopping matrix. Fi-
nally the Green’s functionGij(Q, z) can be transformed from
the mixed representation to the real space within a cluster and
reciprocal space between clusters. The lowest-order CPT ap-
proximation to the Green’s function is

G(k, z) =
1

N

∑
i,j

e−ik(i−j)Gij(Nk, z). (9)

C. Basis states construction

For a lattice of N sites with N↑ spin up electrons and N↓
spin down electrons, the basis states are constructed as the
creation operators acting on the vacuum state with a certain
order. For the Hubbard model we sort the electrons first by
the spin index and then by the site index. Here the spin up
operators are set left to the spin down operators, and the site
indices of the operators are chosen to increase from left to
right

c†1↑c
†
2↑ · · · c

†
i↑ · · · c

†
k−1↑c

†
k↑c
†
1↓c
†
2↓ · · · c

†
i↓ · · · c

†
k−1↓c

†
k↓|〉 = |Nk↑, Nk−1↑ · · ·Ni↑ · · ·N2↑, N1↑;Nk↓, Nk−1↓ · · ·Ni · · ·N2↓, N1↓〉.

(10)

A site occupied by one electron is coded as 1, and oth-
erwise as 0. Then the basis |Nk, Nk−1 · · ·Ni · · ·N2, N1〉
can be coded each other with a binary number of
(NkNk−1 · · ·Ni · · ·N2N1). Once we find all the basis states,
we can apply the Hamiltonian to them to obtain the matrix
elements.

D. Exact diagonalization

With the matrix representation of basis states and Hamilto-
nian H , we can obtain the ground state by the Lanczos algo-
rithm, with only a few extreme eigenvalues of a sparse matrix
when it is too large to be fully diagonalized.

The basic implementation of the Lanczos algorithm is to
build a projection of the full Hamiltonian matrix H onto a
Krylov subspace. Starting from a random initial normalized
state |ψ0〉, we construct the Krylov subspace by iteratively
applying the matrix H

K = span{|ψ0〉, H|ψ0〉, H2|ψ0〉, . . . ,Hn|ψ0〉}. (11)

Then we orthogonalize these states against each other to
obtain a basis of the Krylov space from the following recur-
sion relation

|ψn+1〉 = H|ψn〉 − an|ψn〉 − b2n|ψn−1〉, (12)

where an = 〈ψn|H|ψn〉
〈ψn|ψn〉 , b2n = 〈ψn|ψn〉

〈ψn−1|ψn−1〉 , b0 = 0 and
|ψ−1〉 = 0. At any given step, only three state vectors of
|ψn+1〉, |ψn〉 and |ψn−1〉 are kept in memory.

The projected Hamiltonian matrix is tridiagonal and is
formed by the coefficients an and bn

T =


a0 b1 0 0 . . . 0
b1 a1 b2 0 . . . 0
0 b2 a2 b3 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . an−1

 . (13)

The tridiagonal matrix can be diagonalized by standard
routines designed to solve tridiagonal matrices. The iterations
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Fig. 1. (Color online) The density of state at different U values and half filling.

can be stopped when the residual ‖E0|Ω〉–H|Ω〉‖ is smaller
than a preset tolerance.

The number of low lying eigenvalues that can converge is
determined by the number of dimensions of the Krylov s-
pace. As the recursion order increases, the lowest eigenvalue
and the corresponding eigenvector of the tridiagonal matrix
T converges to the ground energy E0 and ground state |Ω〉 of
the original Hamiltonian H . For the ground state |Ω〉 is pro-
vided in the reduced basis {|ψn|〉} and {|ψn|〉} are not stored,
we need to repeat the Lanczos recursion with the same initial
vector |ψ0〉 and construct the ground state progressively at
each iteration from the coefficients 〈Ω|ψn〉.

Convergence of the Lanczos algorithm is fast at the spec-
trum edge where the extreme eigenvalues are separated from
each other, but worsen in the spectrum rapidly. So the Lanc-
zos algorithm is only suitable to obtain the ground state and
a few low lying excited states. A small number of iterations,
varying from a few tens to 200, is sufficient in most cases.

III. RESULTS AND DISCUSSION

In this section, we apply the cluster perturbation method
to investigate the spectral properties of one-dimensional half-
filled Hubbard model of 12 sites, which is the largest size that
we can perform a systematic study. As will be seen below, the
essential feature of strongly coupled electronic systems can
be well captured in our calculation. In the numerical work,
we make electron hopping energy t as the unit of energy. The
band width of our system is 4t. In real solids the band width
is a few eV. So the hopping energy t is estimated to 1 eV or
so. In our calculation, we assume that the parameter η is 0.1
and the δ peak is of a finite width.

Figure 1 shows the local density of statesN(ω) at different
U values. Here, N(ω) is obtained by a summation over
the electron spectral function A(k, ω) of different momen-
ta. From Fig. 1, three stages of evolution are observed with
increasing U . Figures 1(a) and 1(b) correspond to a gapless
phase, where the electronic states are characterized by a con-
tinuum around the Fermi energy (ω = 0) in the spectra. Fig-
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Fig. 2. (Color online) Single particle spectral function with different
wave vectors from k = (0, 0) to k = (0, π) at U = 3 and half-
filling.

ures 1(c) and 1(d) correspond to a pseudogap phase, where
N(ω) shows a small dip at the Fermi energy, indicating the
existence of a pseudogap structure. If we further increase U ,
the depth and width of the pseudogap continue growing and
finally a well-defined Mott insulating gap appears, which cor-
responds to a gapped phase as seen in Figs. 1(e) and 1(f). This
fully gapped state shows up when U is larger than 3t. At the
same time, the position of the inner and Hubbard bands al-
most remain unchanged. We can see that the results of N(ω)
in Fig. 1 describe a clear metal-insulator transition from a nor-
mal metallic state at weak coupling to a Mott-Hubbard insu-
lator at strong coupling.

Figure 2 presents the single-particle spectral functions at
different values of wave vector k and U = 3. These
momentum-dependent spectra provide extensive overview on
the electronic band dispersion and band structures. Since the
U is large, a Mott gap is almost developed at the Fermi ener-
gy. All the spectra are separated into two parts on the positive
and negative energy sides. The distance between the upper
and lower parts changes with k and reaches a minimum at
k = π/2.

As mentioned in Section I, the spectral function has a direct
correspondence with experimental photoemission and inverse
photoemission spectra. The former detects the occupied s-
tates in electronic bands, and can be compared with the lower

part in the calculated spectra below Fermi energy. Likewise,
the latter offers an insight into the unoccupied electronic s-
tates above Fermi energy. Therefore, our theoretical results
of pseudogap state and gap opening phenomenon in strongly
correlated electronic systems can, in principle, be checked by
experiments [19]. As shown in Fig. 2 of Ref. [19], a sharp dip
of spectral density of state is observed at 30 K, and it increas-
es at 15 K. The dip at Fermi energy indicates the pseudogap
at low temperature. In Fig. 1 this pseudogap can be found
when U is comparable to t.

In addition to the Mott gap, another interesting property
shown in the spectra is the spin-charge separation. The inter-
acting 1D electronic system is known as a Luttinger liquid, in
which the elementary excitations are the independent waves
of spins and charges, with its energy quanta being spinon and
holon. They travel through the media at different speeds and
possess distinct dispersion relations. These behaviors are also
observable in the single-particle spectral function, which de-
scribes the excited states of Luttinger liquid on adding or re-
moving an electron. In Fig. 2, the upper and lower parts of the
spectrum are composed of two sub-structures with different
energy dispersions, being consistent with the Luttinger liquid
theory on spin-charge separation. These behaviors can be ob-
served in experiments [20]. The high energy edge of spectral
function is related to the spin excitation, and the low energy
edge is related to the charge excitation.

IV. SUMMARY

In this work, we use the cluster perturbation theory to cal-
culate the Green’s function and single particle spectral func-
tion of strongly correlated electronic systems. By applying
this theory, we study the spectral properties of Hubbard mod-
el at half-filling. The calculated local density of states dis-
plays a smooth evolution related to a phase transition from
normal conductor to Mott insulator. Meanwhile, spin-charge
separation is evidently verified in our calculations. These p-
resented results are expected to be helpful for understanding
experimental ARPES.
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