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Identification of radiolytic products of [C4mim][PF6] under γ-irradiation∗
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The trace water-soluble radiolytic products of neat 1-butyl-3-methylimidazolium hexafluorophosphate
([C4mim][PF6]) were identified by analysing water-washed samples of γ-irradiated ionic liquids. HF and
difluorophosphinic acid were confirmed as the main radiolytic products of [C4mim][PF6], and their radiation
chemical yields were quantified by 19F NMR (G(F−) = 0.14 µmol/J, G(HOP(O)F2) = 0.053 µmol/J). Com-
pared to [C4mim][NTf2], [C4mim][PF6] shows better radiation stability.
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I. INTRODUCTION

The room-temperature ionic liquids (RTILs) are new-
fashioned solvents and have too many attractive properties,
especially in chemical stability and low vapour pressure,
compared with traditional solvents. RTILs are considered
promising solvents for the extraction of radioactive isotopes
from spent nuclear fuel (SNF) [1–6]. This is an area of
great significance to the nuclear industry, in which traditional
volatile organic solvent extraction is currently used in SNF re-
processing and recycling. The solvent extractions of actinide
metals were investigated using [C4mim][PF6], which showed
that the use of [C4mim][PF6] greatly enhances metal ion par-
titioning, compared to using a traditional solvent [7]. A high-
ly efficient extraction of Sr2+ from an aqueous solution can
be achieved using [C4mim][PF6] in combination with crown
ether [8, 9]. Sr2+ partitioning in the crown ether, combined
with the [C4mim][PF6] extraction phase, decreased obvious-
ly after γ-irradiation [10]. The decline of the distribution
ratio was attributed to the inhibition of the cation exchange
mechanism and competition by radiation-formed hydrogen
ions. However, γ-irradiation of [C4mim][PF6] showed no dis-
cernible influence on Sr2+ extraction from a nitric acid solu-
tion with high acidity [11]. This research show the feasibility
of [C4mim][PF6] as an extracting solvent for the reprocessing
of SNF.

In an extraction process involving SNF, there will be a
requirement for extracting agents and solvents to be ro-
bust to high radiation doses [12–14]. Therefore, studies on
the radiation effects of RTILs are of great importance be-
fore their practical application in SNF reprocessing and re-
cycling. Micro-FTIR, 1H NMR, and 19F NMR spectra of
[C4mim][PF6] irradiated at 550 kGy suggested that no dis-
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cernible changes were found in these spectra [14, 15]. Qi et
al. reported that the radiolysis of [C4mim][PF6] leads to an
increase in UV-vis absorbance and a decrease in fluorescence
intensity [12]. Radical generated species and different degra-
dation pathways were proposed for imidazolium ionic liq-
uids under electron irradiation and were confirmed by elec-
tron paramagnetic resonance [16–18]. The cation radical
C4mim+·, neutral radical C4mim·, and other potential species
were observed by pulse radiolysis during the irradiation of
dry [C4mim][PF6] [19]. However, as of now there are still
few works focusing on the identification of radiolytic prod-
ucts of [C4mim][PF6].

In this work, the aim of the present study is to re-
port the identification of water-soluble radiolytic products
of [C4mim][PF6] by using Micro-FTIR, 19F NMR, and 31P
NMR. 19F NMR was employed to provide a quantitative s-
tudy for the radiolytic products of [C4mim][PF6] and their
radiation chemical yields were obtained.

II. MATERIALS AND METHODS

A. Materials

[C4mim][PF6] (>99%) was purchased from Lanzhou
Greenchem ILs, LICP, CAS, China (Lanzhou, China). No im-
purities were detected by NMR analysis. Difluorophosphoric
acid hemihydrate (HOP(O)F2 · 5 H2O, Strem Chemicals,
Inc.) was obtained as a standard compound for the
identification of radiolytic products of [C4mim][PF6].
CF3COONa (Tokyo Chemical Industry Co, >98%) was used
for quantitative analysis. Other solvents were analytical-
grade reagents and used without further purification.

B. Irradiation

The irradiation of [C4mim][PF6] ionic liquid was carried
out in air ((298± 2)K) using a 60Co source with an average
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dose rate of ca. 210Gy/min (Department of Applied Chem-
istry of Peking University). The absorbed dose was traced by
a Fricke dosimeter.

C. Identification of radiolytic products

The separation of water-soluble radiolytic products from
the organic phase was conducted by contacting 0.5mL of ir-
radiated sample with 0.5mL of deuterium oxide (D2O) for
about 10min in a vibrating mixer, followed by centrifuging
to ensure that the phases were fully contacted and separated.
The aqueous phase from the wash of irradiated [C4mim][PF6]
was analysed by various spectroscopic methods.

Micro-FTIR: The aqueous phase was dropped onto a slide
and dried at 40 ◦C for 30min. Then, the residual radiolytic
products on the slide were analysed by a Magna-IR 750 Ther-
mo Scientific Micro Fourier transform infrared spectrometer
(Micro-FTIR) in the spectral range of 4000–600 cm−1.

NMR: The aqueous phase was analyzed by a Bruk-
er 500MHz Avance III NMR spectrometer. C6F6
(−162.73 ppm) for 19F NMR and H3PO4 (0 ppm) for 31P
NMR spectra were used as references. CF3COONa was dis-
solved in deuteroxide (50mmol/L) and used as internal stan-
dard compound for quantitative analysis.

III. RESULTS AND DISCUSSION

Micro-FTIR and 1H NMR spectra of [C4mim][PF6] sug-
gested that no discernible changes were found, even after ir-
radiation at 550 kGy [14], which was an indication that the
radiolytic species were very small in quantity. In order to
separate water-soluble radiolytic products from the organ-
ic phase, the irradiated [C4mim][PF6] was washed by D2O
and then the aqueous phase (A-phase) was analysed by vari-
ous spectroscopic methods. As shown in Fig. 1, the absorp-
tion of A-phase shows some changes, compared to that of
the unirradiated sample. The absorption of the unirradiated
sample is attributed to [C4mim][PF6] ionic liquid. For A-
phase, an absorption band at 1521 cm−1 was attributed to a
Lewis acid, which has been identified using pyridine as a
molecular probe [10]. The absorption bands at 1299 cm−1

and 1140 cm−1 corresponded to the vibration of the O−−P−O
bonds [20, 21], which indicate that the P−F bond was broken
and an O−−P−O bond was formed during the irradiation of
[C4mim][PF6]. The change of absorption band at 841 cm−1

indicated the formation of a PF2 group [21].
19F NMR and 31P NMR chemical shifts are highly sensi-

tive to fluorine-containing and phosphorus-containing com-
pounds, respectively. The A-phase was also analysed by 19F
NMR and 31P NMR. As shown in Fig. 2, the 19F NMR of the
unirradiated sample shows a duplicate peak at −71.70 ppm
(JF-P = 706.5Hz) assigning to PF6

−. The A-phase shows
two new peaks at −82.60 (duplicate, JF-P = 960.8Hz) and
−129.58 ppm, which were ascribed to the signals of the ra-
diolytic products. The chemical shifts at −129.58 ppm can
be assigned to the signal of HF, which has been identified

Fig. 1. Micro-FTIR spectra of unirradiated and irradiated
[C4mim][PF6] (The aqueous phase from the washing of unirradiated
sample (a) and γ-irradiated sample (b)).

as a main radiolytic product of [C4mim][NTf2] [22, 23].
HF fumes were also detected during the irradiation of
[C4mim][PF6] [12], thus, HF was one of main radiolytic prod-
ucts of [C4mim][PF6].

Fig. 2. 19F NMR spectra of unirradiated and irradiated
[C4mim][PF6] (The aqueous phase from the washing of unirradiated
sample (a) and γ-irradiated sample (b)).

As shown in Fig. 3, the 31P NMR of an unirradiated sam-
ple shows a heptet at −145.01 ppm (JF-P = 707.0Hz) as-
signing to PF6

−. A new triplet at −14.82 ppm is observed
in the A-phase. Combined with the results of 19F NMR,
the triplet at −14.82 ppm (JF-P = 959.7Hz) has the same
coupling constants as the peak at −82.60 ppm in 19F NMR
(JF-P = 960.8Hz), which indicates that the chemical struc-
ture of the radiolytic product contains a PF2 group (PF2-Gr).
Lu et al. pointed out that [OP(O)F2]– was one of the hy-
drolysis products of [C4mim][PF6] [24]. HOP(O)F2 is a pos-
sible radiolytic product when [C4mim][PF6] is irradiated by
γ-radiation. A HOP(O)F2 standard compound was obtained
for further identification. The HOP(O)F2 shows a duplicate
peak at −82.64 ppm (JF-P = 961.4Hz) in 19F NMR and a
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Fig. 3. 31P NMR spectra of unirradiated and irradiated
[C4mim][PF6] (The aqueous phase from the washing of unirradiated
sample (a) and γ-irradiated sample (b)).

Fig. 4. The relationship between the concentration of radiolytic
products and doses.

triplet at −14.85 ppm (JF-P = 961.4Hz) in 31P NMR, we can
conclude that the radiolytic product PF2-Gr can be definitely
confirmed as HOP(O)F2.

According to the above results, HF and HOP(O)F2 are
confirmed as the main radiolytic products of [C4mim][PF6]
under γ-irradiation. In order to realize a quantitative anal-

ysis of the radiolytic products of [C4mim][PF6] after γ-
irradiation, herein, the irradiated sample was washed 4 times
with D2O before analysis to ensure that acidic radiolytic prod-
ucts were totally collected. After 4 washes, a neutral up-
per aqueous phase was obtained and analysed by 19F NMR.
CF3COONa was dissolved in deuteroxide (50mmol/L) and
used as an internal standard compound for the quantitative
analysis. Compared to the unirradiated sample, the amounts
of main radiolytic products increased obviously with dose in-
creases (Fig. 4). The radiation chemical yields of radiolytic
products (G = G(F−) + G(HOP(O)F2) = 0.14 µmol/J +
0.053 µmol/J = 0.19 µmol/J) are close to the radiation chem-
ical yields of the anion (0.18 µmol/J) of [C4mim][PF6] deter-
mined by 19F NMR [25]. Compared to the radiation chem-
ical yields of acidic radiolytic products of [C4mim][NTf2]
(Table 1), the radiation stability of [C4mim][PF6] is better
than that of [C4mim][NTf2] and is influenced by the chem-
ical structure of the anion. HF and HOP(O)F2 were identified
as the main radiolytic products of PF6

− of [C4mim][PF6], and
their overall contents were less than 0.7% for [C4mim][PF6],
even when irradiated at 500 kGy.

TABLE 1. Radiation yields of radiolytic products and corresponding
anions
RTILs G(F–) Other products G(anion)

(µmol/J) (µmol/J)
[C4mim][PF6] 0.14 0.053 −0.18 [25]
[C4mim][NTf2] 0.20 [22] 0.151 [22] −0.22 [25]

IV. CONCLUSION

The trace water-soluble acidic radiolytic products of
[C4mim][PF6] were confirmed by using various spectro-
scopic methods, including Micro-FTIR, 19F NMR, and 31P
NMR. The main radiolytic products (HF and HOP(O)F2)
of [C4mim][PF6] were identified and their amount was
quantified by 19F NMR. The overall concentration of non-
volatile acidic radiolysis products was less than 0.7% for
[C4mim][PF6], even when irradiated at 500 kGy, which
shows that [C4mim][PF6] has excellent radiation stability and
is promising for the application of extractions in nuclear fuel
reprocessing.
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